Welcome to mirror list, hosted at ThFree Co, Russian Federation.

SSHRSA.C - github.com/mRemoteNG/PuTTYNG.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: e3dcbdda5766c7fed5ace04b14a18dccf5671c2d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
/*
 * RSA implementation for PuTTY.
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>

#include "ssh.h"
#include "mpint.h"
#include "misc.h"

void BinarySource_get_rsa_ssh1_pub(
    BinarySource *src, RSAKey *rsa, RsaSsh1Order order)
{
    unsigned bits;
    mp_int *e, *m;

    bits = get_uint32(src);
    if (order == RSA_SSH1_EXPONENT_FIRST) {
        e = get_mp_ssh1(src);
        m = get_mp_ssh1(src);
    } else {
        m = get_mp_ssh1(src);
        e = get_mp_ssh1(src);
    }

    if (rsa) {
        rsa->bits = bits;
        rsa->exponent = e;
        rsa->modulus = m;
        rsa->bytes = (mp_get_nbits(m) + 7) / 8;
    } else {
        mp_free(e);
        mp_free(m);
    }
}

void BinarySource_get_rsa_ssh1_priv(
    BinarySource *src, RSAKey *rsa)
{
    rsa->private_exponent = get_mp_ssh1(src);
}

key_components *rsa_components(RSAKey *rsa)
{
    key_components *kc = key_components_new();
    key_components_add_text(kc, "key_type", "RSA");
    key_components_add_mp(kc, "public_modulus", rsa->modulus);
    key_components_add_mp(kc, "public_exponent", rsa->exponent);
    if (rsa->private_exponent) {
        key_components_add_mp(kc, "private_exponent", rsa->private_exponent);
        key_components_add_mp(kc, "private_p", rsa->p);
        key_components_add_mp(kc, "private_q", rsa->q);
        key_components_add_mp(kc, "private_inverse_q_mod_p", rsa->iqmp);
    }
    return kc;
}

RSAKey *BinarySource_get_rsa_ssh1_priv_agent(BinarySource *src)
{
    RSAKey *rsa = snew(RSAKey);
    memset(rsa, 0, sizeof(RSAKey));

    get_rsa_ssh1_pub(src, rsa, RSA_SSH1_MODULUS_FIRST);
    get_rsa_ssh1_priv(src, rsa);

    /* SSH-1 names p and q the other way round, i.e. we have the
     * inverse of p mod q and not of q mod p. We swap the names,
     * because our internal RSA wants iqmp. */
    rsa->iqmp = get_mp_ssh1(src);
    rsa->q = get_mp_ssh1(src);
    rsa->p = get_mp_ssh1(src);

    return rsa;
}

bool rsa_ssh1_encrypt(unsigned char *data, int length, RSAKey *key)
{
    mp_int *b1, *b2;
    int i;
    unsigned char *p;

    if (key->bytes < length + 4)
        return false;                  /* RSA key too short! */

    memmove(data + key->bytes - length, data, length);
    data[0] = 0;
    data[1] = 2;

    size_t npad = key->bytes - length - 3;
    /*
     * Generate a sequence of nonzero padding bytes. We do this in a
     * reasonably uniform way and without having to loop round
     * retrying the random number generation, by first generating an
     * integer in [0,2^n) for an appropriately large n; then we
     * repeatedly multiply by 255 to give an integer in [0,255*2^n),
     * extract the top 8 bits to give an integer in [0,255), and mask
     * those bits off before multiplying up again for the next digit.
     * This gives us a sequence of numbers in [0,255), and of course
     * adding 1 to each of them gives numbers in [1,256) as we wanted.
     *
     * (You could imagine this being a sort of fixed-point operation:
     * given a uniformly random binary _fraction_, multiplying it by k
     * and subtracting off the integer part will yield you a sequence
     * of integers each in [0,k). I'm just doing that scaled up by a
     * power of 2 to avoid the fractions.)
     */
    size_t random_bits = (npad + 16) * 8;
    mp_int *randval = mp_new(random_bits + 8);
    mp_int *tmp = mp_random_bits(random_bits);
    mp_copy_into(randval, tmp);
    mp_free(tmp);
    for (i = 2; i < key->bytes - length - 1; i++) {
        mp_mul_integer_into(randval, randval, 255);
        uint8_t byte = mp_get_byte(randval, random_bits / 8);
        assert(byte != 255);
        data[i] = byte + 1;
        mp_reduce_mod_2to(randval, random_bits);
    }
    mp_free(randval);
    data[key->bytes - length - 1] = 0;

    b1 = mp_from_bytes_be(make_ptrlen(data, key->bytes));

    b2 = mp_modpow(b1, key->exponent, key->modulus);

    p = data;
    for (i = key->bytes; i--;) {
        *p++ = mp_get_byte(b2, i);
    }

    mp_free(b1);
    mp_free(b2);

    return true;
}

/*
 * Compute (base ^ exp) % mod, provided mod == p * q, with p,q
 * distinct primes, and iqmp is the multiplicative inverse of q mod p.
 * Uses Chinese Remainder Theorem to speed computation up over the
 * obvious implementation of a single big modpow.
 */
static mp_int *crt_modpow(mp_int *base, mp_int *exp, mp_int *mod,
                          mp_int *p, mp_int *q, mp_int *iqmp)
{
    mp_int *pm1, *qm1, *pexp, *qexp, *presult, *qresult;
    mp_int *diff, *multiplier, *ret0, *ret;

    /*
     * Reduce the exponent mod phi(p) and phi(q), to save time when
     * exponentiating mod p and mod q respectively. Of course, since p
     * and q are prime, phi(p) == p-1 and similarly for q.
     */
    pm1 = mp_copy(p);
    mp_sub_integer_into(pm1, pm1, 1);
    qm1 = mp_copy(q);
    mp_sub_integer_into(qm1, qm1, 1);
    pexp = mp_mod(exp, pm1);
    qexp = mp_mod(exp, qm1);

    /*
     * Do the two modpows.
     */
    mp_int *base_mod_p = mp_mod(base, p);
    presult = mp_modpow(base_mod_p, pexp, p);
    mp_free(base_mod_p);
    mp_int *base_mod_q = mp_mod(base, q);
    qresult = mp_modpow(base_mod_q, qexp, q);
    mp_free(base_mod_q);

    /*
     * Recombine the results. We want a value which is congruent to
     * qresult mod q, and to presult mod p.
     *
     * We know that iqmp * q is congruent to 1 * mod p (by definition
     * of iqmp) and to 0 mod q (obviously). So we start with qresult
     * (which is congruent to qresult mod both primes), and add on
     * (presult-qresult) * (iqmp * q) which adjusts it to be congruent
     * to presult mod p without affecting its value mod q.
     *
     * (If presult-qresult < 0, we add p to it to keep it positive.)
     */
    unsigned presult_too_small = mp_cmp_hs(qresult, presult);
    mp_cond_add_into(presult, presult, p, presult_too_small);

    diff = mp_sub(presult, qresult);
    multiplier = mp_mul(iqmp, q);
    ret0 = mp_mul(multiplier, diff);
    mp_add_into(ret0, ret0, qresult);

    /*
     * Finally, reduce the result mod n.
     */
    ret = mp_mod(ret0, mod);

    /*
     * Free all the intermediate results before returning.
     */
    mp_free(pm1);
    mp_free(qm1);
    mp_free(pexp);
    mp_free(qexp);
    mp_free(presult);
    mp_free(qresult);
    mp_free(diff);
    mp_free(multiplier);
    mp_free(ret0);

    return ret;
}

/*
 * Wrapper on crt_modpow that looks up all the right values from an
 * RSAKey.
 */
static mp_int *rsa_privkey_op(mp_int *input, RSAKey *key)
{
    return crt_modpow(input, key->private_exponent,
                      key->modulus, key->p, key->q, key->iqmp);
}

mp_int *rsa_ssh1_decrypt(mp_int *input, RSAKey *key)
{
    return rsa_privkey_op(input, key);
}

bool rsa_ssh1_decrypt_pkcs1(mp_int *input, RSAKey *key,
                            strbuf *outbuf)
{
    strbuf *data = strbuf_new_nm();
    bool success = false;
    BinarySource src[1];

    {
        mp_int *b = rsa_ssh1_decrypt(input, key);
        for (size_t i = (mp_get_nbits(key->modulus) + 7) / 8; i-- > 0 ;) {
            put_byte(data, mp_get_byte(b, i));
        }
        mp_free(b);
    }

    BinarySource_BARE_INIT(src, data->u, data->len);

    /* Check PKCS#1 formatting prefix */
    if (get_byte(src) != 0) goto out;
    if (get_byte(src) != 2) goto out;
    while (1) {
        unsigned char byte = get_byte(src);
        if (get_err(src)) goto out;
        if (byte == 0)
            break;
    }

    /* Everything else is the payload */
    success = true;
    put_data(outbuf, get_ptr(src), get_avail(src));

  out:
    strbuf_free(data);
    return success;
}

static void append_hex_to_strbuf(strbuf *sb, mp_int *x)
{
    if (sb->len > 0)
        put_byte(sb, ',');
    put_data(sb, "0x", 2);
    char *hex = mp_get_hex(x);
    size_t hexlen = strlen(hex);
    put_data(sb, hex, hexlen);
    smemclr(hex, hexlen);
    sfree(hex);
}

char *rsastr_fmt(RSAKey *key)
{
    strbuf *sb = strbuf_new();

    append_hex_to_strbuf(sb, key->exponent);
    append_hex_to_strbuf(sb, key->modulus);

    return strbuf_to_str(sb);
}

/*
 * Generate a fingerprint string for the key. Compatible with the
 * OpenSSH fingerprint code.
 */
char *rsa_ssh1_fingerprint(RSAKey *key)
{
    unsigned char digest[16];
    strbuf *out;
    int i;

    /*
     * The hash preimage for SSH-1 key fingerprinting consists of the
     * modulus and exponent _without_ any preceding length field -
     * just the minimum number of bytes to represent each integer,
     * stored big-endian, concatenated with no marker at the division
     * between them.
     */

    ssh_hash *hash = ssh_hash_new(&ssh_md5);
    for (size_t i = (mp_get_nbits(key->modulus) + 7) / 8; i-- > 0 ;)
        put_byte(hash, mp_get_byte(key->modulus, i));
    for (size_t i = (mp_get_nbits(key->exponent) + 7) / 8; i-- > 0 ;)
        put_byte(hash, mp_get_byte(key->exponent, i));
    ssh_hash_final(hash, digest);

    out = strbuf_new();
    strbuf_catf(out, "%"SIZEu" ", mp_get_nbits(key->modulus));
    for (i = 0; i < 16; i++)
        strbuf_catf(out, "%s%02x", i ? ":" : "", digest[i]);
    if (key->comment)
        strbuf_catf(out, " %s", key->comment);
    return strbuf_to_str(out);
}

/*
 * Wrap the output of rsa_ssh1_fingerprint up into the same kind of
 * structure that comes from ssh2_all_fingerprints.
 */
char **rsa_ssh1_fake_all_fingerprints(RSAKey *key)
{
    char **ret = snewn(SSH_N_FPTYPES, char *);
    for (unsigned i = 0; i < SSH_N_FPTYPES; i++)
        ret[i] = NULL;
    ret[SSH_FPTYPE_MD5] = rsa_ssh1_fingerprint(key);
    return ret;
}

/*
 * Verify that the public data in an RSA key matches the private
 * data. We also check the private data itself: we ensure that p >
 * q and that iqmp really is the inverse of q mod p.
 */
bool rsa_verify(RSAKey *key)
{
    mp_int *n, *ed, *pm1, *qm1;
    unsigned ok = 1;

    /* Preliminary checks: p,q can't be 0 or 1. (Of course no other
     * very small value is any good either, but these are the values
     * we _must_ check for to avoid assertion failures further down
     * this function.) */
    if (!(mp_hs_integer(key->p, 2) & mp_hs_integer(key->q, 2)))
        return false;

    /* n must equal pq. */
    n = mp_mul(key->p, key->q);
    ok &= mp_cmp_eq(n, key->modulus);
    mp_free(n);

    /* e * d must be congruent to 1, modulo (p-1) and modulo (q-1). */
    pm1 = mp_copy(key->p);
    mp_sub_integer_into(pm1, pm1, 1);
    ed = mp_modmul(key->exponent, key->private_exponent, pm1);
    mp_free(pm1);
    ok &= mp_eq_integer(ed, 1);
    mp_free(ed);

    qm1 = mp_copy(key->q);
    mp_sub_integer_into(qm1, qm1, 1);
    ed = mp_modmul(key->exponent, key->private_exponent, qm1);
    mp_free(qm1);
    ok &= mp_eq_integer(ed, 1);
    mp_free(ed);

    /*
     * Ensure p > q.
     *
     * I have seen key blobs in the wild which were generated with
     * p < q, so instead of rejecting the key in this case we
     * should instead flip them round into the canonical order of
     * p > q. This also involves regenerating iqmp.
     */
    mp_int *p_new = mp_max(key->p, key->q);
    mp_int *q_new = mp_min(key->p, key->q);
    mp_free(key->p);
    mp_free(key->q);
    mp_free(key->iqmp);
    key->p = p_new;
    key->q = q_new;
    key->iqmp = mp_invert(key->q, key->p);

    return ok;
}

void rsa_ssh1_public_blob(BinarySink *bs, RSAKey *key,
                          RsaSsh1Order order)
{
    put_uint32(bs, mp_get_nbits(key->modulus));
    if (order == RSA_SSH1_EXPONENT_FIRST) {
        put_mp_ssh1(bs, key->exponent);
        put_mp_ssh1(bs, key->modulus);
    } else {
        put_mp_ssh1(bs, key->modulus);
        put_mp_ssh1(bs, key->exponent);
    }
}

void rsa_ssh1_private_blob_agent(BinarySink *bs, RSAKey *key)
{
    rsa_ssh1_public_blob(bs, key, RSA_SSH1_MODULUS_FIRST);
    put_mp_ssh1(bs, key->private_exponent);
    put_mp_ssh1(bs, key->iqmp);
    put_mp_ssh1(bs, key->q);
    put_mp_ssh1(bs, key->p);
}

/* Given an SSH-1 public key blob, determine its length. */
int rsa_ssh1_public_blob_len(ptrlen data)
{
    BinarySource src[1];

    BinarySource_BARE_INIT_PL(src, data);

    /* Expect a length word, then exponent and modulus. (It doesn't
     * even matter which order.) */
    get_uint32(src);
    mp_free(get_mp_ssh1(src));
    mp_free(get_mp_ssh1(src));

    if (get_err(src))
        return -1;

    /* Return the number of bytes consumed. */
    return src->pos;
}

void freersapriv(RSAKey *key)
{
    if (key->private_exponent) {
        mp_free(key->private_exponent);
        key->private_exponent = NULL;
    }
    if (key->p) {
        mp_free(key->p);
        key->p = NULL;
    }
    if (key->q) {
        mp_free(key->q);
        key->q = NULL;
    }
    if (key->iqmp) {
        mp_free(key->iqmp);
        key->iqmp = NULL;
    }
}

void freersakey(RSAKey *key)
{
    freersapriv(key);
    if (key->modulus) {
        mp_free(key->modulus);
        key->modulus = NULL;
    }
    if (key->exponent) {
        mp_free(key->exponent);
        key->exponent = NULL;
    }
    if (key->comment) {
        sfree(key->comment);
        key->comment = NULL;
    }
}

/* ----------------------------------------------------------------------
 * Implementation of the ssh-rsa signing key type family.
 */

struct ssh2_rsa_extra {
    unsigned signflags;
};

static void rsa2_freekey(ssh_key *key);   /* forward reference */

static ssh_key *rsa2_new_pub(const ssh_keyalg *self, ptrlen data)
{
    BinarySource src[1];
    RSAKey *rsa;

    BinarySource_BARE_INIT_PL(src, data);
    if (!ptrlen_eq_string(get_string(src), "ssh-rsa"))
        return NULL;

    rsa = snew(RSAKey);
    rsa->sshk.vt = self;
    rsa->exponent = get_mp_ssh2(src);
    rsa->modulus = get_mp_ssh2(src);
    rsa->private_exponent = NULL;
    rsa->p = rsa->q = rsa->iqmp = NULL;
    rsa->comment = NULL;

    if (get_err(src)) {
        rsa2_freekey(&rsa->sshk);
        return NULL;
    }

    return &rsa->sshk;
}

static void rsa2_freekey(ssh_key *key)
{
    RSAKey *rsa = container_of(key, RSAKey, sshk);
    freersakey(rsa);
    sfree(rsa);
}

static char *rsa2_cache_str(ssh_key *key)
{
    RSAKey *rsa = container_of(key, RSAKey, sshk);
    return rsastr_fmt(rsa);
}

static key_components *rsa2_components(ssh_key *key)
{
    RSAKey *rsa = container_of(key, RSAKey, sshk);
    return rsa_components(rsa);
}

static void rsa2_public_blob(ssh_key *key, BinarySink *bs)
{
    RSAKey *rsa = container_of(key, RSAKey, sshk);

    put_stringz(bs, "ssh-rsa");
    put_mp_ssh2(bs, rsa->exponent);
    put_mp_ssh2(bs, rsa->modulus);
}

static void rsa2_private_blob(ssh_key *key, BinarySink *bs)
{
    RSAKey *rsa = container_of(key, RSAKey, sshk);

    put_mp_ssh2(bs, rsa->private_exponent);
    put_mp_ssh2(bs, rsa->p);
    put_mp_ssh2(bs, rsa->q);
    put_mp_ssh2(bs, rsa->iqmp);
}

static ssh_key *rsa2_new_priv(const ssh_keyalg *self,
                               ptrlen pub, ptrlen priv)
{
    BinarySource src[1];
    ssh_key *sshk;
    RSAKey *rsa;

    sshk = rsa2_new_pub(self, pub);
    if (!sshk)
        return NULL;

    rsa = container_of(sshk, RSAKey, sshk);
    BinarySource_BARE_INIT_PL(src, priv);
    rsa->private_exponent = get_mp_ssh2(src);
    rsa->p = get_mp_ssh2(src);
    rsa->q = get_mp_ssh2(src);
    rsa->iqmp = get_mp_ssh2(src);

    if (get_err(src) || !rsa_verify(rsa)) {
        rsa2_freekey(&rsa->sshk);
        return NULL;
    }

    return &rsa->sshk;
}

static ssh_key *rsa2_new_priv_openssh(const ssh_keyalg *self,
                                      BinarySource *src)
{
    RSAKey *rsa;

    rsa = snew(RSAKey);
    rsa->sshk.vt = &ssh_rsa;
    rsa->comment = NULL;

    rsa->modulus = get_mp_ssh2(src);
    rsa->exponent = get_mp_ssh2(src);
    rsa->private_exponent = get_mp_ssh2(src);
    rsa->iqmp = get_mp_ssh2(src);
    rsa->p = get_mp_ssh2(src);
    rsa->q = get_mp_ssh2(src);

    if (get_err(src) || !rsa_verify(rsa)) {
        rsa2_freekey(&rsa->sshk);
        return NULL;
    }

    return &rsa->sshk;
}

static void rsa2_openssh_blob(ssh_key *key, BinarySink *bs)
{
    RSAKey *rsa = container_of(key, RSAKey, sshk);

    put_mp_ssh2(bs, rsa->modulus);
    put_mp_ssh2(bs, rsa->exponent);
    put_mp_ssh2(bs, rsa->private_exponent);
    put_mp_ssh2(bs, rsa->iqmp);
    put_mp_ssh2(bs, rsa->p);
    put_mp_ssh2(bs, rsa->q);
}

static int rsa2_pubkey_bits(const ssh_keyalg *self, ptrlen pub)
{
    ssh_key *sshk;
    RSAKey *rsa;
    int ret;

    sshk = rsa2_new_pub(self, pub);
    if (!sshk)
        return -1;

    rsa = container_of(sshk, RSAKey, sshk);
    ret = mp_get_nbits(rsa->modulus);
    rsa2_freekey(&rsa->sshk);

    return ret;
}

static inline const ssh_hashalg *rsa2_hash_alg_for_flags(
    unsigned flags, const char **protocol_id_out)
{
    const ssh_hashalg *halg;
    const char *protocol_id;

    if (flags & SSH_AGENT_RSA_SHA2_256) {
        halg = &ssh_sha256;
        protocol_id = "rsa-sha2-256";
    } else if (flags & SSH_AGENT_RSA_SHA2_512) {
        halg = &ssh_sha512;
        protocol_id = "rsa-sha2-512";
    } else {
        halg = &ssh_sha1;
        protocol_id = "ssh-rsa";
    }

    if (protocol_id_out)
        *protocol_id_out = protocol_id;

    return halg;
}

static inline ptrlen rsa_pkcs1_prefix_for_hash(const ssh_hashalg *halg)
{
    if (halg == &ssh_sha1) {
        /*
         * This is the magic ASN.1/DER prefix that goes in the decoded
         * signature, between the string of FFs and the actual SHA-1
         * hash value. The meaning of it is:
         *
         * 00 -- this marks the end of the FFs; not part of the ASN.1
         * bit itself
         *
         * 30 21 -- a constructed SEQUENCE of length 0x21
         *    30 09 -- a constructed sub-SEQUENCE of length 9
         *       06 05 -- an object identifier, length 5
         *          2B 0E 03 02 1A -- object id { 1 3 14 3 2 26 }
         *                            (the 1,3 comes from 0x2B = 43 = 40*1+3)
         *       05 00 -- NULL
         *    04 14 -- a primitive OCTET STRING of length 0x14
         *       [0x14 bytes of hash data follows]
         *
         * The object id in the middle there is listed as `id-sha1' in
         * ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1d2.asn
         * (the ASN module for PKCS #1) and its expanded form is as
         * follows:
         *
         * id-sha1                OBJECT IDENTIFIER ::= {
         *    iso(1) identified-organization(3) oiw(14) secsig(3)
         *    algorithms(2) 26 }
         */
        static const unsigned char sha1_asn1_prefix[] = {
            0x00, 0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B,
            0x0E, 0x03, 0x02, 0x1A, 0x05, 0x00, 0x04, 0x14,
        };
        return PTRLEN_FROM_CONST_BYTES(sha1_asn1_prefix);
    }

    if (halg == &ssh_sha256) {
        /*
         * A similar piece of ASN.1 used for signatures using SHA-256,
         * in the same format but differing only in various length
         * fields and OID.
         */
        static const unsigned char sha256_asn1_prefix[] = {
            0x00, 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60,
            0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
            0x05, 0x00, 0x04, 0x20,
        };
        return PTRLEN_FROM_CONST_BYTES(sha256_asn1_prefix);
    }

    if (halg == &ssh_sha512) {
        /*
         * And one more for SHA-512.
         */
        static const unsigned char sha512_asn1_prefix[] = {
            0x00, 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60,
            0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03,
            0x05, 0x00, 0x04, 0x40,
        };
        return PTRLEN_FROM_CONST_BYTES(sha512_asn1_prefix);
    }

    unreachable("bad hash algorithm for RSA PKCS#1");
}

static inline size_t rsa_pkcs1_length_of_fixed_parts(const ssh_hashalg *halg)
{
    ptrlen asn1_prefix = rsa_pkcs1_prefix_for_hash(halg);
    return halg->hlen + asn1_prefix.len + 2;
}

static unsigned char *rsa_pkcs1_signature_string(
    size_t nbytes, const ssh_hashalg *halg, ptrlen data)
{
    size_t fixed_parts = rsa_pkcs1_length_of_fixed_parts(halg);
    assert(nbytes >= fixed_parts);
    size_t padding = nbytes - fixed_parts;

    ptrlen asn1_prefix = rsa_pkcs1_prefix_for_hash(halg);

    unsigned char *bytes = snewn(nbytes, unsigned char);

    bytes[0] = 0;
    bytes[1] = 1;

    memset(bytes + 2, 0xFF, padding);

    memcpy(bytes + 2 + padding, asn1_prefix.ptr, asn1_prefix.len);

    ssh_hash *h = ssh_hash_new(halg);
    put_datapl(h, data);
    ssh_hash_final(h, bytes + 2 + padding + asn1_prefix.len);

    return bytes;
}

static bool rsa2_verify(ssh_key *key, ptrlen sig, ptrlen data)
{
    RSAKey *rsa = container_of(key, RSAKey, sshk);
    BinarySource src[1];
    ptrlen type, in_pl;
    mp_int *in, *out;

    const struct ssh2_rsa_extra *extra =
        (const struct ssh2_rsa_extra *)key->vt->extra;

    const ssh_hashalg *halg = rsa2_hash_alg_for_flags(extra->signflags, NULL);

    /* Start by making sure the key is even long enough to encode a
     * signature. If not, everything fails to verify. */
    size_t nbytes = (mp_get_nbits(rsa->modulus) + 7) / 8;
    if (nbytes < rsa_pkcs1_length_of_fixed_parts(halg))
        return false;

    BinarySource_BARE_INIT_PL(src, sig);
    type = get_string(src);
    /*
     * RFC 4253 section 6.6: the signature integer in an ssh-rsa
     * signature is 'without lengths or padding'. That is, we _don't_
     * expect the usual leading zero byte if the topmost bit of the
     * first byte is set. (However, because of the possibility of
     * BUG_SSH2_RSA_PADDING at the other end, we tolerate it if it's
     * there.) So we can't use get_mp_ssh2, which enforces that
     * leading-byte scheme; instead we use get_string and
     * mp_from_bytes_be, which will tolerate anything.
     */
    in_pl = get_string(src);
    if (get_err(src) || !ptrlen_eq_string(type, key->vt->ssh_id))
        return false;

    in = mp_from_bytes_be(in_pl);
    out = mp_modpow(in, rsa->exponent, rsa->modulus);
    mp_free(in);

    unsigned diff = 0;

    unsigned char *bytes = rsa_pkcs1_signature_string(nbytes, halg, data);
    for (size_t i = 0; i < nbytes; i++)
        diff |= bytes[nbytes-1 - i] ^ mp_get_byte(out, i);
    smemclr(bytes, nbytes);
    sfree(bytes);
    mp_free(out);

    return diff == 0;
}

static void rsa2_sign(ssh_key *key, ptrlen data,
                      unsigned flags, BinarySink *bs)
{
    RSAKey *rsa = container_of(key, RSAKey, sshk);
    unsigned char *bytes;
    size_t nbytes;
    mp_int *in, *out;
    const ssh_hashalg *halg;
    const char *sign_alg_name;

    const struct ssh2_rsa_extra *extra =
        (const struct ssh2_rsa_extra *)key->vt->extra;
    flags |= extra->signflags;

    halg = rsa2_hash_alg_for_flags(flags, &sign_alg_name);

    nbytes = (mp_get_nbits(rsa->modulus) + 7) / 8;

    bytes = rsa_pkcs1_signature_string(nbytes, halg, data);
    in = mp_from_bytes_be(make_ptrlen(bytes, nbytes));
    smemclr(bytes, nbytes);
    sfree(bytes);

    out = rsa_privkey_op(in, rsa);
    mp_free(in);

    put_stringz(bs, sign_alg_name);
    nbytes = (mp_get_nbits(out) + 7) / 8;
    put_uint32(bs, nbytes);
    for (size_t i = 0; i < nbytes; i++)
        put_byte(bs, mp_get_byte(out, nbytes - 1 - i));

    mp_free(out);
}

static char *rsa2_invalid(ssh_key *key, unsigned flags)
{
    RSAKey *rsa = container_of(key, RSAKey, sshk);
    size_t bits = mp_get_nbits(rsa->modulus), nbytes = (bits + 7) / 8;
    const char *sign_alg_name;
    const ssh_hashalg *halg = rsa2_hash_alg_for_flags(flags, &sign_alg_name);
    if (nbytes < rsa_pkcs1_length_of_fixed_parts(halg)) {
        return dupprintf(
            "%"SIZEu"-bit RSA key is too short to generate %s signatures",
            bits, sign_alg_name);
    }

    return NULL;
}

static const struct ssh2_rsa_extra
    rsa_extra = { 0 },
    rsa_sha256_extra = { SSH_AGENT_RSA_SHA2_256 },
    rsa_sha512_extra = { SSH_AGENT_RSA_SHA2_512 };

#define COMMON_KEYALG_FIELDS                    \
    .new_pub = rsa2_new_pub,                    \
    .new_priv = rsa2_new_priv,                  \
    .new_priv_openssh = rsa2_new_priv_openssh,  \
    .freekey = rsa2_freekey,                    \
    .invalid = rsa2_invalid,                    \
    .sign = rsa2_sign,                          \
    .verify = rsa2_verify,                      \
    .public_blob = rsa2_public_blob,            \
    .private_blob = rsa2_private_blob,          \
    .openssh_blob = rsa2_openssh_blob,          \
    .cache_str = rsa2_cache_str,                \
    .components = rsa2_components,              \
    .pubkey_bits = rsa2_pubkey_bits,            \
    .cache_id = "rsa2"

const ssh_keyalg ssh_rsa = {
    COMMON_KEYALG_FIELDS,
    .ssh_id = "ssh-rsa",
    .supported_flags = SSH_AGENT_RSA_SHA2_256 | SSH_AGENT_RSA_SHA2_512,
    .extra = &rsa_extra,
};

const ssh_keyalg ssh_rsa_sha256 = {
    COMMON_KEYALG_FIELDS,
    .ssh_id = "rsa-sha2-256",
    .supported_flags = 0,
    .extra = &rsa_sha256_extra,
};

const ssh_keyalg ssh_rsa_sha512 = {
    COMMON_KEYALG_FIELDS,
    .ssh_id = "rsa-sha2-512",
    .supported_flags = 0,
    .extra = &rsa_sha512_extra,
};

RSAKey *ssh_rsakex_newkey(ptrlen data)
{
    ssh_key *sshk = rsa2_new_pub(&ssh_rsa, data);
    if (!sshk)
        return NULL;
    return container_of(sshk, RSAKey, sshk);
}

void ssh_rsakex_freekey(RSAKey *key)
{
    rsa2_freekey(&key->sshk);
}

int ssh_rsakex_klen(RSAKey *rsa)
{
    return mp_get_nbits(rsa->modulus);
}

static void oaep_mask(const ssh_hashalg *h, void *seed, int seedlen,
                      void *vdata, int datalen)
{
    unsigned char *data = (unsigned char *)vdata;
    unsigned count = 0;

    ssh_hash *s = ssh_hash_new(h);

    while (datalen > 0) {
        int i, max = (datalen > h->hlen ? h->hlen : datalen);
        unsigned char hash[MAX_HASH_LEN];

        ssh_hash_reset(s);
        assert(h->hlen <= MAX_HASH_LEN);
        put_data(s, seed, seedlen);
        put_uint32(s, count);
        ssh_hash_digest(s, hash);
        count++;

        for (i = 0; i < max; i++)
            data[i] ^= hash[i];

        data += max;
        datalen -= max;
    }

    ssh_hash_free(s);
}

strbuf *ssh_rsakex_encrypt(RSAKey *rsa, const ssh_hashalg *h, ptrlen in)
{
    mp_int *b1, *b2;
    int k, i;
    char *p;
    const int HLEN = h->hlen;

    /*
     * Here we encrypt using RSAES-OAEP. Essentially this means:
     *
     *  - we have a SHA-based `mask generation function' which
     *    creates a pseudo-random stream of mask data
     *    deterministically from an input chunk of data.
     *
     *  - we have a random chunk of data called a seed.
     *
     *  - we use the seed to generate a mask which we XOR with our
     *    plaintext.
     *
     *  - then we use _the masked plaintext_ to generate a mask
     *    which we XOR with the seed.
     *
     *  - then we concatenate the masked seed and the masked
     *    plaintext, and RSA-encrypt that lot.
     *
     * The result is that the data input to the encryption function
     * is random-looking and (hopefully) contains no exploitable
     * structure such as PKCS1-v1_5 does.
     *
     * For a precise specification, see RFC 3447, section 7.1.1.
     * Some of the variable names below are derived from that, so
     * it'd probably help to read it anyway.
     */

    /* k denotes the length in octets of the RSA modulus. */
    k = (7 + mp_get_nbits(rsa->modulus)) / 8;

    /* The length of the input data must be at most k - 2hLen - 2. */
    assert(in.len > 0 && in.len <= k - 2*HLEN - 2);

    /* The length of the output data wants to be precisely k. */
    strbuf *toret = strbuf_new_nm();
    int outlen = k;
    unsigned char *out = strbuf_append(toret, outlen);

    /*
     * Now perform EME-OAEP encoding. First set up all the unmasked
     * output data.
     */
    /* Leading byte zero. */
    out[0] = 0;
    /* At position 1, the seed: HLEN bytes of random data. */
    random_read(out + 1, HLEN);
    /* At position 1+HLEN, the data block DB, consisting of: */
    /* The hash of the label (we only support an empty label here) */
    hash_simple(h, PTRLEN_LITERAL(""), out + HLEN + 1);
    /* A bunch of zero octets */
    memset(out + 2*HLEN + 1, 0, outlen - (2*HLEN + 1));
    /* A single 1 octet, followed by the input message data. */
    out[outlen - in.len - 1] = 1;
    memcpy(out + outlen - in.len, in.ptr, in.len);

    /*
     * Now use the seed data to mask the block DB.
     */
    oaep_mask(h, out+1, HLEN, out+HLEN+1, outlen-HLEN-1);

    /*
     * And now use the masked DB to mask the seed itself.
     */
    oaep_mask(h, out+HLEN+1, outlen-HLEN-1, out+1, HLEN);

    /*
     * Now `out' contains precisely the data we want to
     * RSA-encrypt.
     */
    b1 = mp_from_bytes_be(make_ptrlen(out, outlen));
    b2 = mp_modpow(b1, rsa->exponent, rsa->modulus);
    p = (char *)out;
    for (i = outlen; i--;) {
        *p++ = mp_get_byte(b2, i);
    }
    mp_free(b1);
    mp_free(b2);

    /*
     * And we're done.
     */
    return toret;
}

mp_int *ssh_rsakex_decrypt(
    RSAKey *rsa, const ssh_hashalg *h, ptrlen ciphertext)
{
    mp_int *b1, *b2;
    int outlen, i;
    unsigned char *out;
    unsigned char labelhash[64];
    BinarySource src[1];
    const int HLEN = h->hlen;

    /*
     * Decryption side of the RSA key exchange operation.
     */

    /* The length of the encrypted data should be exactly the length
     * in octets of the RSA modulus.. */
    outlen = (7 + mp_get_nbits(rsa->modulus)) / 8;
    if (ciphertext.len != outlen)
        return NULL;

    /* Do the RSA decryption, and extract the result into a byte array. */
    b1 = mp_from_bytes_be(ciphertext);
    b2 = rsa_privkey_op(b1, rsa);
    out = snewn(outlen, unsigned char);
    for (i = 0; i < outlen; i++)
        out[i] = mp_get_byte(b2, outlen-1-i);
    mp_free(b1);
    mp_free(b2);

    /* Do the OAEP masking operations, in the reverse order from encryption */
    oaep_mask(h, out+HLEN+1, outlen-HLEN-1, out+1, HLEN);
    oaep_mask(h, out+1, HLEN, out+HLEN+1, outlen-HLEN-1);

    /* Check the leading byte is zero. */
    if (out[0] != 0) {
        sfree(out);
        return NULL;
    }
    /* Check the label hash at position 1+HLEN */
    assert(HLEN <= lenof(labelhash));
    hash_simple(h, PTRLEN_LITERAL(""), labelhash);
    if (memcmp(out + HLEN + 1, labelhash, HLEN)) {
        sfree(out);
        return NULL;
    }
    /* Expect zero bytes followed by a 1 byte */
    for (i = 1 + 2 * HLEN; i < outlen; i++) {
        if (out[i] == 1) {
            i++;  /* skip over the 1 byte */
            break;
        } else if (out[i] != 0) {
            sfree(out);
            return NULL;
        }
    }
    /* And what's left is the input message data, which should be
     * encoded as an ordinary SSH-2 mpint. */
    BinarySource_BARE_INIT(src, out + i, outlen - i);
    b1 = get_mp_ssh2(src);
    sfree(out);
    if (get_err(src) || get_avail(src) != 0) {
        mp_free(b1);
        return NULL;
    }

    /* Success! */
    return b1;
}

static const struct ssh_rsa_kex_extra ssh_rsa_kex_extra_sha1 = { 1024 };
static const struct ssh_rsa_kex_extra ssh_rsa_kex_extra_sha256 = { 2048 };

static const ssh_kex ssh_rsa_kex_sha1 = {
    "rsa1024-sha1", NULL, KEXTYPE_RSA,
    &ssh_sha1, &ssh_rsa_kex_extra_sha1,
};

static const ssh_kex ssh_rsa_kex_sha256 = {
    "rsa2048-sha256", NULL, KEXTYPE_RSA,
    &ssh_sha256, &ssh_rsa_kex_extra_sha256,
};

static const ssh_kex *const rsa_kex_list[] = {
    &ssh_rsa_kex_sha256,
    &ssh_rsa_kex_sha1
};

const ssh_kexes ssh_rsa_kex = { lenof(rsa_kex_list), rsa_kex_list };