Welcome to mirror list, hosted at ThFree Co, Russian Federation.

mksvg.py « icons - github.com/mRemoteNG/PuTTYNG.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: f29ff25b89f3786cf42a8c89df9aeca6c28d9f39 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
#!/usr/bin/env python3

import argparse
import itertools
import math
import os
import sys
from fractions import Fraction

import xml.etree.cElementTree as ET

# Python code which draws the PuTTY icon components in SVG.

def makegroup(*objects):
    if len(objects) == 1:
        return objects[0]
    g = ET.Element("g")
    for obj in objects:
        g.append(obj)
    return g

class Container:
    "Empty class for keeping things in."
    pass

class SVGthing(object):
    def __init__(self):
        self.fillc = "none"
        self.strokec = "none"
        self.strokewidth = 0
        self.strokebehind = False
        self.clipobj = None
        self.props = Container()
    def fmt_colour(self, rgb):
        return "#{0:02x}{1:02x}{2:02x}".format(*rgb)
    def fill(self, colour):
        self.fillc = self.fmt_colour(colour)
    def stroke(self, colour, width=1, behind=False):
        self.strokec = self.fmt_colour(colour)
        self.strokewidth = width
        self.strokebehind = behind
    def clip(self, obj):
        self.clipobj = obj
    def styles(self, elt, styles):
        elt.attrib["style"] = ";".join("{}:{}".format(k,v)
                                       for k,v in sorted(styles.items()))
    def add_clip_paths(self, container, idents, X, Y):
        if self.clipobj:
            self.clipobj.identifier = next(idents)
            clipelt = self.clipobj.render_thing(X, Y)
            clippath = ET.Element("clipPath")
            clippath.attrib["id"] = self.clipobj.identifier
            clippath.append(clipelt)
            container.append(clippath)
            return True
        return False
    def render(self, X, Y, with_styles=True):
        elt = self.render_thing(X, Y)
        if self.clipobj:
            elt.attrib["clip-path"] = "url(#{})".format(
                self.clipobj.identifier)
        estyles = {"fill": self.fillc}
        sstyles = {"stroke": self.strokec}
        if self.strokewidth:
            sstyles["stroke-width"] = "{:g}".format(self.strokewidth)
            sstyles["stroke-linecap"] = "round"
            sstyles["stroke-linejoin"] = "round"
        if not self.strokebehind:
            estyles.update(sstyles)
        if with_styles:
            self.styles(elt, estyles)
        if not self.strokebehind:
            return elt
        selt = self.render_thing(X, Y)
        if with_styles:
            self.styles(selt, sstyles)
        return makegroup(selt, elt)
    def bbox(self):
        it = self.bb_iter()
        xmin, ymin = xmax, ymax = next(it)
        for x, y in it:
            xmin = min(x, xmin)
            xmax = max(x, xmax)
            ymin = min(y, ymin)
            ymax = max(y, ymax)
        r = self.strokewidth / 2.0
        xmin -= r
        ymin -= r
        xmax += r
        ymax += r
        if self.clipobj:
            x0, y0, x1, y1 = self.clipobj.bbox()
            xmin = max(x0, xmin)
            xmax = min(x1, xmax)
            ymin = max(y0, ymin)
            ymax = min(y1, ymax)
        return xmin, ymin, xmax, ymax

class SVGpath(SVGthing):
    def __init__(self, pointlists, closed=True):
        super().__init__()
        self.pointlists = pointlists
        self.closed = closed
    def bb_iter(self):
        for points in self.pointlists:
            for x,y,on in points:
                yield x,y
    def render_thing(self, X, Y):
        pathcmds = []

        for points in self.pointlists:
            while not points[-1][2]:
                points = points[1:] + [points[0]]

            piter = iter(points)

            if self.closed:
                xp, yp, _ = points[-1]
                pathcmds.extend(["M", X+xp, Y-yp])
            else:
                xp, yp, on = next(piter)
                assert on, "Open paths must start with an on-curve point"
                pathcmds.extend(["M", X+xp, Y-yp])

            for x, y, on in piter:
                if isinstance(on, type(())):
                    assert on[0] == "arc"
                    _, rx, ry, rotation, large, sweep = on
                    pathcmds.extend(["a",
                                     rx, ry, rotation,
                                     1 if large else 0,
                                     1 if sweep else 0,
                                     x-xp, -(y-yp)])
                elif not on:
                    x0, y0 = x, y
                    x1, y1, on = next(piter)
                    assert not on
                    x, y, on = next(piter)
                    assert on
                    pathcmds.extend(["c", x0-xp, -(y0-yp),
                                     ",", x1-xp, -(y1-yp),
                                     ",", x-xp, -(y-yp)])
                elif x == xp:
                    pathcmds.extend(["v", -(y-yp)])
                elif x == xp:
                    pathcmds.extend(["h", x-xp])
                else:
                    pathcmds.extend(["l", x-xp, -(y-yp)])

                xp, yp = x, y

            if self.closed:
                pathcmds.append("z")

        path = ET.Element("path")
        path.attrib["d"] = " ".join(str(cmd) for cmd in pathcmds)
        return path

class SVGrect(SVGthing):
    def __init__(self, x0, y0, x1, y1):
        super().__init__()
        self.points = x0, y0, x1, y1
    def bb_iter(self):
        x0, y0, x1, y1 = self.points
        return iter([(x0,y0), (x1,y1)])
    def render_thing(self, X, Y):
        x0, y0, x1, y1 = self.points
        rect = ET.Element("rect")
        rect.attrib["x"] = "{:g}".format(min(X+x0,X+x1))
        rect.attrib["y"] = "{:g}".format(min(Y-y0,Y-y1))
        rect.attrib["width"] = "{:g}".format(abs(x0-x1))
        rect.attrib["height"] = "{:g}".format(abs(y0-y1))
        return rect

class SVGpoly(SVGthing):
    def __init__(self, points):
        super().__init__()
        self.points = points
    def bb_iter(self):
        return iter(self.points)
    def render_thing(self, X, Y):
        poly = ET.Element("polygon")
        poly.attrib["points"] = " ".join("{:g},{:g}".format(X+x,Y-y)
                                         for x,y in self.points)
        return poly

class SVGgroup(object):
    def __init__(self, objects, translations=[]):
        translations = translations + (
            [(0,0)] * (len(objects)-len(translations)))
        self.contents = list(zip(objects, translations))
        self.props = Container()
    def render(self, X, Y):
        return makegroup(*[obj.render(X+x, Y-y) 
                           for obj, (x,y) in self.contents])
    def add_clip_paths(self, container, idents, X, Y):
        toret = False
        for obj, (x,y) in self.contents:
            if obj.add_clip_paths(container, idents, X+x, Y-y):
                toret = True
        return toret
    def bbox(self):
        it = ((x,y) + obj.bbox() for obj, (x,y) in self.contents)
        x, y, xmin, ymin, xmax, ymax = next(it)
        xmin = x+xmin
        ymin = y+ymin
        xmax = x+xmax
        ymax = y+ymax
        for x, y, x0, y0, x1, y1 in it:
            xmin = min(x+x0, xmin)
            xmax = max(x+x1, xmax)
            ymin = min(y+y0, ymin)
            ymax = max(y+y1, ymax)
        return (xmin, ymin, xmax, ymax)

class SVGtranslate(object):
    def __init__(self, obj, translation):
        self.obj = obj
        self.tx, self.ty = translation
    def render(self, X, Y):
        return self.obj.render(X+self.tx, Y+self.ty)
    def add_clip_paths(self, container, idents, X, Y):
        return self.obj.add_clip_paths(container, idents, X+self.tx, Y-self.ty)
    def bbox(self):
        xmin, ymin, xmax, ymax = self.obj.bbox()
        return xmin+self.tx, ymin+self.ty, xmax+self.tx, ymax+self.ty

# Code to actually draw pieces of icon. These don't generally worry
# about positioning within a rectangle; they just draw at a standard
# location, return some useful coordinates, and leave composition
# to other pieces of code.

def sysbox(size):
    # The system box of the computer.

    height = 3.6*size
    width = 16.51*size
    depth = 2*size
    highlight = 1*size

    floppystart = 19*size # measured in half-pixels
    floppyend = 29*size # measured in half-pixels
    floppybottom = highlight
    floppyrheight = 0.7 * size
    floppyheight = floppyrheight
    if floppyheight < 1:
        floppyheight = 1
    floppytop = floppybottom + floppyheight

    background_coords = [
        (0,0), (width,0), (width+depth,depth),
        (width+depth,height+depth), (depth,height+depth), (0,height)]
    background = SVGpoly(background_coords)
    background.fill(greypix(0.75))

    hl_dark = SVGpoly([
        (highlight,0), (highlight,highlight), (width-highlight,highlight),
        (width-highlight,height-highlight), (width+depth,height+depth),
        (width+depth,depth), (width,0)])
    hl_dark.fill(greypix(0.5))

    hl_light = SVGpoly([
        (0,highlight), (highlight,highlight), (highlight,height-highlight),
        (width-highlight,height-highlight), (width+depth,height+depth),
        (width+depth-highlight,height+depth), (width-highlight,height),
        (0,height)])
    hl_light.fill(cW)

    floppy = SVGrect(floppystart/2.0, floppybottom,
                     floppyend/2.0, floppytop)
    floppy.fill(cK)

    outline = SVGpoly(background_coords)
    outline.stroke(cK, width=0.5)

    toret = SVGgroup([background, hl_dark, hl_light, floppy, outline])
    toret.props.sysboxheight = height
    toret.props.borderthickness = 1 # FIXME
    return toret

def monitor(size):
    # The computer's monitor.

    height = 9.5*size
    width = 11.5*size
    surround = 1*size
    botsurround = 2*size
    sheight = height - surround - botsurround
    swidth = width - 2*surround
    depth = 2*size
    highlight = surround/2
    shadow = 0.5*size

    background_coords = [
        (0,0), (width,0), (width+depth,depth),
        (width+depth,height+depth), (depth,height+depth), (0,height)]
    background = SVGpoly(background_coords)
    background.fill(greypix(0.75))

    hl0_dark = SVGpoly([
        (0,0), (highlight,highlight), (width-highlight,highlight),
        (width-highlight,height-highlight), (width+depth,height+depth),
        (width+depth,depth), (width,0)])
    hl0_dark.fill(greypix(0.5))

    hl0_light = SVGpoly([
        (0,0), (highlight,highlight), (highlight,height-highlight),
        (width-highlight,height-highlight), (width,height), (0,height)])
    hl0_light.fill(greypix(1))

    hl1_dark = SVGpoly([
        (surround-highlight,botsurround-highlight), (surround,botsurround),
        (surround,height-surround), (width-surround,height-surround),
        (width-surround+highlight,height-surround+highlight),
        (surround-highlight,height-surround+highlight)])
    hl1_dark.fill(greypix(0.5))

    hl1_light = SVGpoly([
        (surround-highlight,botsurround-highlight), (surround,botsurround),
        (width-surround,botsurround), (width-surround,height-surround),
        (width-surround+highlight,height-surround+highlight),
        (width-surround+highlight,botsurround-highlight)])
    hl1_light.fill(greypix(1))

    screen = SVGrect(surround, botsurround, width-surround, height-surround)
    screen.fill(bluepix(1))

    screenshadow = SVGpoly([
        (surround,botsurround), (surround+shadow,botsurround),
        (surround+shadow,height-surround-shadow),
        (width-surround,height-surround-shadow), 
        (width-surround,height-surround), (surround,height-surround)])
    screenshadow.fill(bluepix(0.5))

    outline = SVGpoly(background_coords)
    outline.stroke(cK, width=0.5)

    toret = SVGgroup([background, hl0_dark, hl0_light, hl1_dark, hl1_light,
                      screen, screenshadow, outline])
    # Give the centre of the screen (for lightning-bolt positioning purposes)
    # as the centre of the _light_ area of the screen, not counting the
    # shadow on the top and left. I think that looks very slightly nicer.
    sbb = (surround+shadow, botsurround, width-surround, height-surround-shadow)
    toret.props.screencentre = ((sbb[0]+sbb[2])/2, (sbb[1]+sbb[3])/2)
    return toret

def computer(size):
    # Monitor plus sysbox.
    m = monitor(size)
    s = sysbox(size)
    x = (2+size/(size+1))*size
    y = int(s.props.sysboxheight + s.props.borderthickness)
    mb = m.bbox()
    sb = s.bbox()
    xoff = mb[0] - sb[0] + x
    yoff = mb[1] - sb[1] + y
    toret = SVGgroup([s, m], [(0,0), (xoff,yoff)])
    toret.props.screencentre = (m.props.screencentre[0]+xoff,
                                m.props.screencentre[1]+yoff)
    return toret

def lightning(size):
    # The lightning bolt motif.

    # Compute the right size of a lightning bolt to exactly connect
    # the centres of the two screens in the main PuTTY icon. We'll use
    # that size of bolt for all the other icons too, for consistency.
    iconw = iconh = 32 * size
    cbb = computer(size).bbox()
    assert cbb[2]-cbb[0] <= iconw and cbb[3]-cbb[1] <= iconh
    width, height = iconw-(cbb[2]-cbb[0]), iconh-(cbb[3]-cbb[1])

    degree = math.pi/180

    centrethickness = 2*size # top-to-bottom thickness of centre bar
    innerangle = 46 * degree # slope of the inner slanting line
    outerangle = 39 * degree # slope of the outer one

    innery = (height - centrethickness) / 2
    outery = (height + centrethickness) / 2
    innerx = innery / math.tan(innerangle)
    outerx = outery / math.tan(outerangle)

    points = [(innerx, innery), (0,0), (outerx, outery)]
    points.extend([(width-x, height-y) for x,y in points])

    # Fill and stroke the lightning bolt.
    #
    # Most of the filled-and-stroked objects in these icons are filled
    # first, and then stroked with width 0.5, so that the edge of the
    # filled area runs down the centre line of the stroke. Put another
    # way, half the stroke covers what would have been the filled
    # area, and the other half covers the background. This seems like
    # the normal way to fill-and-stroke a shape of a given size, and
    # SVG makes it easy by allowing us to specify the polygon just
    # once with both 'fill' and 'stroke' CSS properties.
    #
    # But if we did that in this case, then the tips of the lightning
    # bolt wouldn't have lightning-colour anywhere near them, because
    # the two edges are so close together in angle that the point
    # where the strokes would first _not_ overlap would be miles away
    # from the logical endpoint.
    #
    # So, for this one case, we stroke the polygon first at double the
    # width, and then fill it on top of that, requiring two copies of
    # it in the SVG (though my construction class here hides that
    # detail). The effect is that we still get a stroke of visible
    # width 0.5, but it's entirely outside the filled area of the
    # polygon, so the tips of the yellow interior of the lightning
    # bolt are exactly at the logical endpoints.
    poly = SVGpoly(points)
    poly.fill(cY)
    poly.stroke(cK, width=1, behind=True)
    poly.props.end1 = (0,0)
    poly.props.end2 = (width,height)
    return poly

def document(size):
    # The document used in the PSCP/PSFTP icon.

    width = 13*size
    height = 16*size

    lineht = 0.875*size
    linespc = 1.125*size
    nlines = int((height-linespc)/(lineht+linespc))
    height = nlines*(lineht+linespc)+linespc # round this so it fits better

    paper = SVGrect(0, 0, width, height)
    paper.fill(cW)
    paper.stroke(cK, width=0.5)

    objs = [paper]

    # Now draw lines of text.
    for line in range(nlines):
        # Decide where this line of text begins.
        if line == 0:
            start = 4*size
        elif line < 5*nlines/7:
            start = (line * 4/5) * size
        else:
            start = 1*size
        # Decide where it ends.
        endpoints = [10, 8, 11, 6, 5, 7, 5]
        ey = line * 6.0 / (nlines-1)
        eyf = math.floor(ey)
        eyc = math.ceil(ey)
        exf = endpoints[int(eyf)]
        exc = endpoints[int(eyc)]
        if eyf == eyc:
            end = exf
        else:
            end = exf * (eyc-ey) + exc * (ey-eyf)
        end = end * size

        liney = (lineht+linespc) * (line+1)
        line = SVGrect(start, liney-lineht, end, liney)
        line.fill(cK)
        objs.append(line)

    return SVGgroup(objs)

def hat(size):
    # The secret-agent hat in the Pageant icon.

    leftend = (0, -6*size)
    rightend = (28*size, -12*size)
    dx = rightend[0]-leftend[0]
    dy = rightend[1]-leftend[1]
    tcentre = (leftend[0] + 0.5*dx - 0.3*dy, leftend[1] + 0.5*dy + 0.3*dx)

    hatpoints = [leftend + (True,),
                 (7.5*size, -6*size, True),
                 (12*size, 0, True),
                 (14*size, 3*size, False),
                 (tcentre[0] - 0.1*dx, tcentre[1] - 0.1*dy, False),
                 tcentre + (True,)]
    for x, y, on in list(reversed(hatpoints))[1:]:
        vx, vy = x-tcentre[0], y-tcentre[1]
        coeff = float(vx*dx + vy*dy) / float(dx*dx + dy*dy)
        rx, ry = x - 2*coeff*dx, y - 2*coeff*dy
        hatpoints.append((rx, ry, on))

    mainhat = SVGpath([hatpoints])
    mainhat.fill(cK)

    band = SVGpoly([
        (leftend[0] - 0.1*dy, leftend[1] + 0.1*dx),
        (rightend[0] - 0.1*dy, rightend[1] + 0.1*dx),
        (rightend[0] - 0.15*dy, rightend[1] + 0.15*dx),
        (leftend[0] - 0.15*dy, leftend[1] + 0.15*dx)])
    band.fill(cW)
    band.clip(SVGpath([hatpoints]))

    outline = SVGpath([hatpoints])
    outline.stroke(cK, width=1)

    return SVGgroup([mainhat, band, outline])

def key(size):
    # The key in the PuTTYgen icon.

    keyheadw = 9.5*size
    keyheadh = 12*size
    keyholed = 4*size
    keyholeoff = 2*size
    # Ensure keyheadh and keyshafth have the same parity.
    keyshafth = (2*size - (int(keyheadh)&1)) / 2 * 2 + (int(keyheadh)&1)
    keyshaftw = 18.5*size
    keyheaddetail = [x*size for x in [12,11,8,10,9,8,11,12]]

    squarepix = []

    keyheadcx = keyshaftw + keyheadw / 2.0
    keyheadcy = keyheadh / 2.0
    keyshafttop = keyheadcy + keyshafth / 2.0
    keyshaftbot = keyheadcy - keyshafth / 2.0

    keyhead = [(0, keyshafttop, True), (keyshaftw, keyshafttop, True),
               (keyshaftw, keyshaftbot,
                ("arc", keyheadw/2.0, keyheadh/2.0, 0, True, True)),
               (len(keyheaddetail)*size, keyshaftbot, True)]
    for i, h in reversed(list(enumerate(keyheaddetail))):
        keyhead.append(((i+1)*size, keyheadh-h, True))
        keyhead.append(((i)*size, keyheadh-h, True))

    keyholecx = keyheadcx + keyholeoff
    keyholecy = keyheadcy
    keyholer = keyholed / 2.0

    keyhole = [(keyholecx + keyholer, keyholecy,
                ("arc", keyholer, keyholer, 0, False, False)),
               (keyholecx - keyholer, keyholecy,
                ("arc", keyholer, keyholer, 0, False, False))]

    outline = SVGpath([keyhead, keyhole])
    outline.fill(cy)
    outline.stroke(cK, width=0.5)
    return outline

def linedist(x1,y1, x2,y2, x,y):
    # Compute the distance from the point x,y to the line segment
    # joining x1,y1 to x2,y2. Returns the distance vector, measured
    # with x,y at the origin.

    vectors = []

    # Special case: if x1,y1 and x2,y2 are the same point, we
    # don't attempt to extrapolate it into a line at all.
    if x1 != x2 or y1 != y2:
        # First, find the nearest point to x,y on the infinite
        # projection of the line segment. So we construct a vector
        # n perpendicular to that segment...
        nx = y2-y1
        ny = x1-x2
        # ... compute the dot product of (x1,y1)-(x,y) with that
        # vector...
        nd = (x1-x)*nx + (y1-y)*ny
        # ... multiply by the vector we first thought of...
        ndx = nd * nx
        ndy = nd * ny
        # ... and divide twice by the length of n.
        ndx = ndx / (nx*nx+ny*ny)
        ndy = ndy / (nx*nx+ny*ny)
        # That gives us a displacement vector from x,y to the
        # nearest point. See if it's within the range of the line
        # segment.
        cx = x + ndx
        cy = y + ndy
        if cx >= min(x1,x2) and cx <= max(x1,x2) and \
        cy >= min(y1,y2) and cy <= max(y1,y2):
            vectors.append((ndx,ndy))

    # Now we have up to three candidate result vectors: (ndx,ndy)
    # as computed just above, and the two vectors to the ends of
    # the line segment, (x1-x,y1-y) and (x2-x,y2-y). Pick the
    # shortest.
    vectors = vectors + [(x1-x,y1-y), (x2-x,y2-y)]
    bestlen, best = None, None
    for v in vectors:
        vlen = v[0]*v[0]+v[1]*v[1]
        if bestlen == None or bestlen > vlen:
            bestlen = vlen
            best = v
    return best

def spanner(size):
    # The spanner in the config box icon.

    # Coordinate definitions.
    headcentre = 0.5 + 4*size
    headradius = headcentre + 0.1
    headhighlight = 1.5*size
    holecentre = 0.5 + 3*size
    holeradius = 2*size
    holehighlight = 1.5*size
    shaftend = 0.5 + 25*size
    shaftwidth = 2*size
    shafthighlight = 1.5*size
    cmax = shaftend + shaftwidth

    # The spanner head is a circle centred at headcentre*(1,1) with
    # radius headradius, minus a circle at holecentre*(1,1) with
    # radius holeradius, and also minus every translate of that circle
    # by a negative real multiple of (1,1).
    #
    # The spanner handle is a diagonally oriented rectangle, of width
    # shaftwidth, with the centre of the far end at shaftend*(1,1),
    # and the near end terminating somewhere inside the spanner head
    # (doesn't really matter exactly where).
    #
    # Hence, in SVG we can represent the shape using a path of
    # straight lines and circular arcs. But first we need to calculate
    # the points where the straight lines meet the spanner head circle.
    headpt = lambda a, on=True: (headcentre+headradius*math.cos(a),
                                 -headcentre+headradius*math.sin(a), on)
    holept = lambda a, on=True: (holecentre+holeradius*math.cos(a),
                                 -holecentre+holeradius*math.sin(a), on)

    # Now we can specify the path.
    spannercoords = [[
        holept(math.pi*5/4),
        holept(math.pi*1/4, ("arc", holeradius,holeradius,0, False, False)),
        headpt(math.pi*3/4 - math.asin(holeradius/headradius)),
        headpt(math.pi*7/4 + math.asin(shaftwidth/headradius),
               ("arc", headradius,headradius,0, False, True)),
        (shaftend+math.sqrt(0.5)*shaftwidth,
         -shaftend+math.sqrt(0.5)*shaftwidth, True),
        (shaftend-math.sqrt(0.5)*shaftwidth,
         -shaftend-math.sqrt(0.5)*shaftwidth, True),
        headpt(math.pi*7/4 - math.asin(shaftwidth/headradius)),
        headpt(math.pi*3/4 + math.asin(holeradius/headradius),
               ("arc", headradius,headradius,0, False, True)),
    ]]

    base = SVGpath(spannercoords)
    base.fill(cY)

    shadowthickness = 2*size
    sx, sy, _ = holept(math.pi*5/4)
    sx += math.sqrt(0.5) * shadowthickness/2
    sy += math.sqrt(0.5) * shadowthickness/2
    sr = holeradius - shadowthickness/2

    shadow = SVGpath([
        [(sx, sy, sr),
         holept(math.pi*1/4, ("arc", sr, sr, 0, False, False)),
         headpt(math.pi*3/4 - math.asin(holeradius/headradius))],
        [(shaftend-math.sqrt(0.5)*shaftwidth,
          -shaftend-math.sqrt(0.5)*shaftwidth, True),
         headpt(math.pi*7/4 - math.asin(shaftwidth/headradius)),
         headpt(math.pi*3/4 + math.asin(holeradius/headradius),
                ("arc", headradius,headradius,0, False, True))],
    ], closed=False)
    shadow.clip(SVGpath(spannercoords))
    shadow.stroke(cy, width=shadowthickness)

    outline = SVGpath(spannercoords)
    outline.stroke(cK, width=0.5)

    return SVGgroup([base, shadow, outline])

def box(size, wantback):
    # The back side of the cardboard box in the installer icon.

    boxwidth = 15 * size
    boxheight = 12 * size
    boxdepth = 4 * size
    boxfrontflapheight = 5 * size
    boxrightflapheight = 3 * size

    # Three shades of basically acceptable brown, all achieved by
    # halftoning between two of the Windows-16 colours. I'm quite
    # pleased that was feasible at all!
    dark = halftone(cr, cK)
    med = halftone(cr, cy)
    light = halftone(cr, cY)
    # We define our halftoning parity in such a way that the black
    # pixels along the RHS of the visible part of the box back
    # match up with the one-pixel black outline around the
    # right-hand side of the box. In other words, we want the pixel
    # at (-1, boxwidth-1) to be black, and hence the one at (0,
    # boxwidth) too.
    parityadjust = int(boxwidth) % 2

    # The back of the box.
    if wantback:
        back = SVGpoly([
            (0,0), (boxwidth,0), (boxwidth+boxdepth,boxdepth),
            (boxwidth+boxdepth,boxheight+boxdepth),
            (boxdepth,boxheight+boxdepth), (0,boxheight)])
        back.fill(dark)
        back.stroke(cK, width=0.5)
        return back

    # The front face of the box.
    front = SVGrect(0, 0, boxwidth, boxheight)
    front.fill(med)
    front.stroke(cK, width=0.5)
    # The right face of the box.
    right = SVGpoly([
        (boxwidth,0), (boxwidth+boxdepth,boxdepth),
        (boxwidth+boxdepth,boxheight+boxdepth), (boxwidth,boxheight)])
    right.fill(dark)
    right.stroke(cK, width=0.5)
    frontflap = SVGpoly([
        (0,boxheight), (boxwidth,boxheight),
        (boxwidth-boxfrontflapheight/2, boxheight-boxfrontflapheight),
        (-boxfrontflapheight/2, boxheight-boxfrontflapheight)])
    frontflap.stroke(cK, width=0.5)
    frontflap.fill(light)
    rightflap = SVGpoly([
        (boxwidth,boxheight), (boxwidth+boxdepth,boxheight+boxdepth),
        (boxwidth+boxdepth+boxrightflapheight,
         boxheight+boxdepth-boxrightflapheight),
        (boxwidth+boxrightflapheight,boxheight-boxrightflapheight)])
    rightflap.stroke(cK, width=0.5)
    rightflap.fill(med)

    return SVGgroup([front, right, frontflap, rightflap])

def boxback(size):
    return box(size, 1)
def boxfront(size):
    return box(size, 0)

# Functions to draw entire icons by composing the above components.

def xybolt(c1, c2, size, boltoffx=0, boltoffy=0, c1bb=None, c2bb=None):
    # Two unspecified objects and a lightning bolt.

    w = h = 32 * size

    bolt = lightning(size)

    objs = [c2, c1, bolt]
    origins = [None] * 3

    # Position c2 against the top right of the icon.
    bb = c2bb if c2bb is not None else c2.bbox()
    assert bb[2]-bb[0] <= w and bb[3]-bb[1] <= h
    origins[0] = w-bb[2], h-bb[3]
    # Position c1 against the bottom left of the icon.
    bb = c1bb if c1bb is not None else c1.bbox()
    assert bb[2]-bb[0] <= w and bb[3]-bb[1] <= h
    origins[1] = 0-bb[0], 0-bb[1]

    # Place the lightning bolt so that it ends precisely at the centre
    # of the monitor, in whichever of the two sub-pictures has one.
    # (In the case of the PuTTY icon proper, in which _both_
    # sub-pictures are computers, it should line up correctly for both.)
    origin1 = origin2 = None
    if hasattr(c1.props, "screencentre"):
        origin1 = (
            c1.props.screencentre[0] + origins[1][0] - bolt.props.end1[0],
            c1.props.screencentre[1] + origins[1][1] - bolt.props.end1[1])
    if hasattr(c2.props, "screencentre"):
        origin2 = (
            c2.props.screencentre[0] + origins[0][0] - bolt.props.end2[0],
            c2.props.screencentre[1] + origins[0][1] - bolt.props.end2[1])
    if origin1 is not None and origin2 is not None:
        assert math.hypot(origin1[0]-origin2[0],origin1[1]-origin2[1]<1e-5), (
            "Lightning bolt didn't line up! Off by {}*size".format(
                ((origin1[0]-origin2[0])/size,
                 (origin1[1]-origin2[1])/size)))
    origins[2] = origin1 if origin1 is not None else origin2
    assert origins[2] is not None, "Need at least one computer to line up bolt"

    toret = SVGgroup(objs, origins)
    toret.props.c1pos = origins[1]
    toret.props.c2pos = origins[0]
    return toret

def putty_icon(size):
    return xybolt(computer(size), computer(size), size)

def puttycfg_icon(size):
    w = h = 32 * size
    s = spanner(size)
    b = putty_icon(size)
    bb = s.bbox()
    return SVGgroup([b, s], [(0,0), ((w-bb[0]-bb[2])/2, (h-bb[1]-bb[3])/2)])

def puttygen_icon(size):
    k = key(size)
    # Manually move the key around, by pretending to xybolt that its
    # bounding box is offset from where it really is.
    kbb = SVGtranslate(k,(2*size,5*size)).bbox()
    return xybolt(computer(size), k, size, boltoffx=2, c2bb=kbb)

def pscp_icon(size):
    return xybolt(document(size), computer(size), size)

def puttyins_icon(size):
    boxfront = box(size, False)
    boxback = box(size, True)
    # The box back goes behind the lightning bolt.
    most = xybolt(boxback, computer(size), size, c1bb=boxfront.bbox(),
                  boltoffx=-2, boltoffy=+1)
    # But the box front goes over the top, so that the lightning
    # bolt appears to come _out_ of the box. Here it's useful to
    # know the exact coordinates where xybolt placed the box back,
    # so we can overlay the box front exactly on top of it.
    c1x, c1y = most.props.c1pos
    return SVGgroup([most, boxfront], [(0,0), most.props.c1pos])

def pterm_icon(size):
    # Just a really big computer.

    w = h = 32 * size

    c = computer(size * 1.4)

    # Centre c in the output rectangle.
    bb = c.bbox()
    assert bb[2]-bb[0] <= w and bb[3]-bb[1] <= h

    return SVGgroup([c], [((w-bb[0]-bb[2])/2, (h-bb[1]-bb[3])/2)])

def ptermcfg_icon(size):
    w = h = 32 * size
    s = spanner(size)
    b = pterm_icon(size)
    bb = s.bbox()
    return SVGgroup([b, s], [(0,0), ((w-bb[0]-bb[2])/2, (h-bb[1]-bb[3])/2)])

def pageant_icon(size):
    # A biggish computer, in a hat.

    w = h = 32 * size

    c = computer(size * 1.2)
    ht = hat(size)

    cbb = c.bbox()
    hbb = ht.bbox()

    # Determine the relative coordinates of the computer and hat. We
    # do this by first centring one on the other, then adjusting by
    # hand.
    xrel = (cbb[0]+cbb[2]-hbb[0]-hbb[2])/2 + 2*size
    yrel = (cbb[1]+cbb[3]-hbb[1]-hbb[3])/2 + 12*size

    both = SVGgroup([c, ht], [(0,0), (xrel,yrel)])

    # Mostly-centre the result in the output rectangle. We want
    # everything to fit in frame, but we also want to make it look as
    # if the computer is more x-centred than the hat.

    # Coordinates that would centre the whole group.
    bb = both.bbox()
    assert bb[2]-bb[0] <= w and bb[3]-bb[1] <= h
    grx, gry = (w-bb[0]-bb[2])/2, (h-bb[1]-bb[3])/2

    # Coords that would centre just the computer.
    bb = c.bbox()
    crx, cry = (w-bb[0]-bb[2])/2, (h-bb[1]-bb[3])/2

    # Use gry unchanged, but linear-combine grx with crx.
    return SVGgroup([both], [(grx+0.6*(crx-grx), gry)])

# Test and output functions.

cK = (0x00, 0x00, 0x00, 0xFF)
cr = (0x80, 0x00, 0x00, 0xFF)
cg = (0x00, 0x80, 0x00, 0xFF)
cy = (0x80, 0x80, 0x00, 0xFF)
cb = (0x00, 0x00, 0x80, 0xFF)
cm = (0x80, 0x00, 0x80, 0xFF)
cc = (0x00, 0x80, 0x80, 0xFF)
cP = (0xC0, 0xC0, 0xC0, 0xFF)
cw = (0x80, 0x80, 0x80, 0xFF)
cR = (0xFF, 0x00, 0x00, 0xFF)
cG = (0x00, 0xFF, 0x00, 0xFF)
cY = (0xFF, 0xFF, 0x00, 0xFF)
cB = (0x00, 0x00, 0xFF, 0xFF)
cM = (0xFF, 0x00, 0xFF, 0xFF)
cC = (0x00, 0xFF, 0xFF, 0xFF)
cW = (0xFF, 0xFF, 0xFF, 0xFF)
cD = (0x00, 0x00, 0x00, 0x80)
cT = (0x00, 0x00, 0x00, 0x00)
def greypix(value):
    value = max(min(value, 1), 0)
    return (int(round(0xFF*value)),) * 3 + (0xFF,)
def yellowpix(value):
    value = max(min(value, 1), 0)
    return (int(round(0xFF*value)),) * 2 + (0, 0xFF)
def bluepix(value):
    value = max(min(value, 1), 0)
    return (0, 0, int(round(0xFF*value)), 0xFF)
def dark(value):
    value = max(min(value, 1), 0)
    return (0, 0, 0, int(round(0xFF*value)))
def blend(col1, col2):
    r1,g1,b1,a1 = col1
    r2,g2,b2,a2 = col2
    r = int(round((r1*a1 + r2*(0xFF-a1)) / 255.0))
    g = int(round((g1*a1 + g2*(0xFF-a1)) / 255.0))
    b = int(round((b1*a1 + b2*(0xFF-a1)) / 255.0))
    a = int(round((255*a1 + a2*(0xFF-a1)) / 255.0))
    return r, g, b, a
def halftone(col1, col2):
    r1,g1,b1,a1 = col1
    r2,g2,b2,a2 = col2
    return ((r1+r2)//2, (g1+g2)//2, (b1+b2)//2, (a1+a2)//2)

def drawicon(func, width, fname):
    icon = func(width / 32.0)
    minx, miny, maxx, maxy = icon.bbox()
    #assert minx >= 0 and miny >= 0 and maxx <= width and maxy <= width

    svgroot = ET.Element("svg")
    svgroot.attrib["xmlns"] = "http://www.w3.org/2000/svg"
    svgroot.attrib["viewBox"] = "0 0 {w:d} {w:d}".format(w=width)

    defs = ET.Element("defs")
    idents = ("iconid{:d}".format(n) for n in itertools.count())
    if icon.add_clip_paths(defs, idents, 0, width):
        svgroot.append(defs)

    svgroot.append(icon.render(0,width))

    ET.ElementTree(svgroot).write(fname)

def main():
    parser = argparse.ArgumentParser(description='Generate PuTTY SVG icons.')
    parser.add_argument("icon", help="Which icon to generate.")
    parser.add_argument("-s", "--size", type=int, default=48,
                        help="Notional pixel size to base the SVG on.")
    parser.add_argument("-o", "--output", required=True,
                        help="Output file name.")
    args = parser.parse_args()

    drawicon(eval(args.icon), args.size, args.output)

if __name__ == '__main__':
    main()