Welcome to mirror list, hosted at ThFree Co, Russian Federation.

millerrabin.c - github.com/mRemoteNG/PuTTYNG.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 3358bc51a19aa39c48c98d4320f97ef7a9c351ad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
/*
 * millerrabin.c: Miller-Rabin probabilistic primality testing, as
 * declared in sshkeygen.h.
 */

#include <assert.h>
#include "ssh.h"
#include "sshkeygen.h"
#include "mpint.h"
#include "mpunsafe.h"

/*
 * The Miller-Rabin primality test is an extension to the Fermat
 * test. The Fermat test just checks that a^(p-1) == 1 mod p; this
 * is vulnerable to Carmichael numbers. Miller-Rabin considers how
 * that 1 is derived as well.
 *
 * Lemma: if a^2 == 1 (mod p), and p is prime, then either a == 1
 * or a == -1 (mod p).
 *
 *   Proof: p divides a^2-1, i.e. p divides (a+1)(a-1). Hence,
 *   since p is prime, either p divides (a+1) or p divides (a-1).
 *   But this is the same as saying that either a is congruent to
 *   -1 mod p or a is congruent to +1 mod p. []
 *
 *   Comment: This fails when p is not prime. Consider p=mn, so
 *   that mn divides (a+1)(a-1). Now we could have m dividing (a+1)
 *   and n dividing (a-1), without the whole of mn dividing either.
 *   For example, consider a=10 and p=99. 99 = 9 * 11; 9 divides
 *   10-1 and 11 divides 10+1, so a^2 is congruent to 1 mod p
 *   without a having to be congruent to either 1 or -1.
 *
 * So the Miller-Rabin test, as well as considering a^(p-1),
 * considers a^((p-1)/2), a^((p-1)/4), and so on as far as it can
 * go. In other words. we write p-1 as q * 2^k, with k as large as
 * possible (i.e. q must be odd), and we consider the powers
 *
 *       a^(q*2^0)      a^(q*2^1)          ...  a^(q*2^(k-1))  a^(q*2^k)
 * i.e.  a^((n-1)/2^k)  a^((n-1)/2^(k-1))  ...  a^((n-1)/2)    a^(n-1)
 *
 * If p is to be prime, the last of these must be 1. Therefore, by
 * the above lemma, the one before it must be either 1 or -1. And
 * _if_ it's 1, then the one before that must be either 1 or -1,
 * and so on ... In other words, we expect to see a trailing chain
 * of 1s preceded by a -1. (If we're unlucky, our trailing chain of
 * 1s will be as long as the list so we'll never get to see what
 * lies before it. This doesn't count as a test failure because it
 * hasn't _proved_ that p is not prime.)
 *
 * For example, consider a=2 and p=1729. 1729 is a Carmichael
 * number: although it's not prime, it satisfies a^(p-1) == 1 mod p
 * for any a coprime to it. So the Fermat test wouldn't have a
 * problem with it at all, unless we happened to stumble on an a
 * which had a common factor.
 *
 * So. 1729 - 1 equals 27 * 2^6. So we look at
 *
 *     2^27 mod 1729 == 645
 *    2^108 mod 1729 == 1065
 *    2^216 mod 1729 == 1
 *    2^432 mod 1729 == 1
 *    2^864 mod 1729 == 1
 *   2^1728 mod 1729 == 1
 *
 * We do have a trailing string of 1s, so the Fermat test would
 * have been happy. But this trailing string of 1s is preceded by
 * 1065; whereas if 1729 were prime, we'd expect to see it preceded
 * by -1 (i.e. 1728.). Guards! Seize this impostor.
 *
 * (If we were unlucky, we might have tried a=16 instead of a=2;
 * now 16^27 mod 1729 == 1, so we would have seen a long string of
 * 1s and wouldn't have seen the thing _before_ the 1s. So, just
 * like the Fermat test, for a given p there may well exist values
 * of a which fail to show up its compositeness. So we try several,
 * just like the Fermat test. The difference is that Miller-Rabin
 * is not _in general_ fooled by Carmichael numbers.)
 *
 * Put simply, then, the Miller-Rabin test requires us to:
 *
 *  1. write p-1 as q * 2^k, with q odd
 *  2. compute z = (a^q) mod p.
 *  3. report success if z == 1 or z == -1.
 *  4. square z at most k-1 times, and report success if it becomes
 *     -1 at any point.
 *  5. report failure otherwise.
 *
 * (We expect z to become -1 after at most k-1 squarings, because
 * if it became -1 after k squarings then a^(p-1) would fail to be
 * 1. And we don't need to investigate what happens after we see a
 * -1, because we _know_ that -1 squared is 1 modulo anything at
 * all, so after we've seen a -1 we can be sure of seeing nothing
 * but 1s.)
 */

struct MillerRabin {
    MontyContext *mc;

    size_t k;
    mp_int *q;

    mp_int *two, *pm1, *m_pm1;
};

MillerRabin *miller_rabin_new(mp_int *p)
{
    MillerRabin *mr = snew(MillerRabin);

    assert(mp_hs_integer(p, 2));
    assert(mp_get_bit(p, 0) == 1);

    mr->k = 1;
    while (!mp_get_bit(p, mr->k))
        mr->k++;
    mr->q = mp_rshift_safe(p, mr->k);

    mr->two = mp_from_integer(2);

    mr->pm1 = mp_unsafe_copy(p);
    mp_sub_integer_into(mr->pm1, mr->pm1, 1);

    mr->mc = monty_new(p);
    mr->m_pm1 = monty_import(mr->mc, mr->pm1);

    return mr;
}

void miller_rabin_free(MillerRabin *mr)
{
    mp_free(mr->q);
    mp_free(mr->two);
    mp_free(mr->pm1);
    mp_free(mr->m_pm1);
    monty_free(mr->mc);
    smemclr(mr, sizeof(*mr));
    sfree(mr);
}

struct mr_result {
    bool passed;
    bool potential_primitive_root;
};

static struct mr_result miller_rabin_test_inner(MillerRabin *mr, mp_int *w)
{
    /*
     * Compute w^q mod p.
     */
    mp_int *wqp = monty_pow(mr->mc, w, mr->q);

    /*
     * See if this is 1, or if it is -1, or if it becomes -1
     * when squared at most k-1 times.
     */
    struct mr_result result;
    result.passed = false;
    result.potential_primitive_root = false;

    if (mp_cmp_eq(wqp, monty_identity(mr->mc))) {
        result.passed = true;
    } else {
        for (size_t i = 0; i < mr->k; i++) {
            if (mp_cmp_eq(wqp, mr->m_pm1)) {
                result.passed = true;
                result.potential_primitive_root = (i == mr->k - 1);
                break;
            }
            if (i == mr->k - 1)
                break;
            monty_mul_into(mr->mc, wqp, wqp, wqp);
        }
    }

    mp_free(wqp);

    return result;
}

bool miller_rabin_test_random(MillerRabin *mr)
{
    mp_int *mw = mp_random_in_range(mr->two, mr->pm1);
    struct mr_result result = miller_rabin_test_inner(mr, mw);
    mp_free(mw);
    return result.passed;
}

mp_int *miller_rabin_find_potential_primitive_root(MillerRabin *mr)
{
    while (true) {
        mp_int *mw = mp_unsafe_shrink(mp_random_in_range(mr->two, mr->pm1));
        struct mr_result result = miller_rabin_test_inner(mr, mw);

        if (result.passed && result.potential_primitive_root) {
            mp_int *pr = monty_export(mr->mc, mw);
            mp_free(mw);
            return pr;
        }

        mp_free(mw);

        if (!result.passed) {
            return NULL;
        }
    }
}

unsigned miller_rabin_checks_needed(unsigned bits)
{
    /* Table 4.4 from Handbook of Applied Cryptography */
    return (bits >= 1300 ?  2 : bits >= 850 ?  3 : bits >= 650 ?  4 :
            bits >=  550 ?  5 : bits >= 450 ?  6 : bits >= 400 ?  7 :
            bits >=  350 ?  8 : bits >= 300 ?  9 : bits >= 250 ? 12 :
            bits >=  200 ? 15 : bits >= 150 ? 18 : 27);
}