Welcome to mirror list, hosted at ThFree Co, Russian Federation.

cryptsuite.py « test - github.com/mRemoteNG/PuTTYNG.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 69b492e8affbabc69b7f42c4425d40bea2c414e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
#!/usr/bin/env python3

import sys
import unittest
import struct
import itertools
import functools
import contextlib
import hashlib
import binascii
from base64 import b64decode as b64
import json
try:
    from math import gcd
except ImportError:
    from fractions import gcd

from eccref import *
from testcrypt import *
from ssh import *
from ca import CertType, make_signature_preimage, sign_cert_via_testcrypt

assert sys.version_info[:2] >= (3,0), "This is Python 3 code"

def unhex(s):
    return binascii.unhexlify(s.replace(" ", "").replace("\n", ""))

def rsa_bare(e, n):
    rsa = rsa_new()
    get_rsa_ssh1_pub(ssh_uint32(nbits(n)) + ssh1_mpint(e) + ssh1_mpint(n),
                     rsa, 'exponent_first')
    return rsa

def find_non_square_mod(p):
    # Find a non-square mod p, using the Jacobi symbol
    # calculation function from eccref.py.
    return next(z for z in itertools.count(2) if jacobi(z, p) == -1)

def fibonacci_scattered(n=10):
    # Generate a list of Fibonacci numbers with power-of-2 indices
    # (F_1, F_2, F_4, ...), to be used as test inputs of varying
    # sizes. Also put F_0 = 0 into the list as a bonus.
    yield 0
    a, b, c = 0, 1, 1
    while True:
        yield b
        n -= 1
        if n <= 0:
            break
        a, b, c = (a**2+b**2, b*(a+c), b**2+c**2)

def fibonacci(n=10):
    # Generate the full Fibonacci sequence starting from F_0 = 0.
    a, b = 0, 1
    while True:
        yield a
        n -= 1
        if n <= 0:
            break
        a, b = b, a+b

def mp_mask(mp):
    # Return the value that mp would represent if all its bits
    # were set. Useful for masking a true mathematical output
    # value (e.g. from an operation that can over/underflow, like
    # mp_sub or mp_anything_into) to check it's right within the
    # ability of that particular mp_int to represent.
    return ((1 << mp_max_bits(mp))-1)

def adjtuples(iterable, n):
    # Return all the contiguous n-tuples of an iterable, including
    # overlapping ones. E.g. if called on [0,1,2,3,4] with n=3 it
    # would return (0,1,2), (1,2,3), (2,3,4) and then stop.
    it = iter(iterable)
    toret = [next(it) for _ in range(n-1)]
    for element in it:
        toret.append(element)
        yield tuple(toret)
        toret[:1] = []

def last(iterable):
    # Return the last element of an iterable, or None if it is empty.
    it = iter(iterable)
    toret = None
    for toret in it:
        pass
    return toret

def le_integer(x, nbits):
    assert nbits % 8 == 0
    return bytes([0xFF & (x >> (8*n)) for n in range(nbits//8)])

@contextlib.contextmanager
def queued_random_data(nbytes, seed):
    hashsize = 512 // 8
    data = b''.join(
        hashlib.sha512("preimage:{:d}:{}".format(i, seed).encode('ascii'))
        .digest() for i in range((nbytes + hashsize - 1) // hashsize))
    data = data[:nbytes]
    random_queue(data)
    yield None
    random_clear()

@contextlib.contextmanager
def queued_specific_random_data(data):
    random_queue(data)
    yield None
    random_clear()

@contextlib.contextmanager
def random_prng(seed):
    random_make_prng('sha256', seed)
    yield None
    random_clear()

def hash_str(alg, message):
    h = ssh_hash_new(alg)
    ssh_hash_update(h, message)
    return ssh_hash_final(h)

def hash_str_iter(alg, message_iter):
    h = ssh_hash_new(alg)
    for string in message_iter:
        ssh_hash_update(h, string)
    return ssh_hash_final(h)

def mac_str(alg, key, message, cipher=None):
    m = ssh2_mac_new(alg, cipher)
    ssh2_mac_setkey(m, key)
    ssh2_mac_start(m)
    ssh2_mac_update(m, "dummy")
    # Make sure ssh_mac_start erases previous state
    ssh2_mac_start(m)
    ssh2_mac_update(m, message)
    return ssh2_mac_genresult(m)

def lcm(a, b):
    return a * b // gcd(a, b)

def get_implementations(alg):
    return get_implementations_commasep(alg).decode("ASCII").split(",")

def get_aes_impls():
    return [impl.rsplit("_", 1)[-1]
            for impl in get_implementations("aes128_cbc")
            if impl.startswith("aes128_cbc_")]

def get_aesgcm_impls():
    return [impl.split("_", 1)[1]
            for impl in get_implementations("aesgcm")
            if impl.startswith("aesgcm_")]

class MyTestBase(unittest.TestCase):
    "Intermediate class that adds useful helper methods."
    def assertEqualBin(self, x, y):
        # Like assertEqual, but produces more legible error reports
        # for random-looking binary data.
        self.assertEqual(binascii.hexlify(x), binascii.hexlify(y))

class mpint(MyTestBase):
    def testCreation(self):
        self.assertEqual(int(mp_new(128)), 0)
        self.assertEqual(int(mp_from_bytes_be(b'ABCDEFGHIJKLMNOP')),
                         0x4142434445464748494a4b4c4d4e4f50)
        self.assertEqual(int(mp_from_bytes_le(b'ABCDEFGHIJKLMNOP')),
                         0x504f4e4d4c4b4a494847464544434241)
        self.assertEqual(int(mp_from_integer(12345)), 12345)
        decstr = '91596559417721901505460351493238411077414937428167'
        self.assertEqual(int(mp_from_decimal_pl(decstr)), int(decstr, 10))
        self.assertEqual(int(mp_from_decimal(decstr)), int(decstr, 10))
        self.assertEqual(int(mp_from_decimal("")), 0)
        # For hex, test both upper and lower case digits
        hexstr = 'ea7cb89f409ae845215822e37D32D0C63EC43E1381C2FF8094'
        self.assertEqual(int(mp_from_hex_pl(hexstr)), int(hexstr, 16))
        self.assertEqual(int(mp_from_hex(hexstr)), int(hexstr, 16))
        self.assertEqual(int(mp_from_hex("")), 0)
        p2 = mp_power_2(123)
        self.assertEqual(int(p2), 1 << 123)
        p2c = mp_copy(p2)
        self.assertEqual(int(p2c), 1 << 123)
        # Check mp_copy really makes a copy, not an alias (ok, that's
        # testing the testcrypt system more than it's testing the
        # underlying C functions)
        mp_set_bit(p2c, 120, 1)
        self.assertEqual(int(p2c), (1 << 123) + (1 << 120))
        self.assertEqual(int(p2), 1 << 123)

    def testBytesAndBits(self):
        x = mp_new(128)
        self.assertEqual(mp_get_byte(x, 2), 0)
        mp_set_bit(x, 2*8+3, 1)
        self.assertEqual(mp_get_byte(x, 2), 1<<3)
        self.assertEqual(mp_get_bit(x, 2*8+3), 1)
        mp_set_bit(x, 2*8+3, 0)
        self.assertEqual(mp_get_byte(x, 2), 0)
        self.assertEqual(mp_get_bit(x, 2*8+3), 0)
        # Currently I expect 128 to be a multiple of any
        # BIGNUM_INT_BITS value we might be running with, so these
        # should be exact equality
        self.assertEqual(mp_max_bytes(x), 128/8)
        self.assertEqual(mp_max_bits(x), 128)

        nb = lambda hexstr: mp_get_nbits(mp_from_hex(hexstr))
        self.assertEqual(nb('00000000000000000000000000000000'), 0)
        self.assertEqual(nb('00000000000000000000000000000001'), 1)
        self.assertEqual(nb('00000000000000000000000000000002'), 2)
        self.assertEqual(nb('00000000000000000000000000000003'), 2)
        self.assertEqual(nb('00000000000000000000000000000004'), 3)
        self.assertEqual(nb('000003ffffffffffffffffffffffffff'), 106)
        self.assertEqual(nb('000003ffffffffff0000000000000000'), 106)
        self.assertEqual(nb('80000000000000000000000000000000'), 128)
        self.assertEqual(nb('ffffffffffffffffffffffffffffffff'), 128)

    def testDecAndHex(self):
        def checkHex(hexstr):
            n = mp_from_hex(hexstr)
            i = int(hexstr, 16)
            self.assertEqual(mp_get_hex(n),
                             "{:x}".format(i).encode('ascii'))
            self.assertEqual(mp_get_hex_uppercase(n),
                             "{:X}".format(i).encode('ascii'))
        checkHex("0")
        checkHex("f")
        checkHex("00000000000000000000000000000000000000000000000000")
        checkHex("d5aa1acd5a9a1f6b126ed416015390b8dc5fceee4c86afc8c2")
        checkHex("ffffffffffffffffffffffffffffffffffffffffffffffffff")

        def checkDec(hexstr):
            n = mp_from_hex(hexstr)
            i = int(hexstr, 16)
            self.assertEqual(mp_get_decimal(n),
                             "{:d}".format(i).encode('ascii'))
        checkDec("0")
        checkDec("f")
        checkDec("00000000000000000000000000000000000000000000000000")
        checkDec("d5aa1acd5a9a1f6b126ed416015390b8dc5fceee4c86afc8c2")
        checkDec("ffffffffffffffffffffffffffffffffffffffffffffffffff")
        checkDec("f" * 512)

    def testComparison(self):
        inputs = [
            "0", "1", "2", "10", "314159265358979", "FFFFFFFFFFFFFFFF",

            # Test over-long versions of some of the same numbers we
            # had short forms of above
            "0000000000000000000000000000000000000000000000000000000000000000"
            "0000000000000000000000000000000000000000000000000000000000000000",

            "0000000000000000000000000000000000000000000000000000000000000000"
            "0000000000000000000000000000000000000000000000000000000000000001",

            "0000000000000000000000000000000000000000000000000000000000000000"
            "0000000000000000000000000000000000000000000000000000000000000002",

            "0000000000000000000000000000000000000000000000000000000000000000"
            "000000000000000000000000000000000000000000000000FFFFFFFFFFFFFFFF",

            "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF"
            "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF",
        ]
        values = [(mp_from_hex(s), int(s, 16)) for s in inputs]
        for am, ai in values:
            for bm, bi in values:
                self.assertEqual(mp_cmp_eq(am, bm) == 1, ai == bi)
                self.assertEqual(mp_cmp_hs(am, bm) == 1, ai >= bi)
                if (bi >> 64) == 0:
                    self.assertEqual(mp_eq_integer(am, bi) == 1, ai == bi)
                    self.assertEqual(mp_hs_integer(am, bi) == 1, ai >= bi)

                # mp_{min,max}{,_into} is a reasonable thing to test
                # here as well
                self.assertEqual(int(mp_min(am, bm)), min(ai, bi))
                self.assertEqual(int(mp_max(am, bm)), max(ai, bi))
                am_small = mp_copy(am if ai<bi else bm)
                mp_min_into(am_small, am, bm)
                self.assertEqual(int(am_small), min(ai, bi))
                am_big = mp_copy(am if ai>bi else bm)
                mp_max_into(am_big, am, bm)
                self.assertEqual(int(am_big), max(ai, bi))

        # Test mp_{eq,hs}_integer in the case where the integer is as
        # large as possible and the bignum contains very few words. In
        # modes where BIGNUM_INT_BITS < 64, this used to go wrong.
        mp10 = mp_new(4)
        mp_copy_integer_into(mp10, 10)
        highbit = 1 << 63
        self.assertEqual(mp_hs_integer(mp10, highbit | 9), 0)
        self.assertEqual(mp_hs_integer(mp10, highbit | 10), 0)
        self.assertEqual(mp_hs_integer(mp10, highbit | 11), 0)
        self.assertEqual(mp_eq_integer(mp10, highbit | 9), 0)
        self.assertEqual(mp_eq_integer(mp10, highbit | 10), 0)
        self.assertEqual(mp_eq_integer(mp10, highbit | 11), 0)

    def testConditionals(self):
        testnumbers = [(mp_copy(n),n) for n in fibonacci_scattered()]
        for am, ai in testnumbers:
            for bm, bi in testnumbers:
                cm = mp_copy(am)
                mp_select_into(cm, am, bm, 0)
                self.assertEqual(int(cm), ai & mp_mask(am))
                mp_select_into(cm, am, bm, 1)
                self.assertEqual(int(cm), bi & mp_mask(am))

                mp_cond_add_into(cm, am, bm, 0)
                self.assertEqual(int(cm), ai & mp_mask(am))
                mp_cond_add_into(cm, am, bm, 1)
                self.assertEqual(int(cm), (ai+bi) & mp_mask(am))

                mp_cond_sub_into(cm, am, bm, 0)
                self.assertEqual(int(cm), ai & mp_mask(am))
                mp_cond_sub_into(cm, am, bm, 1)
                self.assertEqual(int(cm), (ai-bi) & mp_mask(am))

                maxbits = max(mp_max_bits(am), mp_max_bits(bm))
                cm = mp_new(maxbits)
                dm = mp_new(maxbits)
                mp_copy_into(cm, am)
                mp_copy_into(dm, bm)

                self.assertEqual(int(cm), ai)
                self.assertEqual(int(dm), bi)
                mp_cond_swap(cm, dm, 0)
                self.assertEqual(int(cm), ai)
                self.assertEqual(int(dm), bi)
                mp_cond_swap(cm, dm, 1)
                self.assertEqual(int(cm), bi)
                self.assertEqual(int(dm), ai)

                if bi != 0:
                    mp_cond_clear(cm, 0)
                    self.assertEqual(int(cm), bi)
                    mp_cond_clear(cm, 1)
                    self.assertEqual(int(cm), 0)

    def testBasicArithmetic(self):
        testnumbers = list(fibonacci_scattered(5))
        testnumbers.extend([1 << (1 << i) for i in range(3,10)])
        testnumbers.extend([(1 << (1 << i)) - 1 for i in range(3,10)])

        testnumbers = [(mp_copy(n),n) for n in testnumbers]

        for am, ai in testnumbers:
            for bm, bi in testnumbers:
                self.assertEqual(int(mp_add(am, bm)), ai + bi)
                self.assertEqual(int(mp_mul(am, bm)), ai * bi)
                # Cope with underflow in subtraction
                diff = mp_sub(am, bm)
                self.assertEqual(int(diff), (ai - bi) & mp_mask(diff))

                for bits in range(64, 512, 64):
                    cm = mp_new(bits)
                    mp_add_into(cm, am, bm)
                    self.assertEqual(int(cm), (ai + bi) & mp_mask(cm))
                    mp_mul_into(cm, am, bm)
                    self.assertEqual(int(cm), (ai * bi) & mp_mask(cm))
                    mp_sub_into(cm, am, bm)
                    self.assertEqual(int(cm), (ai - bi) & mp_mask(cm))

        # A test cherry-picked from the old bignum test script,
        # involving two numbers whose product has a single 1 bit miles
        # in the air and then all 0s until a bunch of cruft at the
        # bottom, the aim being to test that carry propagation works
        # all the way up.
        ai, bi = 0xb4ff6ed2c633847562087ed9354c5c17be212ac83b59c10c316250f50b7889e5b058bf6bfafd12825225ba225ede0cba583ffbd0882de88c9e62677385a6dbdedaf81959a273eb7909ebde21ae5d12e2a584501a6756fe50ccb93b93f0d6ee721b6052a0d88431e62f410d608532868cdf3a6de26886559e94cc2677eea9bd797918b70e2717e95b45918bd1f86530cb9989e68b632c496becff848aa1956cd57ed46676a65ce6dd9783f230c8796909eef5583fcfe4acbf9c8b4ea33a08ec3fd417cf7175f434025d032567a00fc329aee154ca20f799b961fbab8f841cb7351f561a44aea45746ceaf56874dad99b63a7d7af2769d2f185e2d1c656cc6630b5aba98399fa57, 0xb50a77c03ac195225021dc18d930a352f27c0404742f961ca828c972737bad3ada74b1144657ab1d15fe1b8aefde8784ad61783f3c8d4584aa5f22a4eeca619f90563ae351b5da46770df182cf348d8e23b25fda07670c6609118e916a57ce4043608752c91515708327e36f5bb5ebd92cd4cfb39424167a679870202b23593aa524bac541a3ad322c38102a01e9659b06a4335c78d50739a51027954ac2bf03e500f975c2fa4d0ab5dd84cc9334f219d2ae933946583e384ed5dbf6498f214480ca66987b867df0f69d92e4e14071e4b8545212dd5e29ff0248ed751e168d78934da7930bcbe10e9a212128a68de5d749c61f5e424cf8cf6aa329674de0cf49c6f9b4c8b8cc3
        am = mp_copy(ai)
        bm = mp_copy(bi)
        self.assertEqual(int(mp_mul(am, bm)), ai * bi)

        # A regression test for a bug that came up during development
        # of mpint.c, relating to an intermediate value overflowing
        # its container.
        ai, bi = (2**8512 * 2 // 3), (2**4224 * 11 // 15)
        am = mp_copy(ai)
        bm = mp_copy(bi)
        self.assertEqual(int(mp_mul(am, bm)), ai * bi)

    def testAddInteger(self):
        initial = mp_copy(4444444444444444444444444)

        x = mp_new(mp_max_bits(initial) + 64)

        # mp_{add,sub,copy}_integer_into should be able to cope with
        # any uintmax_t. Test a number that requires more than 32 bits.
        mp_add_integer_into(x, initial, 123123123123123)
        self.assertEqual(int(x), 4444444444567567567567567)
        mp_sub_integer_into(x, initial, 123123123123123)
        self.assertEqual(int(x), 4444444444321321321321321)
        mp_copy_integer_into(x, 123123123123123)
        self.assertEqual(int(x), 123123123123123)

        # mp_mul_integer_into only takes a uint16_t integer input
        mp_mul_integer_into(x, initial, 10001)
        self.assertEqual(int(x), 44448888888888888888888884444)

    def testDivision(self):
        divisors = [1, 2, 3, 2**16+1, 2**32-1, 2**32+1, 2**128-159,
                    141421356237309504880168872420969807856967187537694807]
        quotients = [0, 1, 2, 2**64-1, 2**64, 2**64+1, 17320508075688772935]
        for d in divisors:
            for q in quotients:
                remainders = {0, 1, d-1, 2*d//3}
                for r in sorted(remainders):
                    if r >= d:
                        continue # silly cases with tiny divisors
                    n = q*d + r
                    mq = mp_new(max(nbits(q), 1))
                    mr = mp_new(max(nbits(r), 1))
                    mp_divmod_into(n, d, mq, mr)
                    self.assertEqual(int(mq), q)
                    self.assertEqual(int(mr), r)
                    self.assertEqual(int(mp_div(n, d)), q)
                    self.assertEqual(int(mp_mod(n, d)), r)

                    # Make sure divmod_into can handle not getting one
                    # of its output pointers (or even both).
                    mp_clear(mq)
                    mp_divmod_into(n, d, mq, None)
                    self.assertEqual(int(mq), q)
                    mp_clear(mr)
                    mp_divmod_into(n, d, None, mr)
                    self.assertEqual(int(mr), r)
                    mp_divmod_into(n, d, None, None)
                    # No tests we can do after that last one - we just
                    # insist that it isn't allowed to have crashed!

    def testNthRoot(self):
        roots = [1, 13, 1234567654321,
                 57721566490153286060651209008240243104215933593992]
        tests = []
        tests.append((0, 2, 0, 0))
        tests.append((0, 3, 0, 0))
        for r in roots:
            for n in 2, 3, 5:
                tests.append((r**n, n, r, 0))
                tests.append((r**n+1, n, r, 1))
                tests.append((r**n-1, n, r-1, r**n - (r-1)**n - 1))
        for x, n, eroot, eremainder in tests:
            with self.subTest(x=x):
                mx = mp_copy(x)
                remainder = mp_copy(mx)
                root = mp_nthroot(x, n, remainder)
                self.assertEqual(int(root), eroot)
                self.assertEqual(int(remainder), eremainder)
        self.assertEqual(int(mp_nthroot(2*10**100, 2, None)),
                         141421356237309504880168872420969807856967187537694)
        self.assertEqual(int(mp_nthroot(3*10**150, 3, None)),
                         144224957030740838232163831078010958839186925349935)

    def testBitwise(self):
        p = 0x3243f6a8885a308d313198a2e03707344a4093822299f31d0082efa98ec4e
        e = 0x2b7e151628aed2a6abf7158809cf4f3c762e7160f38b4da56a784d9045190
        x = mp_new(nbits(p))

        mp_and_into(x, p, e)
        self.assertEqual(int(x), p & e)

        mp_or_into(x, p, e)
        self.assertEqual(int(x), p | e)

        mp_xor_into(x, p, e)
        self.assertEqual(int(x), p ^ e)

        mp_bic_into(x, p, e)
        self.assertEqual(int(x), p & ~e)

    def testInversion(self):
        # Test mp_invert_mod_2to.
        testnumbers = [(mp_copy(n),n) for n in fibonacci_scattered()
                       if n & 1]
        for power2 in [1, 2, 3, 5, 13, 32, 64, 127, 128, 129]:
            for am, ai in testnumbers:
                bm = mp_invert_mod_2to(am, power2)
                bi = int(bm)
                self.assertEqual(((ai * bi) & ((1 << power2) - 1)), 1)

                # mp_reduce_mod_2to is a much simpler function, but
                # this is as good a place as any to test it.
                rm = mp_copy(am)
                mp_reduce_mod_2to(rm, power2)
                self.assertEqual(int(rm), ai & ((1 << power2) - 1))

        # Test mp_invert proper.
        moduli = [2, 3, 2**16+1, 2**32-1, 2**32+1, 2**128-159,
                  141421356237309504880168872420969807856967187537694807,
                  2**128-1]
        for m in moduli:
            # Prepare a MontyContext for the monty_invert test below
            # (unless m is even, in which case we can't)
            mc = monty_new(m) if m & 1 else None

            to_invert = {1, 2, 3, 7, 19, m-1, 5*m//17, (m-1)//2, (m+1)//2}
            for x in sorted(to_invert):
                if gcd(x, m) != 1:
                    continue # filter out non-invertible cases
                inv = int(mp_invert(x, m))
                assert x * inv % m == 1

                # Test monty_invert too, while we're here
                if mc is not None:
                    self.assertEqual(
                        int(monty_invert(mc, monty_import(mc, x))),
                        int(monty_import(mc, inv)))

    def testGCD(self):
        powerpairs = [(0,0), (1,0), (1,1), (2,1), (2,2), (75,3), (17,23)]
        for a2, b2 in powerpairs:
            for a3, b3 in powerpairs:
                for a5, b5 in powerpairs:
                    a = 2**a2 * 3**a3 * 5**a5 * 17 * 19 * 23
                    b = 2**b2 * 3**b3 * 5**b5 * 65423
                    d = 2**min(a2, b2) * 3**min(a3, b3) * 5**min(a5, b5)

                    ma = mp_copy(a)
                    mb = mp_copy(b)

                    self.assertEqual(int(mp_gcd(ma, mb)), d)

                    md = mp_new(nbits(d))
                    mA = mp_new(nbits(b))
                    mB = mp_new(nbits(a))
                    mp_gcd_into(ma, mb, md, mA, mB)
                    self.assertEqual(int(md), d)
                    A = int(mA)
                    B = int(mB)
                    self.assertEqual(a*A - b*B, d)
                    self.assertTrue(0 <= A < b//d)
                    self.assertTrue(0 <= B < a//d)

                    self.assertEqual(mp_coprime(ma, mb), 1 if d==1 else 0)

                    # Make sure gcd_into can handle not getting some
                    # of its output pointers.
                    mp_clear(md)
                    mp_gcd_into(ma, mb, md, None, None)
                    self.assertEqual(int(md), d)
                    mp_clear(mA)
                    mp_gcd_into(ma, mb, None, mA, None)
                    self.assertEqual(int(mA), A)
                    mp_clear(mB)
                    mp_gcd_into(ma, mb, None, None, mB)
                    self.assertEqual(int(mB), B)
                    mp_gcd_into(ma, mb, None, None, None)
                    # No tests we can do after that last one - we just
                    # insist that it isn't allowed to have crashed!

    def testMonty(self):
        moduli = [5, 19, 2**16+1, 2**31-1, 2**128-159, 2**255-19,
                  293828847201107461142630006802421204703,
                  113064788724832491560079164581712332614996441637880086878209969852674997069759]

        for m in moduli:
            mc = monty_new(m)

            # Import some numbers
            inputs = [(monty_import(mc, n), n)
                      for n in sorted({0, 1, 2, 3, 2*m//3, m-1})]

            # Check modulus and identity
            self.assertEqual(int(monty_modulus(mc)), m)
            self.assertEqual(int(monty_identity(mc)), int(inputs[1][0]))

            # Check that all those numbers export OK
            for mn, n in inputs:
                self.assertEqual(int(monty_export(mc, mn)), n)

            for ma, a in inputs:
                for mb, b in inputs:
                    xprod = int(monty_export(mc, monty_mul(mc, ma, mb)))
                    self.assertEqual(xprod, a*b % m)

                    xsum = int(monty_export(mc, monty_add(mc, ma, mb)))
                    self.assertEqual(xsum, (a+b) % m)

                    xdiff = int(monty_export(mc, monty_sub(mc, ma, mb)))
                    self.assertEqual(xdiff, (a-b) % m)

                    # Test the ordinary mp_mod{add,sub,mul} at the
                    # same time, even though those don't do any
                    # montying at all

                    xprod = int(mp_modmul(a, b, m))
                    self.assertEqual(xprod, a*b % m)

                    xsum = int(mp_modadd(a, b, m))
                    self.assertEqual(xsum, (a+b) % m)

                    xdiff = int(mp_modsub(a, b, m))
                    self.assertEqual(xdiff, (a-b) % m)

            for ma, a in inputs:
                # Compute a^0, a^1, a^1, a^2, a^3, a^5, ...
                indices = list(fibonacci())
                powers = [int(monty_export(mc, monty_pow(mc, ma, power)))
                          for power in indices]
                # Check the first two make sense
                self.assertEqual(powers[0], 1)
                self.assertEqual(powers[1], a)
                # Check the others using the Fibonacci identity:
                # F_n + F_{n+1} = F_{n+2}, so a^{F_n} a^{F_{n+1}} = a^{F_{n+2}}
                for p0, p1, p2 in adjtuples(powers, 3):
                    self.assertEqual(p2, p0 * p1 % m)

                # Test the ordinary mp_modpow here as well, while
                # we've got the machinery available
                for index, power in zip(indices, powers):
                    self.assertEqual(int(mp_modpow(a, index, m)), power)

        # A regression test for a bug I encountered during initial
        # development of mpint.c, in which an incomplete reduction
        # happened somewhere in an intermediate value.
        b, e, m = 0x2B5B93812F253FF91F56B3B4DAD01CA2884B6A80719B0DA4E2159A230C6009EDA97C5C8FD4636B324F9594706EE3AD444831571BA5E17B1B2DFA92DEA8B7E, 0x25, 0xC8FCFD0FD7371F4FE8D0150EFC124E220581569587CCD8E50423FA8D41E0B2A0127E100E92501E5EE3228D12EA422A568C17E0AD2E5C5FCC2AE9159D2B7FB8CB
        assert(int(mp_modpow(b, e, m)) == pow(b, e, m))

        # Make sure mp_modpow can handle a base larger than the
        # modulus, by pre-reducing it
        assert(int(mp_modpow(1<<877, 907, 999979)) == pow(2, 877*907, 999979))

    def testModsqrt(self):
        moduli = [
            5, 19, 2**16+1, 2**31-1, 2**128-159, 2**255-19,
            293828847201107461142630006802421204703,
            113064788724832491560079164581712332614996441637880086878209969852674997069759,
            0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF6FFFFFFFF00000001]
        for p in moduli:
            # Count the factors of 2 in the group. (That is, we want
            # p-1 to be an odd multiple of 2^{factors_of_2}.)
            factors_of_2 = nbits((p-1) & (1-p)) - 1
            assert (p & ((2 << factors_of_2)-1)) == ((1 << factors_of_2)+1)

            z = find_non_square_mod(p)

            sc = modsqrt_new(p, z)

            def ptest(x):
                root, success = mp_modsqrt(sc, x)
                r = int(root)
                self.assertTrue(success)
                self.assertEqual((r * r - x) % p, 0)

            def ntest(x):
                root, success = mp_modsqrt(sc, x)
                self.assertFalse(success)

            # Make up some more or less random values mod p to square
            v1 = pow(3, nbits(p), p)
            v2 = pow(5, v1, p)
            test_roots = [0, 1, 2, 3, 4, 3*p//4, v1, v2, v1+1, 12873*v1, v1*v2]
            known_squares = {r*r % p for r in test_roots}
            for s in known_squares:
                ptest(s)
                if s != 0:
                    ntest(z*s % p)

            # Make sure we've tested a value that is in each of the
            # subgroups of order (p-1)/2^k but not in the next one
            # (with the exception of k=0, which just means 'have we
            # tested a non-square?', which we have in the above loop).
            #
            # We do this by starting with a known non-square; then
            # squaring it (factors_of_2) times will return values
            # nested deeper and deeper in those subgroups.
            vbase = z
            for k in range(factors_of_2):
                # Adjust vbase by an arbitrary odd power of
                # z, so that it won't look too much like the previous
                # value.
                vbase = vbase * pow(z, (vbase + v1 + v2) | 1, p) % p

                # Move vbase into the next smaller group by squaring
                # it.
                vbase = pow(vbase, 2, p)

                ptest(vbase)

    def testShifts(self):
        x = ((1<<900) // 9949) | 1
        for i in range(2049):
            mp = mp_copy(x)

            mp_lshift_fixed_into(mp, mp, i)
            self.assertEqual(int(mp), (x << i) & mp_mask(mp))

            mp_copy_into(mp, x)
            mp_lshift_safe_into(mp, mp, i)
            self.assertEqual(int(mp), (x << i) & mp_mask(mp))

            mp_copy_into(mp, x)
            mp_rshift_fixed_into(mp, mp, i)
            self.assertEqual(int(mp), x >> i)

            mp_copy_into(mp, x)
            mp_rshift_safe_into(mp, mp, i)
            self.assertEqual(int(mp), x >> i)

            self.assertEqual(int(mp_rshift_fixed(x, i)), x >> i)

            self.assertEqual(int(mp_rshift_safe(x, i)), x >> i)

    def testRandom(self):
        # Test random_bits to ensure it correctly masks the return
        # value, and uses exactly as many random bytes as we expect it
        # to.
        for bits in range(512):
            bytes_needed = (bits + 7) // 8
            with queued_random_data(bytes_needed, "random_bits test"):
                mp = mp_random_bits(bits)
                self.assertTrue(int(mp) < (1 << bits))
                self.assertEqual(random_queue_len(), 0)

        # Test mp_random_in_range to ensure it returns things in the
        # right range.
        for rangesize in [2, 3, 19, 35]:
            for lo in [0, 1, 0x10001, 1<<512]:
                hi = lo + rangesize
                bytes_needed = mp_max_bytes(hi) + 16
                for trial in range(rangesize*3):
                    with queued_random_data(
                            bytes_needed,
                            "random_in_range {:d}".format(trial)):
                        v = int(mp_random_in_range(lo, hi))
                        self.assertTrue(lo <= v < hi)

class ecc(MyTestBase):
    def testWeierstrassSimple(self):
        # Simple tests using a Weierstrass curve I made up myself,
        # which (unlike the ones used for serious crypto) is small
        # enough that you can fit all the coordinates for a curve on
        # to your retina in one go.

        p = 3141592661
        a, b = -3 % p, 12345
        rc = WeierstrassCurve(p, a, b)
        wc = ecc_weierstrass_curve(p, a, b, None)

        def check_point(wp, rp):
            self.assertTrue(ecc_weierstrass_point_valid(wp))
            is_id = ecc_weierstrass_is_identity(wp)
            x, y = ecc_weierstrass_get_affine(wp)
            if rp.infinite:
                self.assertEqual(is_id, 1)
            else:
                self.assertEqual(is_id, 0)
                self.assertEqual(int(x), int(rp.x))
                self.assertEqual(int(y), int(rp.y))

        def make_point(x, y):
            wp = ecc_weierstrass_point_new(wc, x, y)
            rp = rc.point(x, y)
            check_point(wp, rp)
            return wp, rp

        # Some sample points, including the identity and also a pair
        # of mutual inverses.
        wI, rI = ecc_weierstrass_point_new_identity(wc), rc.point()
        wP, rP = make_point(102, 387427089)
        wQ, rQ = make_point(1000, 546126574)
        wmP, rmP = make_point(102, p - 387427089)

        # Check the simple arithmetic functions.
        check_point(ecc_weierstrass_add(wP, wQ), rP + rQ)
        check_point(ecc_weierstrass_add(wQ, wP), rP + rQ)
        check_point(ecc_weierstrass_double(wP), rP + rP)
        check_point(ecc_weierstrass_double(wQ), rQ + rQ)

        # Check all the special cases with add_general:
        # Adding two finite unequal non-mutually-inverse points
        check_point(ecc_weierstrass_add_general(wP, wQ), rP + rQ)
        # Doubling a finite point
        check_point(ecc_weierstrass_add_general(wP, wP), rP + rP)
        check_point(ecc_weierstrass_add_general(wQ, wQ), rQ + rQ)
        # Adding the identity to a point (both ways round)
        check_point(ecc_weierstrass_add_general(wI, wP), rP)
        check_point(ecc_weierstrass_add_general(wI, wQ), rQ)
        check_point(ecc_weierstrass_add_general(wP, wI), rP)
        check_point(ecc_weierstrass_add_general(wQ, wI), rQ)
        # Doubling the identity
        check_point(ecc_weierstrass_add_general(wI, wI), rI)
        # Adding a point to its own inverse, giving the identity.
        check_point(ecc_weierstrass_add_general(wmP, wP), rI)
        check_point(ecc_weierstrass_add_general(wP, wmP), rI)

        # Verify that point_valid fails if we pass it nonsense.
        bogus = ecc_weierstrass_point_new(wc, int(rP.x), int(rP.y * 3))
        self.assertFalse(ecc_weierstrass_point_valid(bogus))

        # Re-instantiate the curve with the ability to take square
        # roots, and check that we can reconstruct P and Q from their
        # x coordinate and y parity only.
        wc = ecc_weierstrass_curve(p, a, b, find_non_square_mod(p))

        x, yp = int(rP.x), (int(rP.y) & 1)
        check_point(ecc_weierstrass_point_new_from_x(wc, x, yp), rP)
        check_point(ecc_weierstrass_point_new_from_x(wc, x, yp ^ 1), rmP)
        x, yp = int(rQ.x), (int(rQ.y) & 1)
        check_point(ecc_weierstrass_point_new_from_x(wc, x, yp), rQ)

    def testMontgomerySimple(self):
        p, a, b = 3141592661, 0xabc, 0xde

        rc = MontgomeryCurve(p, a, b)
        mc = ecc_montgomery_curve(p, a, b)

        rP = rc.cpoint(0x1001)
        rQ = rc.cpoint(0x20001)
        rdiff = rP - rQ
        rsum = rP + rQ

        def make_mpoint(rp):
            return ecc_montgomery_point_new(mc, int(rp.x))

        mP = make_mpoint(rP)
        mQ = make_mpoint(rQ)
        mdiff = make_mpoint(rdiff)
        msum = make_mpoint(rsum)

        def check_point(mp, rp):
            x = ecc_montgomery_get_affine(mp)
            self.assertEqual(int(x), int(rp.x))

        check_point(ecc_montgomery_diff_add(mP, mQ, mdiff), rsum)
        check_point(ecc_montgomery_diff_add(mQ, mP, mdiff), rsum)
        check_point(ecc_montgomery_diff_add(mP, mQ, msum), rdiff)
        check_point(ecc_montgomery_diff_add(mQ, mP, msum), rdiff)
        check_point(ecc_montgomery_double(mP), rP + rP)
        check_point(ecc_montgomery_double(mQ), rQ + rQ)

        zero = ecc_montgomery_point_new(mc, 0)
        self.assertEqual(ecc_montgomery_is_identity(zero), False)
        identity = ecc_montgomery_double(zero)
        ecc_montgomery_get_affine(identity)
        self.assertEqual(ecc_montgomery_is_identity(identity), True)

    def testEdwardsSimple(self):
        p, d, a = 3141592661, 2688750488, 367934288

        rc = TwistedEdwardsCurve(p, d, a)
        ec = ecc_edwards_curve(p, d, a, None)

        def check_point(ep, rp):
            x, y = ecc_edwards_get_affine(ep)
            self.assertEqual(int(x), int(rp.x))
            self.assertEqual(int(y), int(rp.y))

        def make_point(x, y):
            ep = ecc_edwards_point_new(ec, x, y)
            rp = rc.point(x, y)
            check_point(ep, rp)
            return ep, rp

        # Some sample points, including the identity and also a pair
        # of mutual inverses.
        eI, rI = make_point(0, 1)
        eP, rP = make_point(196270812, 1576162644)
        eQ, rQ = make_point(1777630975, 2717453445)
        emP, rmP = make_point(p - 196270812, 1576162644)

        # Check that the ordinary add function handles all the special
        # cases.

        # Adding two finite unequal non-mutually-inverse points
        check_point(ecc_edwards_add(eP, eQ), rP + rQ)
        check_point(ecc_edwards_add(eQ, eP), rP + rQ)
        # Doubling a finite point
        check_point(ecc_edwards_add(eP, eP), rP + rP)
        check_point(ecc_edwards_add(eQ, eQ), rQ + rQ)
        # Adding the identity to a point (both ways round)
        check_point(ecc_edwards_add(eI, eP), rP)
        check_point(ecc_edwards_add(eI, eQ), rQ)
        check_point(ecc_edwards_add(eP, eI), rP)
        check_point(ecc_edwards_add(eQ, eI), rQ)
        # Doubling the identity
        check_point(ecc_edwards_add(eI, eI), rI)
        # Adding a point to its own inverse, giving the identity.
        check_point(ecc_edwards_add(emP, eP), rI)
        check_point(ecc_edwards_add(eP, emP), rI)

        # Re-instantiate the curve with the ability to take square
        # roots, and check that we can reconstruct P and Q from their
        # y coordinate and x parity only.
        ec = ecc_edwards_curve(p, d, a, find_non_square_mod(p))

        y, xp = int(rP.y), (int(rP.x) & 1)
        check_point(ecc_edwards_point_new_from_y(ec, y, xp), rP)
        check_point(ecc_edwards_point_new_from_y(ec, y, xp ^ 1), rmP)
        y, xp = int(rQ.y), (int(rQ.x) & 1)
        check_point(ecc_edwards_point_new_from_y(ec, y, xp), rQ)

    # For testing point multiplication, let's switch to the full-sized
    # standard curves, because I want to have tested those a bit too.

    def testWeierstrassMultiply(self):
        wc = ecc_weierstrass_curve(p256.p, int(p256.a), int(p256.b), None)
        wG = ecc_weierstrass_point_new(wc, int(p256.G.x), int(p256.G.y))
        self.assertTrue(ecc_weierstrass_point_valid(wG))

        ints = set(i % p256.p for i in fibonacci_scattered(10))
        ints.remove(0) # the zero multiple isn't expected to work
        for i in sorted(ints):
            wGi = ecc_weierstrass_multiply(wG, i)
            x, y = ecc_weierstrass_get_affine(wGi)
            rGi = p256.G * i
            self.assertEqual(int(x), int(rGi.x))
            self.assertEqual(int(y), int(rGi.y))

    def testMontgomeryMultiply(self):
        mc = ecc_montgomery_curve(
            curve25519.p, int(curve25519.a), int(curve25519.b))
        mG = ecc_montgomery_point_new(mc, int(curve25519.G.x))

        ints = set(i % p256.p for i in fibonacci_scattered(10))
        ints.remove(0) # the zero multiple isn't expected to work
        for i in sorted(ints):
            mGi = ecc_montgomery_multiply(mG, i)
            x = ecc_montgomery_get_affine(mGi)
            rGi = curve25519.G * i
            self.assertEqual(int(x), int(rGi.x))

    def testEdwardsMultiply(self):
        ec = ecc_edwards_curve(ed25519.p, int(ed25519.d), int(ed25519.a), None)
        eG = ecc_edwards_point_new(ec, int(ed25519.G.x), int(ed25519.G.y))

        ints = set(i % ed25519.p for i in fibonacci_scattered(10))
        ints.remove(0) # the zero multiple isn't expected to work
        for i in sorted(ints):
            eGi = ecc_edwards_multiply(eG, i)
            x, y = ecc_edwards_get_affine(eGi)
            rGi = ed25519.G * i
            self.assertEqual(int(x), int(rGi.x))
            self.assertEqual(int(y), int(rGi.y))

class keygen(MyTestBase):
    def testPrimeCandidateSource(self):
        def inspect(pcs):
            # Returns (pcs->limit, pcs->factor, pcs->addend) as Python integers
            return tuple(map(int, pcs_inspect(pcs)))

        # Test accumulating modular congruence requirements, by
        # inspecting the internal values computed during
        # require_residue. We ensure that the addend satisfies all our
        # congruences and the factor is the lcm of all the moduli
        # (hence, the arithmetic progression defined by those
        # parameters is precisely the set of integers satisfying the
        # requirements); we also ensure that the limiting values
        # (addend itself at the low end, and addend + (limit-1) *
        # factor at the high end) are the maximal subsequence of that
        # progression that are within the originally specified range.

        def check(pcs, lo, hi, mod_res_pairs):
            limit, factor, addend = inspect(pcs)

            for mod, res in mod_res_pairs:
                self.assertEqual(addend % mod, res % mod)

            self.assertEqual(factor, functools.reduce(
                lcm, [mod for mod, res in mod_res_pairs]))

            self.assertFalse(lo <= addend +      (-1) * factor < hi)
            self.assertTrue (lo <= addend                      < hi)
            self.assertTrue (lo <= addend + (limit-1) * factor < hi)
            self.assertFalse(lo <= addend +  limit    * factor < hi)

        pcs = pcs_new(64)
        check(pcs, 2**63, 2**64, [(2, 1)])
        pcs_require_residue(pcs, 3, 2)
        check(pcs, 2**63, 2**64, [(2, 1), (3, 2)])
        pcs_require_residue_1(pcs, 7)
        check(pcs, 2**63, 2**64, [(2, 1), (3, 2), (7, 1)])
        pcs_require_residue(pcs, 16, 7)
        check(pcs, 2**63, 2**64, [(2, 1), (3, 2), (7, 1), (16, 7)])
        pcs_require_residue(pcs, 49, 8)
        check(pcs, 2**63, 2**64, [(2, 1), (3, 2), (7, 1), (16, 7), (49, 8)])

        # Now test-generate some actual values, and ensure they
        # satisfy all the congruences, and also avoid one residue mod
        # 5 that we told them to. Also, give a nontrivial range.
        pcs = pcs_new_with_firstbits(64, 0xAB, 8)
        pcs_require_residue(pcs, 0x100, 0xCD)
        pcs_require_residue_1(pcs, 65537)
        pcs_avoid_residue_small(pcs, 5, 3)
        pcs_ready(pcs)
        with random_prng("test seed"):
            for i in range(100):
                n = int(pcs_generate(pcs))
                self.assertTrue((0xAB<<56) < n < (0xAC<<56))
                self.assertEqual(n % 0x100, 0xCD)
                self.assertEqual(n % 65537, 1)
                self.assertNotEqual(n % 5, 3)

                # I'm not actually testing here that the outputs of
                # pcs_generate are non-multiples of _all_ primes up to
                # 2^16. But checking this many for 100 turns is enough
                # to be pretty sure. (If you take the product of
                # (1-1/p) over all p in the list below, you find that
                # a given random number has about a 13% chance of
                # avoiding being a multiple of any of them. So 100
                # trials without a mistake gives you 0.13^100 < 10^-88
                # as the probability of it happening by chance. More
                # likely the code is actually working :-)

                for p in [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61]:
                    self.assertNotEqual(n % p, 0)

    def testPocklePositive(self):
        def add_small(po, *ps):
            for p in ps:
                self.assertEqual(pockle_add_small_prime(po, p), 'POCKLE_OK')
        def add(po, *args):
            self.assertEqual(pockle_add_prime(po, *args), 'POCKLE_OK')

        # Transcription of the proof that 2^130-5 is prime from
        # Theorem 3.1 from http://cr.yp.to/mac/poly1305-20050329.pdf
        po = pockle_new()
        p1 = (2**130 - 6) // 1517314646
        p2 = (p1 - 1) // 222890620702
        add_small(po, 37003, 221101)
        add(po, p2, [37003, 221101], 2)
        add(po, p1, [p2], 2)
        add(po, 2**130 - 5, [p1], 2)

        # My own proof that 2^255-19 is prime
        po = pockle_new()
        p1 = 8574133
        p2 = 1919519569386763
        p3 = 75445702479781427272750846543864801
        p4 = (2**255 - 20) // (65147*12)
        p = 2**255 - 19
        add_small(po, p1)
        add(po, p2, [p1], 2)
        add(po, p3, [p2], 2)
        add(po, p4, [p3], 2)
        add(po, p, [p4], 2)

        # And the prime used in Ed448, while I'm here
        po = pockle_new()
        p1 = 379979
        p2 = 1764234391
        p3 = 97859369123353
        p4 = 34741861125639557
        p5 = 36131535570665139281
        p6 = 167773885276849215533569
        p7 = 596242599987116128415063
        p = 2**448 - 2**224 - 1
        add_small(po, p1, p2)
        add(po, p3, [p1], 2)
        add(po, p4, [p2], 2)
        add(po, p5, [p4], 2)
        add(po, p6, [p3], 3)
        add(po, p7, [p5], 3)
        add(po, p, [p6, p7], 2)

        p = 4095744004479977
        factors = [2, 79999] # just enough factors to exceed cbrt(p)
        po = pockle_new()
        for q in factors:
            add_small(po, q)
        add(po, p, factors, 3)

        # The order of the generator in Ed25519
        po = pockle_new()
        p1a, p1b = 132667, 137849
        p2 = 3044861653679985063343
        p3 = 198211423230930754013084525763697
        p = 2**252 + 0x14def9dea2f79cd65812631a5cf5d3ed
        add_small(po, p1a, p1b)
        add(po, p2, [p1a, p1b], 2)
        add(po, p3, [p2], 2)
        add(po, p, [p3], 2)

        # And the one in Ed448
        po = pockle_new()
        p1 = 766223
        p2 = 3009341
        p3 = 7156907
        p4 = 671065561
        p5 = 342682509629
        p6 = 6730519843040614479184435237013
        p = 2**446 - 0x8335dc163bb124b65129c96fde933d8d723a70aadc873d6d54a7bb0d
        add_small(po, p1, p2, p3, p4)
        add(po, p5, [p1], 2)
        add(po, p6, [p3,p4], 2)
        add(po, p, [p2,p5,p6], 2)

        # Combined certificate for the moduli and generator orders of
        # the three NIST curves, generated by contrib/proveprime.py
        # (with some cosmetic tidying)
        p256 = 2**256 - 2**224 + 2**192 + 2**96 - 1
        p384 = 2**384 - 2**128 - 2**96 + 2**32 - 1
        p521 = 2**521 - 1
        order256 = p256 - 0x4319055358e8617b0c46353d039cdaae
        order384 = p384 - 0x389cb27e0bc8d21fa7e5f24cb74f58851313e696333ad68c
        t = 0x5ae79787c40d069948033feb708f65a2fc44a36477663b851449048e16ec79bf6
        order521 = p521 - t
        p0 = order384 // 12895580879789762060783039592702
        p1 = 1059392654943455286185473617842338478315215895509773412096307
        p2 = 55942463741690639
        p3 = 37344768852931
        p4 = order521 // 1898873518475180724503002533770555108536
        p5 = p4 // 994165722
        p6 = 144471089338257942164514676806340723
        p7 = p384 // 2054993070433694
        p8 = 1357291859799823621
        po = pockle_new()
        add_small(po, 2, 3, 5, 11, 17, 19, 31, 41, 53, 67, 71, 109, 131, 149,
                  157, 257, 521, 641, 1613, 2731, 3407, 6317, 8191, 8389,
                  14461, 17449, 38189, 38557, 42641, 51481, 61681, 65537,
                  133279, 248431, 312289, 409891, 490463, 858001, 6700417,
                  187019741)
        add(po, p3, [149, 11, 5, 3, 2], 3)
        add(po, p2, [p3], 2)
        add(po, p8, [6317, 67, 2, 2], 2)
        add(po, p6, [133279, 14461, 109, 3], 7)
        add(po, p1, [p2, 248431], 2)
        add(po, order256, [187019741, 38189, 17449, 3407, 131, 71, 2, 2, 2, 2],
            7)
        add(po, p256, [6700417, 490463, 65537, 641, 257, 17, 5, 5, 3, 2], 6)
        add(po, p0, [p1], 2)
        add(po, p7, [p8, 312289, 38557, 8389, 11, 2], 3)
        add(po, p5, [p6, 19], 2)
        add(po, order384, [p0], 2)
        add(po, p384, [p7], 2)
        add(po, p4, [p5], 2)
        add(po, order521, [p4], 2)
        add(po, p521, [858001, 409891, 61681, 51481, 42641, 8191, 2731, 1613,
                       521, 157, 131, 53, 41, 31, 17, 11, 5, 5, 3, 2], 3)

    def testPockleNegative(self):
        def add_small(po, p):
            self.assertEqual(pockle_add_small_prime(po, p), 'POCKLE_OK')

        po = pockle_new()
        self.assertEqual(pockle_add_small_prime(po, 0),
                         'POCKLE_PRIME_SMALLER_THAN_2')
        self.assertEqual(pockle_add_small_prime(po, 1),
                         'POCKLE_PRIME_SMALLER_THAN_2')
        self.assertEqual(pockle_add_small_prime(po, 2**61 - 1),
                         'POCKLE_SMALL_PRIME_NOT_SMALL')
        self.assertEqual(pockle_add_small_prime(po, 4),
                         'POCKLE_SMALL_PRIME_NOT_PRIME')

        po = pockle_new()
        self.assertEqual(pockle_add_prime(po, 1919519569386763, [8574133], 2),
                         'POCKLE_FACTOR_NOT_KNOWN_PRIME')

        po = pockle_new()
        add_small(po, 8574133)
        self.assertEqual(pockle_add_prime(po, 1919519569386765, [8574133], 2),
                         'POCKLE_FACTOR_NOT_A_FACTOR')

        p = 4095744004479977
        factors = [2, 79997] # not quite enough factors to reach cbrt(p)
        po = pockle_new()
        for q in factors:
            add_small(po, q)
        self.assertEqual(pockle_add_prime(po, p, factors, 3),
                         'POCKLE_PRODUCT_OF_FACTORS_TOO_SMALL')

        p = 1999527 * 3999053
        factors = [999763]
        po = pockle_new()
        for q in factors:
            add_small(po, q)
        self.assertEqual(pockle_add_prime(po, p, factors, 3),
                         'POCKLE_DISCRIMINANT_IS_SQUARE')

        p = 9999929 * 9999931
        factors = [257, 2593]
        po = pockle_new()
        for q in factors:
            add_small(po, q)
        self.assertEqual(pockle_add_prime(po, p, factors, 3),
                         'POCKLE_FERMAT_TEST_FAILED')

        p = 1713000920401 # a Carmichael number
        po = pockle_new()
        add_small(po, 561787)
        self.assertEqual(pockle_add_prime(po, p, [561787], 2),
                         'POCKLE_WITNESS_POWER_IS_1')

        p = 4294971121
        factors = [3, 5, 11, 17]
        po = pockle_new()
        for q in factors:
            add_small(po, q)
        self.assertEqual(pockle_add_prime(po, p, factors, 17),
                         'POCKLE_WITNESS_POWER_NOT_COPRIME')

        po = pockle_new()
        add_small(po, 2)
        self.assertEqual(pockle_add_prime(po, 1, [2], 1),
                         'POCKLE_PRIME_SMALLER_THAN_2')

    def testMillerRabin(self):
        # A prime congruent to 3 mod 4, so M-R can only do one
        # iteration: either a^{(p-1)/2} == +1, or -1. Either counts as
        # a pass; the latter also means the number is potentially a
        # primitive root.
        n = 0xe76e6aaa42b5d7423aa4da5613eb21c3
        mr = miller_rabin_new(n)
        self.assertEqual(miller_rabin_test(mr, 2), "passed+ppr")
        self.assertEqual(miller_rabin_test(mr, 4), "passed")

        # The 'potential primitive root' test only means that M-R
        # didn't _rule out_ the number being a primitive root, by
        # finding that any of the powers _it tested_ less than n-1
        # came out to be 1. In this case, 2 really is a primitive
        # root, but since 13 | n-1, the 13th powers mod n form a
        # multiplicative subgroup. So 2^13 is not a primitive root,
        # and yet, M-R can't tell the difference, because it only
        # tried the exponent (n-1)/2, not the actual counterexample
        # (n-1)/13.
        self.assertEqual(miller_rabin_test(mr, 2**13), "passed+ppr")

        # A prime congruent to 1 mod a reasonably large power of 2, so
        # M-R has lots of scope to have different things happen. 3 is
        # a primitive root, so we expect that 3, 3^2, 3^4, ..., 3^256
        # should all pass for different reasons, with only the first
        # of them returning passed+ppr.
        n = 0xb1b65ebe489ff0ab4597bb67c3d22d01
        mr = miller_rabin_new(n)
        w = 3
        self.assertEqual(miller_rabin_test(mr, w), "passed+ppr")
        for i in range(1, 10):
            w = w * w % n
            self.assertEqual(miller_rabin_test(mr, w), "passed")

        # A prime with an _absurdly_ large power-of-2 factor in its
        # multiplicative group.
        n = 0x600000000000000000000000000000000000000000000001
        mr = miller_rabin_new(n)
        w = 10
        self.assertEqual(miller_rabin_test(mr, w), "passed+ppr")
        for i in range(1, 200):
            w = w * w % n
            self.assertEqual(miller_rabin_test(mr, w), "passed")

        # A blatantly composite number. But we still expect to see a
        # pass if we give the witness 1 (which will give a maximal
        # trailing string of 1s), or -1 (which will give -1 when
        # raised to the maximal odd factor of n-1, or indeed any other
        # odd power).
        n = 0x1010101010101010101010101010101
        mr = miller_rabin_new(n)
        self.assertEqual(miller_rabin_test(mr, 1), "passed")
        self.assertEqual(miller_rabin_test(mr, n-1), "passed")
        self.assertEqual(miller_rabin_test(mr, 2), "failed")

        # A Carmichael number, as a proper test that M-R detects
        # things the Fermat test would not.
        #
        # (Its prime factorisation is 26823115100268314289505807 *
        # 53646230200536628579011613 * 80469345300804942868517419,
        # which is enough to re-check its Carmichaelness.)
        n = 0xffffffffffffffffcf8032f3e044b4a8b1b1bf0b526538eae953d90f44d65511
        mr = miller_rabin_new(n)
        self.assertEqual(miller_rabin_test(mr, 16), "passed")
        assert(pow(2, n-1, n) == 1) # Fermat test would pass, but ...
        self.assertEqual(miller_rabin_test(mr, 2), "failed") # ... this fails

        # A white-box test for the side-channel-safe M-R
        # implementation, which has to check a^e against +-1 for every
        # exponent e of the form floor((n-1) / power of 2), so as to
        # avoid giving away exactly how many of the trailing values of
        # that sequence are significant to the test.
        #
        # When the power of 2 is large enough that the division was
        # not exact, the results of these comparisons are _not_
        # significant to the test, and we're required to ignore them!
        #
        # This pair of values has the property that none of the values
        # legitimately computed by M-R is either +1 _or_ -1, but if
        # you shift n-1 right by one too many bits (losing the lowest
        # set bit of 0x6d00 to get 0x36), then _that_ power of the
        # witness integer is -1. This should not cause a spurious pass.
        n = 0x6d01
        mr = miller_rabin_new(n)
        self.assertEqual(miller_rabin_test(mr, 0x251), "failed")

class ntru(MyTestBase):
    def testMultiply(self):
        self.assertEqual(
            ntru_ring_multiply([1,1,1,1,1,1], [1,1,1,1,1,1], 11, 59),
            [1,2,3,4,5,6,5,4,3,2,1])
        self.assertEqual(ntru_ring_multiply(
            [1,0,1,2,0,0,1,2,0,1,2], [2,0,0,1,0,1,2,2,2,0,2], 11, 3),
                         [1,0,0,0,0,0,0,0,0,0,0])

    def testInvert(self):
        # Over GF(3), x^11-x-1 factorises as
        # (x^3+x^2+2) * (x^8+2*x^7+x^6+2*x^4+2*x^3+x^2+x+1)
        # so we expect that 2,0,1,1 has no inverse, being one of those factors.
        self.assertEqual(ntru_ring_invert([0], 11, 3), None)
        self.assertEqual(ntru_ring_invert([1], 11, 3),
                         [1,0,0,0,0,0,0,0,0,0,0])
        self.assertEqual(ntru_ring_invert([2,0,1,1], 11, 3), None)
        self.assertEqual(ntru_ring_invert([1,0,1,2,0,0,1,2,0,1,2], 11, 3),
                         [2,0,0,1,0,1,2,2,2,0,2])

        self.assertEqual(ntru_ring_invert([1,0,1,2,0,0,1,2,0,1,2], 11, 59),
                         [1,26,10,1,38,48,34,37,53,3,53])

    def testMod3Round3(self):
        # Try a prime congruent to 1 mod 3
        self.assertEqual(ntru_mod3([4,5,6,0,1,2,3], 7, 7),
                         [0,1,-1,0,1,-1,0])
        self.assertEqual(ntru_round3([4,5,6,0,1,2,3], 7, 7),
                         [-3,-3,0,0,0,3,3])

        # And one congruent to 2 mod 3
        self.assertEqual(ntru_mod3([6,7,8,9,10,0,1,2,3,4,5], 11, 11),
                         [1,-1,0,1,-1,0,1,-1,0,1,-1])
        self.assertEqual(ntru_round3([6,7,8,9,10,0,1,2,3,4,5], 11, 11),
                         [-6,-3,-3,-3,0,0,0,3,3,3,6])

    def testBiasScale(self):
        self.assertEqual(ntru_bias([0,1,2,3,4,5,6,7,8,9,10], 4, 11, 11),
                         [4,5,6,7,8,9,10,0,1,2,3])
        self.assertEqual(ntru_scale([0,1,2,3,4,5,6,7,8,9,10], 4, 11, 11),
                         [0,4,8,1,5,9,2,6,10,3,7])

    def testEncode(self):
        # Test a small case. Worked through in detail:
        #
        # Pass 1:
        #   Input list is (89:123, 90:234, 344:345, 432:456, 222:567)
        #   (89:123, 90:234) -> (89+123*90 : 123*234) = (11159:28782)
        #   Emit low byte of 11159 = 0x97, and get (43:113)
        #   (344:345, 432:456) -> (344+345*432 : 345*456) = (149384:157320)
        #   Emit low byte of 149384 = 0x88, and get (583:615)
        #   Odd pair (222:567) is copied to end of new list
        #   Final list is (43:113, 583:615, 222:567)
        # Pass 2:
        #   Input list is (43:113, 583:615, 222:567)
        #   (43:113, 583:615) -> (43+113*583, 113*615) = (65922:69495)
        #   Emit low byte of 65922 = 0x82, and get (257:272)
        #   Odd pair (222:567) is copied to end of new list
        #   Final list is (257:272, 222:567)
        # Pass 3:
        #   Input list is (257:272, 222:567)
        #   (257:272, 222:567) -> (257+272*222, 272*567) = (60641:154224)
        #   Emit low byte of 60641 = 0xe1, and get (236:603)
        #   Final list is (236:603)
        # Cleanup:
        #   Emit low byte of 236 = 0xec, and get (0:3)
        #   Emit low byte of 0 = 0x00, and get (0:1)

        ms = [123,234,345,456,567]
        rs = [89,90,344,432,222]
        encoding = unhex('978882e1ec00')
        sched = ntru_encode_schedule(ms)
        self.assertEqual(sched.encode(rs), encoding)
        self.assertEqual(sched.decode(encoding), rs)

        # Encode schedules for sntrup761 public keys and ciphertexts
        pubsched = ntru_encode_schedule([4591]*761)
        self.assertEqual(pubsched.length(), 1158)
        ciphersched = ntru_encode_schedule([1531]*761)
        self.assertEqual(ciphersched.length(), 1007)

        # Test round-trip encoding using those schedules
        testlist = list(range(761))
        pubtext = pubsched.encode(testlist)
        self.assertEqual(pubsched.decode(pubtext), testlist)
        ciphertext = ciphersched.encode(testlist)
        self.assertEqual(ciphersched.decode(ciphertext), testlist)

    def testCore(self):
        # My own set of NTRU Prime parameters, satisfying all the
        # requirements and tiny enough for convenient testing
        p, q, w = 11, 59, 3

        with random_prng('ntru keygen seed'):
            keypair = ntru_keygen(p, q, w)
            plaintext = ntru_gen_short(p, w)

        ciphertext = ntru_encrypt(plaintext, ntru_pubkey(keypair), p, q)
        recovered = ntru_decrypt(ciphertext, keypair)
        self.assertEqual(plaintext, recovered)

class crypt(MyTestBase):
    def testSSH1Fingerprint(self):
        # Example key and reference fingerprint value generated by
        # OpenSSH 6.7 ssh-keygen
        rsa = rsa_bare(65537, 984185866443261798625575612408956568591522723900235822424492423996716524817102482330189709310179009158443944785704183009867662230534501187034891091310377917105259938712348098594526746211645472854839799025154390701673823298369051411)
        fp = rsa_ssh1_fingerprint(rsa)
        self.assertEqual(
            fp, b"768 96:12:c8:bc:e6:03:75:86:e8:c7:b9:af:d8:0c:15:75")

    def testSSH2Fingerprints(self):
        # A sensible key blob that we can make sense of.
        sensible_blob = b64(
            'AAAAC3NzaC1lZDI1NTE5AAAAICWiV0VAD4lQ7taUN7vZ5Rkc'
            'SLJBW5ubn6ZINwCOzpn3')
        self.assertEqual(ssh2_fingerprint_blob(sensible_blob, "sha256"),
                         b'ssh-ed25519 255 SHA256:'
                         b'E4VmaHW0sUF7SUgSEOmMJ8WBtt0e/j3zbsKvyqfFnu4')
        self.assertEqual(ssh2_fingerprint_blob(sensible_blob, "md5"),
                         b'ssh-ed25519 255 '
                         b'35:73:80:df:a3:2c:1a:f2:2c:a6:5c:84:ce:48:6a:7e')

        # A key blob with an unknown algorithm name, so that we can't
        # extract the bit count.
        silly_blob = ssh_string(b'foo') + ssh_string(b'key data')
        self.assertEqual(ssh2_fingerprint_blob(silly_blob, "sha256"),
                         b'foo SHA256:'
                         b'mvfJTB4PaRI7hxYaYwn0sH8G6zW1HbLkbWnZE2YIKc4')
        self.assertEqual(ssh2_fingerprint_blob(silly_blob, "md5"),
                         b'foo '
                         b'5f:5f:97:94:97:be:01:5c:f6:3f:e3:6e:55:46:ea:52')

        # A key blob without even a valid algorithm-name string at the start.
        very_silly_blob = b'foo'
        self.assertEqual(ssh2_fingerprint_blob(very_silly_blob, "sha256"),
                         b'SHA256:'
                         b'LCa0a2j/xo/5m0U8HTBBNBNCLXBkg7+g+YpeiGJm564')
        self.assertEqual(ssh2_fingerprint_blob(very_silly_blob, "md5"),
                         b'ac:bd:18:db:4c:c2:f8:5c:ed:ef:65:4f:cc:c4:a4:d8')

        # A certified key.
        cert_blob = b64(
            'AAAAIHNzaC1lZDI1NTE5LWNlcnQtdjAxQG9wZW5zc2guY29tAAAAIJ4Ds9YwRHxs'
            'xdtUitRbZGz0MgKGZSBVrTHI1AbvetofAAAAIMt0/CMBL+64GQ/r/JyGxo6oHs86'
            'i9bOHhMJYbDbxEJfAAAAAAAAAG8AAAABAAAAAmlkAAAADAAAAAh1c2VybmFtZQAA'
            'AAAAAAPoAAAAAAAAB9AAAAAAAAAAAAAAAAAAAAE+AAAAIHNzaC1lZDI1NTE5LWNl'
            'cnQtdjAxQG9wZW5zc2guY29tAAAAICl5MiUNt8hoAAHT0v00JYOkWe2UW31+Qq5Q'
            'HYKWGyVjAAAAIMUJEFAmSV/qtoxSmVOHUgTMKYjqkDy8fTfsfCKV+sN7AAAAAAAA'
            'AG8AAAABAAAAAmlkAAAAEgAAAA5kb2Vzbid0IG1hdHRlcgAAAAAAAAPoAAAAAAAA'
            'B9AAAAAAAAAAAAAAAAAAAAAzAAAAC3NzaC1lZDI1NTE5AAAAIMUJEFAmSV/qtoxS'
            'mVOHUgTMKYjqkDy8fTfsfCKV+sN7AAAAUwAAAAtzc2gtZWQyNTUxOQAAAEAXbRz3'
            'lBmoU4FVge29jn04MfubF6U0CoPG1nbeZSgDN2iz7qtZ75XIk5O/Z/W9nA8jwsiz'
            'iSEMItjvR7HEN8MIAAAAUwAAAAtzc2gtZWQyNTUxOQAAAECszhkY8bUbSCjmHEMP'
            'LjcOX6OaeBzPIYYYXJzpLn+m+CIwDXRIxyvON5/d/TomgAFNJutfOEsqIzy5OAvl'
            'p5IO')
        self.assertEqual(ssh2_fingerprint_blob(cert_blob, "sha256"),
                         b'ssh-ed25519-cert-v01@openssh.com 255 '
                         b'SHA256:42JaqhHUNa5CoKxGWqtKXF0Awz7b0aPrtgBZ9VLLHfY')
        self.assertEqual(ssh2_fingerprint_blob(cert_blob, "md5"),
                         b'ssh-ed25519-cert-v01@openssh.com 255 '
                         b'8e:40:00:e0:1f:4a:9c:b3:c8:e9:05:59:04:03:44:b3')
        self.assertEqual(ssh2_fingerprint_blob(cert_blob, "sha256-cert"),
                         b'ssh-ed25519-cert-v01@openssh.com 255 '
                         b'SHA256:W/+SDEg7S+/dAn4SrodJ2c8bYvt13XXA7YYlQ6E8R5U')
        self.assertEqual(ssh2_fingerprint_blob(cert_blob, "md5-cert"),
                         b'ssh-ed25519-cert-v01@openssh.com 255 '
                         b'03:cf:aa:8e:aa:c3:a0:97:bb:2e:7e:57:9d:08:b5:be')


    def testAES(self):
        # My own test cases, generated by a mostly independent
        # reference implementation of AES in Python. ('Mostly'
        # independent in that it was written by me.)

        def vector(cipherbase, key, iv, plaintext, ciphertext):
            for cipher in get_implementations(cipherbase):
                c = ssh_cipher_new(cipher)
                if c is None: return # skip test if HW AES not available
                ssh_cipher_setkey(c, key)
                ssh_cipher_setiv(c, iv)
                self.assertEqualBin(
                    ssh_cipher_encrypt(c, plaintext), ciphertext)
                ssh_cipher_setiv(c, iv)
                self.assertEqualBin(
                    ssh_cipher_decrypt(c, ciphertext), plaintext)

        # Tests of CBC mode.

        key = unhex(
            '98483c6eb40b6c31a448c22a66ded3b5e5e8d5119cac8327b655c8b5c4836489')
        iv = unhex('38f87b0b9b736160bfc0cbd8447af6ee')
        plaintext = unhex('''
        ee16271827b12d828f61d56fddccc38ccaa69601da2b36d3af1a34c51947b71a
        362f05e07bf5e7766c24599799b252ad2d5954353c0c6ca668c46779c2659c94
        8df04e4179666e335470ff042e213c8bcff57f54842237fbf9f3c7e6111620ac
        1c007180edd25f0e337c2a49d890a7173f6b52d61e3d2a21ddc8e41513a0e825
        afd5932172270940b01014b5b7fb8495946151520a126518946b44ea32f9b2a9
        ''')

        vector('aes128_cbc', key[:16], iv, plaintext, unhex('''
        547ee90514cb6406d5bb00855c8092892c58299646edda0b4e7c044247795c8d
        3c3eb3d91332e401215d4d528b94a691969d27b7890d1ae42fe3421b91c989d5
        113fefa908921a573526259c6b4f8e4d90ea888e1d8b7747457ba3a43b5b79b9
        34873ebf21102d14b51836709ee85ed590b7ca618a1e884f5c57c8ea73fe3d0d
        6bf8c082dd602732bde28131159ed0b6e9cf67c353ffdd010a5a634815aaa963'''))

        vector('aes192_cbc', key[:24], iv, plaintext, unhex('''
        e3dee5122edd3fec5fab95e7db8c784c0cb617103e2a406fba4ae3b4508dd608
        4ff5723a670316cc91ed86e413c11b35557c56a6f5a7a2c660fc6ee603d73814
        73a287645be0f297cdda97aef6c51faeb2392fec9d33adb65138d60f954babd9
        8ee0daab0d1decaa8d1e07007c4a3c7b726948025f9fb72dd7de41f74f2f36b4
        23ac6a5b4b6b39682ec74f57d9d300e547f3c3e467b77f5e4009923b2f94c903'''))

        vector('aes256_cbc', key[:32], iv, plaintext, unhex('''
        088c6d4d41997bea79c408925255266f6c32c03ea465a5f607c2f076ec98e725
        7e0beed79609b3577c16ebdf17d7a63f8865278e72e859e2367de81b3b1fe9ab
        8f045e1d008388a3cfc4ff87daffedbb47807260489ad48566dbe73256ce9dd4
        ae1689770a883b29695928f5983f33e8d7aec4668f64722e943b0b671c365709
        dfa86c648d5fb00544ff11bd29121baf822d867e32da942ba3a0d26299bcee13'''))

        # Tests of SDCTR mode, one with a random IV and one with an IV
        # about to wrap round. More vigorous tests of IV carry and
        # wraparound behaviour are in the testAESSDCTR method.

        sdctrIVs = [
            unhex('38f87b0b9b736160bfc0cbd8447af6ee'),
            unhex('fffffffffffffffffffffffffffffffe'),
        ]

        vector('aes128_ctr', key[:16], sdctrIVs[0], plaintext[:64], unhex('''
        d0061d7b6e8c4ef4fe5614b95683383f46cdd2766e66b6fb0b0f0b3a24520b2d
        15d869b06cbf685ede064bcf8fb5fb6726cfd68de7016696a126e9e84420af38'''))
        vector('aes128_ctr', key[:16], sdctrIVs[1], plaintext[:64], unhex('''
        49ac67164fd9ce8701caddbbc9a2b06ac6524d4aa0fdac95253971974b8f3bc2
        bb8d7c970f6bcd79b25218cc95582edf7711aae2384f6cf91d8d07c9d9b370bc'''))

        vector('aes192_ctr', key[:24], sdctrIVs[0], plaintext[:64], unhex('''
        0baa86acbe8580845f0671b7ebad4856ca11b74e5108f515e34e54fa90f87a9a
        c6eee26686253c19156f9be64957f0dbc4f8ecd7cabb1f4e0afefe33888faeec'''))
        vector('aes192_ctr', key[:24], sdctrIVs[1], plaintext[:64], unhex('''
        2da1791250100dc0d1461afe1bbfad8fa0320253ba5d7905d837386ba0a3a41f
        01965c770fcfe01cf307b5316afb3981e0e4aa59a6e755f0a5784d9accdc52be'''))

        vector('aes256_ctr', key[:32], sdctrIVs[0], plaintext[:64], unhex('''
        49c7b284222d408544c770137b6ef17ef770c47e24f61fa66e7e46cae4888882
        f980a0f2446956bf47d2aed55ebd2e0694bfc46527ed1fd33efe708fec2f8b1f'''))
        vector('aes256_ctr', key[:32], sdctrIVs[1], plaintext[:64], unhex('''
        f1d013c3913ccb4fc0091e25d165804480fb0a1d5c741bf012bba144afda6db2
        c512f3942018574bd7a8fdd88285a73d25ef81e621aebffb6e9b8ecc8e2549d4'''))

    def testAESSDCTR(self):
        # A thorough test of the IV-incrementing component of SDCTR
        # mode. We set up an AES-SDCTR cipher object with the given
        # input IV; we encrypt two all-zero blocks, expecting the
        # return values to be the AES-ECB encryptions of the input IV
        # and the incremented version. Then we decrypt each of them by
        # feeding them to an AES-CBC cipher object with its IV set to
        # zero.

        def increment(keylen, suffix, iv):
            key = b'\xab' * (keylen//8)
            sdctr = ssh_cipher_new("aes{}_ctr_{}".format(keylen, suffix))
            if sdctr is None: return # skip test if HW AES not available
            ssh_cipher_setkey(sdctr, key)
            cbc = ssh_cipher_new("aes{}_cbc_{}".format(keylen, suffix))
            ssh_cipher_setkey(cbc, key)

            ssh_cipher_setiv(sdctr, iv)
            ec0 = ssh_cipher_encrypt(sdctr, b'\x00' * 16)
            ec1 = ssh_cipher_encrypt(sdctr, b'\x00' * 16)
            ssh_cipher_setiv(cbc, b'\x00' * 16)
            dc0 = ssh_cipher_decrypt(cbc, ec0)
            ssh_cipher_setiv(cbc, b'\x00' * 16)
            dc1 = ssh_cipher_decrypt(cbc, ec1)
            self.assertEqualBin(iv, dc0)
            return dc1

        def test(keylen, suffix, ivInteger):
            mask = (1 << 128) - 1
            ivInteger &= mask
            ivBinary = unhex("{:032x}".format(ivInteger))
            ivIntegerInc = (ivInteger + 1) & mask
            ivBinaryInc = unhex("{:032x}".format((ivIntegerInc)))
            actualResult = increment(keylen, suffix, ivBinary)
            if actualResult is not None:
                self.assertEqualBin(actualResult, ivBinaryInc)

        # Check every input IV you can make by gluing together 32-bit
        # pieces of the form 0, 1 or -1. This should test all the
        # places where carry propagation within the 128-bit integer
        # can go wrong.
        #
        # We also test this at all three AES key lengths, in case the
        # core cipher routines are written separately for each one.

        for suffix in get_aes_impls():
            for keylen in [128, 192, 256]:
                hexTestValues = ["00000000", "00000001", "ffffffff"]
                for ivHexBytes in itertools.product(*([hexTestValues] * 4)):
                    ivInteger = int("".join(ivHexBytes), 16)
                    test(keylen, suffix, ivInteger)

    def testAESParallelism(self):
        # Since at least one of our implementations of AES works in
        # parallel, here's a test that CBC decryption works the same
        # way no matter how the input data is divided up.

        # A pile of conveniently available random-looking test data.
        test_ciphertext = ssh2_mpint(last(fibonacci_scattered(14)))
        test_ciphertext += b"x" * (15 & -len(test_ciphertext)) # pad to a block

        # Test key and IV.
        test_key = b"foobarbazquxquuxFooBarBazQuxQuux"
        test_iv = b"FOOBARBAZQUXQUUX"

        for keylen in [128, 192, 256]:
            decryptions = []

            for suffix in get_aes_impls():
                c = ssh_cipher_new("aes{:d}_cbc_{}".format(keylen, suffix))
                if c is None: continue
                ssh_cipher_setkey(c, test_key[:keylen//8])
                for chunklen in range(16, 16*12, 16):
                    ssh_cipher_setiv(c, test_iv)
                    decryption = b""
                    for pos in range(0, len(test_ciphertext), chunklen):
                        chunk = test_ciphertext[pos:pos+chunklen]
                        decryption += ssh_cipher_decrypt(c, chunk)
                    decryptions.append(decryption)

            for d in decryptions:
                self.assertEqualBin(d, decryptions[0])

    def testCRC32(self):
        # Check the effect of every possible single-byte input to
        # crc32_update. In the traditional implementation with a
        # 256-word lookup table, this exercises every table entry; in
        # _any_ implementation which iterates over the input one byte
        # at a time, it should be a similarly exhaustive test. (But if
        # a more optimised implementation absorbed _more_ than 8 bits
        # at a time, then perhaps this test wouldn't be enough...)

        # It would be nice if there was a functools.iterate() which
        # would apply a function n times. Failing that, making shift1
        # accept and ignore a second argument allows me to iterate it
        # 8 times using functools.reduce.
        shift1 = lambda x, dummy=None: (x >> 1) ^ (0xEDB88320 * (x & 1))
        shift8 = lambda x: functools.reduce(shift1, [None]*8, x)

        # A small selection of choices for the other input to
        # crc32_update, just to check linearity.
        test_prior_values = [0, 0xFFFFFFFF, 0x45CC1F6A, 0xA0C4ADCF, 0xD482CDF1]

        for prior in test_prior_values:
            prior_shifted = shift8(prior)
            for i in range(256):
                exp = shift8(i) ^ prior_shifted
                self.assertEqual(crc32_update(prior, struct.pack("B", i)), exp)

                # Check linearity of the _reference_ implementation, while
                # we're at it!
                self.assertEqual(shift8(i ^ prior), exp)

    def testCRCDA(self):
        def pattern(badblk, otherblks, pat):
            # Arrange copies of the bad block in a pattern
            # corresponding to the given bit string.
            retstr = b""
            while pat != 0:
                retstr += (badblk if pat & 1 else next(otherblks))
                pat >>= 1
            return retstr

        def testCases(pat):
            badblock = b'muhahaha' # the block we'll maliciously repeat

            # Various choices of the other blocks, including all the
            # same, all different, and all different but only in the
            # byte at one end.
            for otherblocks in [
                    itertools.repeat(b'GoodData'),
                    (struct.pack('>Q', i) for i in itertools.count()),
                    (struct.pack('<Q', i) for i in itertools.count())]:
                yield pattern(badblock, otherblocks, pat)

        def positiveTest(pat):
            for data in testCases(pat):
                self.assertTrue(crcda_detect(data, ""))
                self.assertTrue(crcda_detect(data[8:], data[:8]))

        def negativeTest(pat):
            for data in testCases(pat):
                self.assertFalse(crcda_detect(data, ""))
                self.assertFalse(crcda_detect(data[8:], data[:8]))

        # Tests of successful attack detection, derived by taking
        # multiples of the CRC polynomial itself.
        #
        # (The CRC32 polynomial is usually written as 0xEDB88320.
        # That's in bit-reversed form, but then, that's the form we
        # need anyway for these patterns. But it's also missing the
        # leading term - really, 0xEDB88320 is the value you get by
        # reducing X^32 modulo the real poly, i.e. the value you put
        # back in to the CRC to compensate for an X^32 that's just
        # been shifted out. If you put that bit back on - at the
        # bottom, because of the bit-reversal - you get the less
        # familiar-looking 0x1db710641.)
        positiveTest(0x1db710641) # the CRC polynomial P itself
        positiveTest(0x26d930ac3) # (X+1) * P
        positiveTest(0xbdbdf21cf) # (X^3+X^2+X+1) * P
        positiveTest(0x3a66a39b653f6889d)
        positiveTest(0x170db3167dd9f782b9765214c03e71a18f685b7f3)
        positiveTest(0x1751997d000000000000000000000000000000001)
        positiveTest(0x800000000000000000000000000000000f128a2d1)

        # Tests of non-detection.
        negativeTest(0x1db711a41)
        negativeTest(0x3a66a39b453f6889d)
        negativeTest(0x170db3167dd9f782b9765214c03e71b18f685b7f3)
        negativeTest(0x1751997d000000000000000000000001000000001)
        negativeTest(0x800000000000002000000000000000000f128a2d1)

    def testAuxEncryptFns(self):
        # Test helper functions such as aes256_encrypt_pubkey. The
        # test cases are all just things I made up at random, and the
        # expected outputs are generated by running PuTTY's own code;
        # this doesn't independently check them against any other
        # implementation, but it at least means we're protected
        # against code reorganisations changing the behaviour from
        # what it was before.

        p = b'three AES blocks, or six DES, of arbitrary input'

        k = b'thirty-two-byte aes-256 test key'
        iv = b'\0' * 16
        c = unhex('7b112d00c0fc95bc13fcdacfd43281bf'
                  'de9389db1bbcfde79d59a303d41fd2eb'
                  '0955c9477ae4ee3a4d6c1fbe474c0ef6')
        self.assertEqualBin(aes256_encrypt_pubkey(k, iv, p), c)
        self.assertEqualBin(aes256_decrypt_pubkey(k, iv, c), p)

        # same k as in the previous case
        iv = unhex('0102030405060708090a0b0c0d0e0f10')
        c = unhex('9e9c8a91b739677b834397bdd8e70c05'
                  'c3e2cf6cce68d376d798a59848621c6d'
                  '42b9e7101260a438daadd7b742875a36')
        self.assertEqualBin(aes256_encrypt_pubkey(k, iv, p), c)
        self.assertEqualBin(aes256_decrypt_pubkey(k, iv, c), p)

        k = b'3des with keys distinct.'
        iv = b'randomIV'
        c = unhex('be81ff840d885869a54d63b03d7cd8db'
                  'd39ab875e5f7b9da1081f8434cb33c47'
                  'dee5bcd530a3f6c13a9fc73e321a843a')
        self.assertEqualBin(des3_encrypt_pubkey_ossh(k, iv, p), c)
        self.assertEqualBin(des3_decrypt_pubkey_ossh(k, iv, c), p)

        k = b'3des, 2keys only'
        c = unhex('0b845650d73f615cf16ee3ed20535b5c'
                  'd2a8866ee628547bbdad916e2b4b9f19'
                  '67c15bde33c5b03ff7f403b4f8cf2364')
        self.assertEqualBin(des3_encrypt_pubkey(k, p), c)
        self.assertEqualBin(des3_decrypt_pubkey(k, c), p)

        k = b'7 bytes'
        c = unhex('5cac9999cffc980a1d1184d84b71c8cb'
                  '313d12a1d25a7831179aeb11edaca5ad'
                  '9482b224105a61c27137587620edcba8')
        self.assertEqualBin(des_encrypt_xdmauth(k, p), c)
        self.assertEqualBin(des_decrypt_xdmauth(k, c), p)

    def testSSHCiphers(self):
        # Test all the SSH ciphers we support, on the same principle
        # as testAuxCryptFns that we should have test cases to verify
        # that things still work the same today as they did yesterday.

        p = b'64 bytes of test input data, enough to check any cipher mode xyz'
        k = b'sixty-four bytes of test key data, enough to key any cipher pqrs'
        iv = b'16 bytes of IV w'

        ciphers = [
            ("3des_ctr",      24,    8, False, unhex('83c17a29250d3d4fa81250fc0362c54e40456936445b77709a30fccf8b983d57129a969c59070d7c2977f3d25dd7d71163687c7b3cd2edb0d07514e6c77479f5')),
            ("3des_ssh2",     24,    8, True,  unhex('d5f1cc25b8fbc62decc74b432344de674f7249b2e38871f764411eaae17a1097396bd97b66a1e4d49f08c219acaef2a483198ce837f75cc1ef67b37c2432da3e')),
            ("3des_ssh1",     24,    8, False, unhex('d5f1cc25b8fbc62de63590b9b92344adf6dd72753273ff0fb32d4dbc6af858529129f34242f3d557eed3a5c84204eb4f868474294964cf70df5d8f45dfccfc45')),
            ("des_cbc",        8,    8, True,  unhex('051524e77fb40e109d9fffeceacf0f28c940e2f8415ddccc117020bdd2612af5036490b12085d0e46129919b8e499f51cb82a4b341d7a1a1ea3e65201ef248f6')),
            ("aes256_ctr",    32,   16, False, unhex('b87b35e819f60f0f398a37b05d7bcf0b04ad4ebe570bd08e8bfa8606bafb0db2cfcd82baf2ccceae5de1a3c1ae08a8b8fdd884fdc5092031ea8ce53333e62976')),
            ("aes256_cbc",    32,   16, True,  unhex('381cbb2fbcc48118d0094540242bd990dd6af5b9a9890edd013d5cad2d904f34b9261c623a452f32ea60e5402919a77165df12862742f1059f8c4a862f0827c5')),
            ("aes192_ctr",    24,   16, False, unhex('06bcfa7ccf075d723e12b724695a571a0fad67c56287ea609c410ac12749c51bb96e27fa7e1c7ea3b14792bbbb8856efb0617ebec24a8e4a87340d820cf347b8')),
            ("aes192_cbc",    24,   16, True,  unhex('ac97f8698170f9c05341214bd7624d5d2efef8311596163dc597d9fe6c868971bd7557389974612cbf49ea4e7cc6cc302d4cc90519478dd88a4f09b530c141f3')),
            ("aes128_ctr",    16,   16, False, unhex('0ad4ddfd2360ec59d77dcb9a981f92109437c68c5e7f02f92017d9f424f89ab7850473ac0e19274125e740f252c84ad1f6ad138b6020a03bdaba2f3a7378ce1e')),
            ("aes128_cbc",    16,   16, True,  unhex('36de36917fb7955a711c8b0bf149b29120a77524f393ae3490f4ce5b1d5ca2a0d7064ce3c38e267807438d12c0e40cd0d84134647f9f4a5b11804a0cc5070e62')),
            ("blowfish_ctr",  32,    8, False, unhex('079daf0f859363ccf72e975764d709232ec48adc74f88ccd1f342683f0bfa89ca0e8dbfccc8d4d99005d6b61e9cc4e6eaa2fd2a8163271b94bf08ef212129f01')),
            ("blowfish_ssh2", 16,    8, True,  unhex('e986b7b01f17dfe80ee34cac81fa029b771ec0f859ae21ae3ec3df1674bc4ceb54a184c6c56c17dd2863c3e9c068e76fd9aef5673465995f0d648b0bb848017f')),
            ("blowfish_ssh1", 32,    8, True,  unhex('d44092a9035d895acf564ba0365d19570fbb4f125d5a4fd2a1812ee6c8a1911a51bb181fbf7d1a261253cab71ee19346eb477b3e7ecf1d95dd941e635c1a4fbf')),
            ("arcfour256",    32, None, False, unhex('db68db4cd9bbc1d302cce5919ff3181659272f5d38753e464b3122fc69518793fe15dd0fbdd9cd742bd86c5e8a3ae126c17ecc420bd2d5204f1a24874d00fda3')),
            ("arcfour128",    16, None, False, unhex('fd4af54c5642cb29629e50a15d22e4944e21ffba77d0543b27590eafffe3886686d1aefae0484afc9e67edc0e67eb176bbb5340af1919ea39adfe866d066dd05')),
        ]

        for algbase, keylen, ivlen, simple_cbc, c in ciphers:
            for alg in get_implementations(algbase):
                cipher = ssh_cipher_new(alg)
                if cipher is None:
                    continue # hardware-accelerated cipher not available

                ssh_cipher_setkey(cipher, k[:keylen])
                if ivlen is not None:
                    ssh_cipher_setiv(cipher, iv[:ivlen])
                self.assertEqualBin(ssh_cipher_encrypt(cipher, p), c)

                ssh_cipher_setkey(cipher, k[:keylen])
                if ivlen is not None:
                    ssh_cipher_setiv(cipher, iv[:ivlen])
                self.assertEqualBin(ssh_cipher_decrypt(cipher, c), p)

                if simple_cbc:
                    # CBC ciphers (other than the three-layered CBC used
                    # by SSH-1 3DES) have more specific semantics for
                    # their IV than 'some kind of starting state for the
                    # cipher mode': the IV is specifically supposed to
                    # represent the previous block of ciphertext. So we
                    # can check that, by supplying the IV _as_ a
                    # ciphertext block via a call to decrypt(), and seeing
                    # if that causes our test ciphertext to decrypt the
                    # same way as when we provided the same IV via
                    # setiv().
                    ssh_cipher_setkey(cipher, k[:keylen])
                    ssh_cipher_decrypt(cipher, iv[:ivlen])
                    self.assertEqualBin(ssh_cipher_decrypt(cipher, c), p)

    def testChaCha20Poly1305(self):
        # A test case of this cipher taken from a real connection to
        # OpenSSH.
        key = unhex('49e67c5ae596ea7f230e266538d0e373'
                    '177cc8fe08ff7b642c22d736ca975655'
                    'c3fb639010fd297ca03c36b20a182ef4'
                    '0e1272f0c54251c175546ee00b150805')
        len_p = unhex('00000128')
        len_c = unhex('3ff3677b')
        msg_p = unhex('0807000000020000000f736572766572'
                      '2d7369672d616c6773000000db737368'
                      '2d656432353531392c736b2d7373682d'
                      '65643235353139406f70656e7373682e'
                      '636f6d2c7373682d7273612c7273612d'
                      '736861322d3235362c7273612d736861'
                      '322d3531322c7373682d6473732c6563'
                      '6473612d736861322d6e697374703235'
                      '362c65636473612d736861322d6e6973'
                      '74703338342c65636473612d73686132'
                      '2d6e697374703532312c736b2d656364'
                      '73612d736861322d6e69737470323536'
                      '406f70656e7373682e636f6d2c776562'
                      '617574686e2d736b2d65636473612d73'
                      '6861322d6e69737470323536406f7065'
                      '6e7373682e636f6d0000001f7075626c'
                      '69636b65792d686f7374626f756e6440'
                      '6f70656e7373682e636f6d0000000130'
                      'c34aaefcafae6fc2')
        msg_c = unhex('bf587eabf385b1281fa9c755d8515dfd'
                      'c40cb5e993b346e722dce48b1741b4e5'
                      'ce9ae075f6df0a1d2f72f94f73570125'
                      '7011630bbb0c7febd767184c0d5aa810'
                      '47cbce82972129a234b8ac5fc5f2b5be'
                      '9264baca6d13ff3c9813a61e1f23468f'
                      '31964b60fc3f0888a227f02c737b2d27'
                      'b7ae3cd60ede17533863a5bb6bb2d60a'
                      'c998ccd27e8ba56259f676ed04749fad'
                      '4114678fb871add3a40625110637947c'
                      'e91459811622fd3d1fa7eb7efad4b1e8'
                      '97f3e860473935d3d8df0679a8b0df85'
                      'aa4124f2d9ac7207abd10719f465c9ed'
                      '859d2b03bde55315b9024f660ba8d63a'
                      '64e0beb81e532201df830a52cf221484'
                      '18d0c4c7da242346161d7320ac534cb5'
                      'c6b6fec905ee5f424becb9f97c3afbc5'
                      '5ef4ba369e61bce847158f0dc5bd7227'
                      '3b8693642db36f87')
        mac = unhex('09757178642dfc9f2c38ac5999e0fcfd')
        seqno = 3
        c = ssh_cipher_new('chacha20_poly1305')
        m = ssh2_mac_new('poly1305', c)
        c.setkey(key)
        self.assertEqualBin(c.encrypt_length(len_p, seqno), len_c)
        self.assertEqualBin(c.encrypt(msg_p), msg_c)
        m.start()
        m.update(ssh_uint32(seqno) + len_c + msg_c)
        self.assertEqualBin(m.genresult(), mac)
        self.assertEqualBin(c.decrypt_length(len_c, seqno), len_p)
        self.assertEqualBin(c.decrypt(msg_c), msg_p)

    def testRSAKex(self):
        # Round-trip test of the RSA key exchange functions, plus a
        # hardcoded plain/ciphertext pair to guard against the
        # behaviour accidentally changing.
        def blobs(n, e, d, p, q, iqmp):
            # For RSA kex, the public blob is formatted exactly like
            # any other SSH-2 RSA public key. But there's no private
            # key blob format defined by the protocol, so for the
            # purposes of making a test RSA private key, we borrow the
            # function we already had that decodes one out of the wire
            # format used in the SSH-1 agent protocol.
            pubblob = ssh_string(b"ssh-rsa") + ssh2_mpint(e) + ssh2_mpint(n)
            privblob = (ssh_uint32(nbits(n)) + ssh1_mpint(n) + ssh1_mpint(e) +
                        ssh1_mpint(d) + ssh1_mpint(iqmp) +
                        ssh1_mpint(q) + ssh1_mpint(p))
            return pubblob, privblob

        # Parameters for a test key.
        p = 0xf49e4d21c1ec3d1c20dc8656cc29aadb2644a12c98ed6c81a6161839d20d398d
        q = 0xa5f0bc464bf23c4c83cf17a2f396b15136fbe205c07cb3bb3bdb7ed357d1cd13
        n = p*q
        e = 37
        d = int(mp_invert(e, (p-1)*(q-1)))
        iqmp = int(mp_invert(q, p))
        assert iqmp * q % p == 1
        assert d * e % (p-1) == 1
        assert d * e % (q-1) == 1

        pubblob, privblob = blobs(n, e, d, p, q, iqmp)

        pubkey = ssh_rsakex_newkey(pubblob)
        privkey = get_rsa_ssh1_priv_agent(privblob)

        plain = 0x123456789abcdef
        hashalg = 'md5'
        with queued_random_data(64, "rsakex encrypt test"):
            cipher = ssh_rsakex_encrypt(pubkey, hashalg, ssh2_mpint(plain))
        decoded = ssh_rsakex_decrypt(privkey, hashalg, cipher)
        self.assertEqual(int(decoded), plain)
        self.assertEqualBin(cipher, unhex(
            '34277d1060dc0a434d98b4239de9cec59902a4a7d17a763587cdf8c25d57f51a'
            '7964541892e7511798e61dd78429358f4d6a887a50d2c5ebccf0e04f48fc665c'
        ))

    def testMontgomeryKexLowOrderPoints(self):
        # List of all the bad input values for Curve25519 which can
        # end up generating a zero output key. You can find the first
        # five (the ones in canonical representation, i.e. in
        # [0,2^255-19)) by running
        # find_montgomery_power2_order_x_values(curve25519.p, curve25519.a)
        # and then encoding the results little-endian.
        bad_keys_25519 = [
            "0000000000000000000000000000000000000000000000000000000000000000",
            "0100000000000000000000000000000000000000000000000000000000000000",
            "5f9c95bca3508c24b1d0b1559c83ef5b04445cc4581c8e86d8224eddd09f1157",
            "e0eb7a7c3b41b8ae1656e3faf19fc46ada098deb9c32b1fd866205165f49b800",
            "ecffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff7f",

            # Input values less than 2^255 are reduced mod p, so those
            # of the above values which are still in that range when
            # you add 2^255-19 to them should also be caught.
            "edffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff7f",
            "eeffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff7f",

            # Input values are reduced mod 2^255 before reducing mod
            # p. So setting the high-order bit of any of the above 7
            # values should also lead to rejection, because it will be
            # stripped off and then the value will be recognised as
            # one of the above.
            "0000000000000000000000000000000000000000000000000000000000000080",
            "0100000000000000000000000000000000000000000000000000000000000080",
            "5f9c95bca3508c24b1d0b1559c83ef5b04445cc4581c8e86d8224eddd09f11d7",
            "e0eb7a7c3b41b8ae1656e3faf19fc46ada098deb9c32b1fd866205165f49b880",
            "ecffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
            "edffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
            "eeffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff",
        ]

        # Same for Curve448, found by the analogous eccref function call
        # find_montgomery_power2_order_x_values(curve448.p, curve448.a)
        bad_keys_448 = [
            # The first three are the bad values in canonical
            # representationm. In Curve448 these are just 0, 1 and -1.
            '0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000',
            '0100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000',
            'fefffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffffffffffffffffffffffffffffffffffffffffffffffffff',

            # As with Curve25519, we must also include values in
            # non-canonical representation that reduce to one of the
            # above mod p.
            'fffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffffffffffffffffffffffffffffffffffffffffffffffffff',
            '00000000000000000000000000000000000000000000000000000000ffffffffffffffffffffffffffffffffffffffffffffffffffffffff'

            # But that's all, because Curve448 fits neatly into a
            # whole number of bytes, so there's no secondary reduction
            # mod a power of 2.
        ]

        with random_prng("doesn't matter"):
            ecdh25519 = ecdh_key_new('curve25519', False)
            ecdh448 = ecdh_key_new('curve448', False)
        for pub in bad_keys_25519:
            key = ecdh_key_getkey(ecdh25519, unhex(pub))
            self.assertEqual(key, None)
        for pub in bad_keys_448:
            key = ecdh_key_getkey(ecdh448, unhex(pub))
            self.assertEqual(key, None)

    def testPRNG(self):
        hashalg = 'sha256'
        seed = b"hello, world"
        entropy = b'1234567890' * 100

        # Replicate the generation of some random numbers. to ensure
        # they really are the hashes of what they're supposed to be.
        pr = prng_new(hashalg)
        prng_seed_begin(pr)
        prng_seed_update(pr, seed)
        prng_seed_finish(pr)
        data1 = prng_read(pr, 128)
        data2 = prng_read(pr, 127) # a short read shouldn't confuse things
        prng_add_entropy(pr, 0, entropy) # forces a reseed
        data3 = prng_read(pr, 128)

        le128 = lambda x: le_integer(x, 128)

        key1 = hash_str(hashalg, b'R' + seed)
        expected_data1 = b''.join(
            hash_str(hashalg, key1 + b'G' + le128(counter))
            for counter in range(4))
        # After prng_read finishes, we expect the PRNG to have
        # automatically reseeded itself, so that if its internal state
        # is revealed then the previous output can't be reconstructed.
        key2 = hash_str(hashalg, key1 + b'R')
        expected_data2 = b''.join(
            hash_str(hashalg, key2 + b'G' + le128(counter))
            for counter in range(4,8))
        # There will have been another reseed after the second
        # prng_read, and then another due to the entropy.
        key3 = hash_str(hashalg, key2 + b'R')
        key4 = hash_str(hashalg, key3 + b'R' + hash_str(hashalg, entropy))
        expected_data3 = b''.join(
            hash_str(hashalg, key4 + b'G' + le128(counter))
            for counter in range(8,12))

        self.assertEqualBin(data1, expected_data1)
        self.assertEqualBin(data2, expected_data2[:127])
        self.assertEqualBin(data3, expected_data3)

    def testHashPadding(self):
        # A consistency test for hashes that use MD5/SHA-1/SHA-2 style
        # padding of the message into a whole number of fixed-size
        # blocks. We test-hash a message of every length up to twice
        # the block length, to make sure there's no off-by-1 error in
        # the code that decides how much padding to put on.

        # Source: generated using Python hashlib as an independent
        # implementation. The function below will do it, called with
        # parameters such as (hashlib.sha256,128).
        #
        # def gen_testcase(hashclass, maxlen):
        #    return hashclass(b''.join(hashclass(text[:i]).digest()
        #             for i in range(maxlen))).hexdigest()

        text = """
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad
minim veniam, quis nostrud exercitation ullamco laboris nisi ut
aliquip ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
culpa qui officia deserunt mollit anim id est laborum.
        """.replace('\n', ' ').strip()

        def test(hashname, maxlen, expected):
            assert len(text) >= maxlen
            buf = b''.join(hash_str(hashname, text[:i])
                           for i in range(maxlen))
            self.assertEqualBin(hash_str(hashname, buf), unhex(expected))

        test('md5', 128, '8169d766cc3b8df182b3ce756ae19a15')
        test('sha1', 128, '3691759577deb3b70f427763a9c15acb9dfc0259')
        test('sha256', 128, 'ec539c4d678412c86c13ee4eb9452232'
             '35d4eed3368d876fdf10c9df27396640')
        test('sha512', 256,
             'cb725b4b4ec0ac1174d69427b4d97848b7db4fc01181f99a8049a4d721862578'
             'f91e026778bb2d389a9dd88153405189e6ba438b213c5387284103d2267fd055'
        )

    def testDSA(self):
        p = 0xe93618c54716992ffd54e79df6e1b0edd517f7bbe4a49d64631eb3efe8105f676e8146248cfb4f05720862533210f0c2ab0f9dd61dbc0e5195200c4ebd95364b
        q = 0xf3533bcece2e164ca7c5ce64bc1e395e9a15bbdd
        g = 0x5ac9d0401c27d7abfbc5c17cdc1dc43323cd0ef18b79e1909bdace6d17af675a10d37dde8bd8b70e72a8666592216ccb00614629c27e870e4fbf393b812a9f05
        y = 0xac3ddeb22d65a5a2ded4a28418b2a748d8e5e544ba5e818c137d7b042ef356b0ef6d66cfca0b3ab5affa2969522e7b07bee60562fa4869829a5afce0ad0c4cd0
        x = 0x664f8250b7f1a5093047fe0c7fe4b58e46b73295
        pubblob = ssh_string(b"ssh-dss") + b"".join(map(ssh2_mpint, [p,q,g,y]))
        privblob = ssh2_mpint(x)
        pubkey = ssh_key_new_pub('dsa', pubblob)
        privkey = ssh_key_new_priv('dsa', pubblob, privblob)

        sig = ssh_key_sign(privkey, b"hello, world", 0)
        self.assertTrue(ssh_key_verify(pubkey, sig, b"hello, world"))
        self.assertFalse(ssh_key_verify(pubkey, sig, b"hello, again"))

        badsig0 = unhex('{:040x}{:040x}'.format(1, 0))
        badsigq = unhex('{:040x}{:040x}'.format(1, q))
        self.assertFalse(ssh_key_verify(pubkey, badsig0, "hello, world"))
        self.assertFalse(ssh_key_verify(pubkey, badsigq, "hello, world"))
        self.assertFalse(ssh_key_verify(pubkey, badsig0, "hello, again"))
        self.assertFalse(ssh_key_verify(pubkey, badsigq, "hello, again"))

    def testBLAKE2b(self):
        # The standard test vectors for BLAKE2b (in the separate class
        # below) don't satisfy me because they only test one hash
        # size. These additional tests exercise BLAKE2b's configurable
        # output length. The expected results are derived from the
        # BLAKE2 reference implementation.

        def b2_with_len(data, length):
            h = blake2b_new_general(length)
            h.update(data)
            return h.digest()[:length]

        self.assertEqualBin(b2_with_len(b'hello', 1), unhex("29"))
        self.assertEqualBin(b2_with_len(b'hello', 2), unhex("accd"))
        self.assertEqualBin(b2_with_len(b'hello', 3), unhex("980032"))
        self.assertEqualBin(b2_with_len(b'hello', 5), unhex("9baecc38f2"))
        self.assertEqualBin(b2_with_len(b'hello', 8), unhex(
            "a7b6eda801e5347d"))
        self.assertEqualBin(b2_with_len(b'hello', 13), unhex(
            "6eedb122c6707328a66aa34a07"))
        self.assertEqualBin(b2_with_len(b'hello', 21), unhex(
            "c7f0f74a227116547b3d2788e927ee2a76c87d8797"))
        self.assertEqualBin(b2_with_len(b'hello', 34), unhex(
            "2f5fcdf2b870fa254051dd448193a1fb6e92be122efca539ba2aeac0bc6c77d0"
            "dadc"))
        self.assertEqualBin(b2_with_len(b'hello', 55), unhex(
            "daafcf2bd6fccf976cbc234b71cd9f4f7d56fe0eb33a40018707089a215c44a8"
            "4b272d0329ae6d85a0f8acc7e964dc2facb715ba472bb6"))

    def testArgon2LongHash(self):
        # Unit-test the Argon2 long hash function H', which starts off
        # the same as BLAKE2b, but comes with its own method of
        # extending the output length past 64 bytes.
        #
        # I generated these test values using a test program linked
        # against the reference implementation's libargon2.a and
        # calling its blake2b_long function.
        preimage = b'hello, world'

        self.assertEqualBin(argon2_long_hash(1, preimage), unhex("8b"))
        self.assertEqualBin(argon2_long_hash(2, preimage), unhex("1ff9"))
        self.assertEqualBin(argon2_long_hash(63, preimage), unhex(
            "e2c997721f1d64aa8c25e588fb8ab19646ce6d5c2a431fa560fcb813e55dd481"
            "322d2630d95ca6b1b63317b13d6b111e5816170c80c3ca7d5b4bf894096de4"))
        self.assertEqualBin(argon2_long_hash(64, preimage), unhex(
            "0c7ba7ee6d510b4bb5c9b69ac91e25e0b11aa30dd6234b8e61b0fe1537c037b8"
            "8ed5aa59a277e8cc07095c81aff26d08967e4dfdabd32db8b6af6ceb78cf8c47"))
        self.assertEqualBin(argon2_long_hash(65, preimage), unhex(
            "680941abbd8fc80f28c38d623e90903f08709bf76575e2775d4ce01c31b192c8"
            "73038d9a31af8991c8b1ad4f2b1991f4d15f73ab0f4f3add415c297a12eb9ddb"
            "76"))
        self.assertEqualBin(argon2_long_hash(95, preimage), unhex(
            "4be28c51850fed70d9403e1406b6ba68a83d98cf222a4ee162beef60fd3384df"
            "eba3fce9d95f646982eb384ac943ce5263cb03428fd8d261cc41ffdb7ba328fe"
            "098526f2b49593f9e7f38188598ce4693b59f4dd32db30c1be9a9d35784fa0"))
        self.assertEqualBin(argon2_long_hash(96, preimage), unhex(
            "20295ea01e822cca113f668f33e5e481ed5879bfd7de6359ea42d497da97be52"
            "2cdd518d34ae32c44cabd45249b4e697626b0b14b6a33a2bd138be0a4bceeaf4"
            "9528f93acef01b093ee84d8d871d1ee6cf7c10e83ad0619631aed19345166f03"))
        self.assertEqualBin(argon2_long_hash(97, preimage), unhex(
            "d24b31f3ac0baad168d524efc4bafee55fef743fd60b14e28b860d7523e319c7"
            "520e2d5457cc3d06dc1044530afdf6990fa12e38d5802eb642f8e77fcfee2c0b"
            "1f84a28877f2f2f049ed9299e1e0230f98af3a161185970aad21f0ea0f5184cf"
            "90"))
        self.assertEqualBin(argon2_long_hash(127, preimage), unhex(
            "5d1e8380450dbc985418ed1f3700b925ae0719e4486e29131c81bca7083ac6b8"
            "f535c3398488e34d3dc1390de44097f1eee498f10ebe85b579e99a7672023b01"
            "ca5c20e63c595b640e00d80f113a52e3773719889b266ab4c65269c11fb212e4"
            "75f2b769bb26321bb60ecc0d490821e5056d7dfc9def3cd065d3ba90360764"))
        self.assertEqualBin(argon2_long_hash(128, preimage), unhex(
            "be15b316f3483c4d0d00f71a65b974894a2025f441b79b9fe461bc740cb0b039"
            "c4fe914f61c05a612d63ebc50a662b2d59b1996091e5e3474340544ea46a46cb"
            "25c41ff700fafcd96c4f12ddc698cd2426558f960696837ea8170fd2fe284b54"
            "8f585f97919ef14f2b3cbb351eb98872add7ba6d08c1401232df6cc878fbeb22"))
        self.assertEqualBin(argon2_long_hash(129, preimage), unhex(
            "83da464c278dcb12c29b6685fee6d32f0b461337c155369ad0d56b58b0aa5f80"
            "9aa7b56bd41b664c8d768957f8f0e40999fb0178eb53cf83f31d725bf92881bc"
            "900774bce4cdf56b6386ad3de6891d11a0ccd4564a3431fc4c24105a02d0a6a2"
            "434712b9a7471f3223c72a6e64912200d0a3d149a19d06fe9dc8ec09d7ed5a48"
            "bb"))
        self.assertEqualBin(argon2_long_hash(511, preimage), unhex(
            "30c0c0d0467e7665368db0b40a2324a61fb569d35172de2df53a9739a8d18e60"
            "b4f25d521c8855604be3e24ea56302566074323d94c0bd3a33d08f185d8ba5ac"
            "a2bc3fb2e4c4e5ffec5778daea67c6b5913c9cac16f2e5c7b7818e757fa747b3"
            "69e586d616010a752762f69c604238ed8738430366fbdb7493454fa02391a76b"
            "30f241695b9fa8d3a3116227c6bb6f72d325cf104ab153d15f928b22767d467d"
            "4bf7e16176aaa7315954b7872061933c12d548f1f93a8abb9d73791661bee521"
            "b2ae51be373a229dfef32787234c1be5846d133563002b9a029178716ad41e70"
            "1539d3fad300c77607c5217701e3e485d72c980f3f71d525c8148375a2f8d22c"
            "a211ba165330a90b7e0e6baa6073833925c23bdd388ee904f38463c7e6b85475"
            "09b810aae5c9ffc5dd902c2ffe049c338e3ae2c6416d3b874d6a9d384089564c"
            "0d8e4dce9b6e47e1d5ec9087bf526cc9fa35aab1893a0588d31b77fea37e0799"
            "468deacde47629d2960a3519b3bcd4e22364a9cccd3b128cba21cac27f140d53"
            "f79c11e4157e4cb48272eecdf62f52084a27e5b0933bbe66ded17e2df6f8d398"
            "f6c479c3c716457820ad177b8bd9334cb594e03d09fcc4f82d4385e141eacd7d"
            "9ad1e1c4cb42788af70bac0509f0a891e662960955490abf2763373803e8c89c"
            "df632579cb9c647634b30df214a3d67b92fd55d283c42c63b470a48a78cd5b"))
        self.assertEqualBin(argon2_long_hash(512, preimage), unhex(
            "79a6974e29a9a6c069e0156774d35c5014a409f5ffc60013725367a7208d4929"
            "7d228637751768a31a59e27aa89372f1bcc095a6fa331198a5bd5ad053ba2ebb"
            "cbcc501ea55cf142e8d95209228c9ab60cd104d5077472f2a9ecaa071aed6ee9"
            "5de29e188b7399d5b6b7ed897b2bc4dd1ea745eb9974e39ca6fb983380cc537a"
            "c04dfe6caefe85faf206b1613092ebadf791eaa8a5b814c9a79a73a5733b0505"
            "a47163c10a0f7309df6663896df6079a7c88c6879bb591a40abd398c6deda792"
            "1cc3986435b1c840a768b2fa507446f2f77a406b1b2f739f7795db24789c8927"
            "24b4c84b7005445123154f8cd2ba63a7ede672af5d197f846700732025c9931d"
            "1c67c5493417ca394a8f68ba532645815cf7b5102af134ecb4fd9e326f53779a"
            "3039dbef6a0880db9e38b6b61d2f9ead969e4224c2d9c69b5897e5eeb7032e83"
            "334e192ff50017056ccb84d4cc8eee3ab248d2614643d0174fe18c72186dd967"
            "92d8545645ddf4a9b2c7a91c9a71857a399449d7154077a8e9580f1a2d20227d"
            "671b455ccb897cba0491e50892120d7877f7776d653cfdb176fa3f64a9e6f848"
            "cd681c487b488775aaf698294eec813b2cca90d68d63b5d886d61c1a8e922aaa"
            "330fd658ede56e34bcd288048e845eba7b8e2e7cc22ba6c91b523e48017aa878"
            "8ce4f91d0e6d6c6706762fb0cc7f465cee3916684fb21e337cfe1b583e0b1e92"))
        self.assertEqualBin(argon2_long_hash(513, preimage), unhex(
            "32243cfbd7eca582d60b3b8ea3ba3d93783537689c7cbcd1d1cbde46200b8c86"
            "617fc00e8a9ae991a1e2f91c67e07d5f0a777d982c1461d0c5474e4e164b053c"
            "2808559e2b8a5ac4a46a5fcbc825b1d5302c7b0611940194eb494d45ce7113a2"
            "3424b51c199c6a5100ab159ff323eda5feffee4da4155a028a81da9d44e4286b"
            "ac3dab4ffce43a80b6ce97a47ea0ac51ee16e8b4d3b68942afdc20e1c21747c4"
            "94859c3d3883e7dc19ea416a393a3507683d9d03e6a3a91f8f1cb8a7d5d9892e"
            "80c8fb0222527a73a1f59b9dd41770982f2af177a6e96093064534803edd0713"
            "71ede53024cedc291d768325bb4e4def9af1b5569c349b64816496c37a8787b5"
            "4fbe248372ebadb5ce20e03eaa935dc55ff4b8cbe5d6d844c7b71d4656fef22c"
            "5a49f13d75a7a8368a2dbc1e78d732b879bfc5c9467eda2bf4918f0c59037ae3"
            "dee7880a171409dd1a4e143c814e60301ac77237f261fa7519a04e68000530f9"
            "708ed9fda5609d655560a9491f80f5875ad5725e3120686b73319c6a727932e3"
            "20a2174422523498c38fea47aeb20d135ff9fd93c6fa6db0005e0001685d7577"
            "33a82a4dc9dd6556b938f7b8dafd0d670846780b9931b815063708189b17877b"
            "825533bcc250fb576a28be4caa107e6a3a6f7b0c60fb51b0def27008b7e272ac"
            "95d610bfa912339799a2e537ce543d7862dddbe31bb224fda4ae283571847a28"
            "54"))
        self.assertEqualBin(argon2_long_hash(1024, preimage), unhex(
            "951252f6fa152124f381266a358d9b78b88e469d08d5fc78e4ea32253c7fc26c"
            "3ff1c93529ab4ee6fcf00acf29bbaba934a4014ce2625e0806601c55e6ce70d7"
            "121fd82f0904f335c5c7ba07dc6e6adf7582c92f7f255072203ea85844b4fe54"
            "817476a20bb742710ffc42750361be94332d0fc721b192309acfa70da43db6ae"
            "1d0f0bbe8a3250966a4532b36728162073c9eb3e119ea4c1c187c775dbb25a5d"
            "d883e3f65706a5fca897cdc4a8aa7b68ba3f57940c72f3a3396c417e758ba071"
            "95be4afba325237c0e2738a74d96fd1350fb623cb2ad40ea8b1e070cf398b98c"
            "2865ea40225b81f031f2b405409ca01dc5d9903d3d8e1d6381fbe7ccfc8f3dab"
            "eadafd7c976c0ba84a936f78ff7df0f112c089ba88f82bed7f9a6e31a91e5fee"
            "f675755454b948de22695660b243b9eca3bcc89608f83d2baa1d73dd6b8bd4f9"
            "b995ed9cb0f1edc6e98a49ed841b506c1bf59b43f4b3457a376bbff116c1a4f6"
            "07cc62381fc5c19953c68f300c1b51198d40784d812d25810ba404862f04b680"
            "6039a074f612ad8b84e0941ba23c915c3e7162c225fbecffdb7dc1ab559b2b54"
            "32fe8a498c32e918d8e7e33254ff75077f648827705e987f4d90fba971e78e1a"
            "6896b4d775c7359dc950f1e964fa04621aacf3c0988969490f4c72c54caf79e8"
            "481053cc0a27ffcd3580aabf9ef1268d498d8a18bd70e9b8402e011753bb7dc7"
            "e856c00d988fca924ee7cf61979c38cda8a872e4cc4fbdc90c23a0ded71eb944"
            "bb816ab22d9a4380e3e9d1cec818165c2fba6c5d51dcbf452c0cb1779a384937"
            "64d695370e13a301eca7be68d4112d2177381514efbb36fe08fc5bc2970301b8"
            "06f8e5a57a780e894d5276e2025bb775b6d1861e33c54ab6e3eb72947fbe6f91"
            "8174ce24eb4682efbb3c4f01233dc7ce9ef44792e9e876bb03e6751b3d559047"
            "d045127d976aa042fc55c690c9048e200065e7b7de19d9353aa9ac9b3e7611f0"
            "d1c42d069a300455ca1f7420a352bace89215e705106927510c11b3b1c1486d9"
            "f3ab006d2de2ee2c94574f760ce8c246bca229f98c66f06042b14f1fff9a16c0"
            "1550237e16d108ce5597299b1eb406a9ee505a29a6e0fa526b3e6beafd336aea"
            "138b2f31971586f67c5ffffbd6826d1c75666038c43d0bdff4edfc294e064a49"
            "2eed43e2dc78d00abc4e85edcd9563b8251b66f57b0f4b6d17f5a3f35c87c488"
            "dbeeb84fd720286197c2dec8290eccf3a313747de285b9cd3548e90cf81b3838"
            "3ffcc8c2a7f582feb369d05cb96b9b224d05902b3e39e5b96536032e9dddeb9b"
            "9d4f40a9c8f544ca37cf8d39d7c8c6a33880e9184ed017bd642db9590759bd10"
            "7362048ede5c0257feecc4984584592c566f37fba8469c064015339fb4f03023"
            "56ece37fd3655aae2bfc989b9b4c1384efc3503c8866db901802cb36eda9fb00"))

    def testArgon2(self):
        # A few tests of my own of Argon2, derived from the reference
        # implementation.
        pwd = b"password"
        salt = b"salt of at least 16 bytes"
        secret = b"secret"
        assoc = b"associated data"

        # Smallest memory (8Kbyte) and parallelism (1) parameters the
        # reference implementation will accept, but lots of passes
        self.assertEqualBin(
            argon2('i', 8, 16, 1, 24, pwd, salt, secret, assoc), unhex(
                "314da280240a3ca1eedd1f1db417a76eb0741e7df64b8cdf"))
        self.assertEqualBin(
            argon2('d', 8, 16, 1, 24, pwd, salt, secret, assoc), unhex(
                "9cc961cf43e0f86c2d4e202b816dc5bc5b2177e68faa0b08"))
        self.assertEqualBin(
            argon2('id', 8, 16, 1, 24, pwd, salt, secret, assoc), unhex(
                "6cd6c490c582fa597721d772d4e3de166987792491b48c51"))

        # Test a memory cost value that isn't a power of 2. This
        # checks a wraparound case during the conversion of J1 to a
        # block index, and is a regression test for a bug that nearly
        # got past me during original development.
        self.assertEqualBin(
            argon2('i', 104, 16, 2, 24, pwd, salt, secret, assoc), unhex(
                "a561963623f1073c9aa8caecdb600c73ffc6de677ba8d97c"))
        self.assertEqualBin(
            argon2('d', 104, 16, 2, 24, pwd, salt, secret, assoc), unhex(
                "a9014db7f1d468fb25b88fa7fc0deac0f2e7f27e25d2cf6e"))
        self.assertEqualBin(
            argon2('id', 104, 16, 2, 24, pwd, salt, secret, assoc), unhex(
                "64f3212b1e7725ffcf9ae2d1753d63e763bcd6970061a435"))

        # Larger parameters that should exercise the pseudorandom
        # block indexing reasonably thoroughly. Also generate plenty
        # of output data.
        self.assertEqualBin(
            argon2('i', 1024, 5, 16, 77, pwd, salt, secret, assoc), unhex(
                "b008a685ff57730fad0e6f3ef3b9189282c0d9b05303675f43b5f3054724"
                "733fcbe8e2639cc2c930535b31b723339041bcd703bf2483455acf86c0e6"
                "9ed88c545ad40f1f2068855e4d61e99407"))
        self.assertEqualBin(
            argon2('d', 1024, 5, 16, 111, pwd, salt, secret, assoc), unhex(
                "399ffbcd720c47745b9deb391ed0de7d5e0ffe53aef9f8ef7a7918cfa212"
                "53df8cc577affbd5e0c0f8bf6d93c11b2f63973f8fc8f89dccd832fc587e"
                "5d61717be6e88ca33eef5d1e168c028bae632a2a723c6c83f8e755f39171"
                "5eda1c77c8e2fe06fbdd4e56d35262587e7df73cd7"))
        self.assertEqualBin(
            argon2('id', 1024, 5, 16, 123, pwd, salt, secret, assoc), unhex(
                "6636807289cb9b9c032f48dcc31ffed1de4ca6c1b97e1ce768d690486341"
                "2ac84b39d568a81dd01d9ee3ceec6cc23441d95e6abeb4a2024f1f540d56"
                "9b799277c4037ddc7195ba783c9158a901adc7d4a5df8357b34a3869e5d6"
                "aeae2a21201eef5e347de22c922192e8f46274b0c9d33e965155a91e7686"
                "9d530e"))

    def testOpenSSHBcrypt(self):
        # Test case created by making an OpenSSH private key file
        # using their own ssh-keygen, then decrypting it successfully
        # using PuTTYgen and printing the inputs and outputs to
        # openssh_bcrypt in the process. So this output key is known
        # to agree with OpenSSH's own answer.

        self.assertEqualBin(
            openssh_bcrypt('test passphrase',
                           unhex('d0c3b40ace4afeaf8c0f81202ae36718'),
                           16, 48),
            unhex('d78ba86e7273de0e007ab0ba256646823d5c902bc44293ae'
                  '78547e9a7f629be928cc78ff78a75a4feb7aa6f125079c7d'))

    def testRSAVerify(self):
        def blobs(n, e, d, p, q, iqmp):
            pubblob = ssh_string(b"ssh-rsa") + ssh2_mpint(e) + ssh2_mpint(n)
            privblob = (ssh2_mpint(d) + ssh2_mpint(p) +
                        ssh2_mpint(q) + ssh2_mpint(iqmp))
            return pubblob, privblob

        def failure_test(*args):
            pubblob, privblob = blobs(*args)
            key = ssh_key_new_priv('rsa', pubblob, privblob)
            self.assertEqual(key, None)

        def success_test(*args):
            pubblob, privblob = blobs(*args)
            key = ssh_key_new_priv('rsa', pubblob, privblob)
            self.assertNotEqual(key, None)

        # Parameters for a (trivially small) test key.
        n = 0xb5d545a2f6423eabd55ffede53e21628d5d4491541482e10676d9d6f2783b9a5
        e = 0x25
        d = 0x6733db6a546ac99fcc21ba2b28b0c077156e8a705976205a955c6d9cef98f419
        p = 0xe30ebd7348bf10dca72b36f2724dafa7
        q = 0xcd02c87a7f7c08c4e9dc80c9b9bad5d3
        iqmp = 0x60a129b30db9227910efe1608976c513

        # Check the test key makes sense unmodified.
        success_test(n, e, d, p, q, iqmp)

        # Try modifying the values one by one to ensure they are
        # rejected, except iqmp, which sshrsa.c regenerates anyway so
        # it won't matter at all.
        failure_test(n+1, e, d, p, q, iqmp)
        failure_test(n, e+1, d, p, q, iqmp)
        failure_test(n, e, d+1, p, q, iqmp)
        failure_test(n, e, d, p+1, q, iqmp)
        failure_test(n, e, d, p, q+1, iqmp)
        success_test(n, e, d, p, q, iqmp+1)

        # The key should also be accepted with p,q reversed. (Again,
        # iqmp gets regenerated, so it won't matter if that's wrong.)
        success_test(n, e, d, q, p, iqmp)

        # Replace each of p and q with 0, and with 1. These should
        # still fail validation (obviously), but the point is that the
        # validator should also avoid trying to divide by zero in the
        # process.
        failure_test(n, e, d, 0, q, iqmp)
        failure_test(n, e, d, p, 0, iqmp)
        failure_test(n, e, d, 1, q, iqmp)
        failure_test(n, e, d, p, 1, iqmp)

    def testKeyMethods(self):
        # Exercise all the methods of the ssh_key trait on all key
        # types, and ensure that they're consistent with each other.
        # No particular test is done on the rightness of the
        # signatures by any objective standard, only that the output
        # from our signing method can be verified by the corresponding
        # verification method.
        #
        # However, we do include the expected signature text in each
        # case, which checks determinism in the sense of being
        # independent of any random numbers, and also in the sense of
        # tomorrow's change to the code not having accidentally
        # changed the behaviour.

        test_message = b"Message to be signed by crypt.testKeyMethods\n"

        test_keys = [
            ('ed25519', 'AAAAC3NzaC1lZDI1NTE5AAAAIM7jupzef6CD0ps2JYxJp9IlwY49oorOseV5z5JFDFKn', 'AAAAIAf4/WRtypofgdNF2vbZOUFE1h4hvjw4tkGJZyOzI7c3', 255, b'0xf4d6e7f6f4479c23f0764ef43cea1711dbfe02aa2b5a32ff925c7c1fbf0f0db,0x27520c4592cf79e5b1ce8aa23d8ec125d2a7498c25369bd283a07fde9cbae3ce', [(0, 'AAAAC3NzaC1lZDI1NTE5AAAAQN73EqfyA4WneqDhgZ98TlRj9V5Wg8zCrMxTLJN1UtyfAnPUJDtfG/U0vOsP8PrnQxd41DDDnxrAXuqJz8rOagc=')]),
            ('ed448', 'AAAACXNzaC1lZDQ0OAAAADnRI0CQDym5IqUidLNDcSdHe54bYEwqjpjBlab8uKGoe6FRqqejha7+5U/VAHy7BmE23+ju26O9XgA=', 'AAAAObP9klqyiJSJsdFJf+xwZQdkbZGUqXE07K6e5plfRTGjYYkyWJFUNFH4jzIn9xH1TX9z9EGycPaXAA==', 448, b'0x4bf4a2b6586c60d8cdb52c2b45b897f6d2224bc37987489c0d70febb449e8c82964ed5785827be808e44d31dd31e6ff7c99f43e49f419928,0x5ebda3dbeee8df366106bb7c00d54fe5feae85a3a7aa51a17ba8a1b8fca695c1988e2a4c601b9e7b47277143b37422a522b9290f904023d1', [(0, 'AAAACXNzaC1lZDQ0OAAAAHLkSVioGMvLesZp3Tn+Z/sSK0Hl7RHsHP4q9flLzTpZG5h6JDH3VmZBEjTJ6iOLaa0v4FoNt0ng4wAB53WrlQC4h3iAusoGXnPMAKJLmqzplKOCi8HKXk8Xl8fsXbaoyhatv1OZpwJcffmh1x+x+LSgNQA=')]),
            ('p256', 'AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBHkYQ0sQoq5LbJI1VMWhw3bV43TSYi3WVpqIgKcBKK91TcFFlAMZgceOHQ0xAFYcSczIttLvFu+xkcLXrRd4N7Q=', 'AAAAIQCV/1VqiCsHZm/n+bq7lHEHlyy7KFgZBEbzqYaWtbx48Q==', 256, b'nistp256,0x7918434b10a2ae4b6c923554c5a1c376d5e374d2622dd6569a8880a70128af75,0x4dc14594031981c78e1d0d3100561c49ccc8b6d2ef16efb191c2d7ad177837b4', [(0, 'AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAABIAAAAIAryzHDGi/TcCnbdxZkIYR5EGR6SNYXr/HlQRF8le+/IAAAAIERfzn6eHuBbqWIop2qL8S7DWRB3lenN1iyL10xYQPKw')]),
            ('p384', 'AAAAE2VjZHNhLXNoYTItbmlzdHAzODQAAAAIbmlzdHAzODQAAABhBMYK8PUtfAlJwKaBTIGEuCzH0vqOMa4UbcjrBbTbkGVSUnfo+nuC80NCdj9JJMs1jvfF8GzKLc5z8H3nZyM741/BUFjV7rEHsQFDek4KyWvKkEgKiTlZid19VukNo1q2Hg==', 'AAAAMGsfTmdB4zHdbiQ2euTSdzM6UKEOnrVjMAWwHEYvmG5qUOcBnn62fJDRJy67L+QGdg==', 384, b'nistp384,0xc60af0f52d7c0949c0a6814c8184b82cc7d2fa8e31ae146dc8eb05b4db9065525277e8fa7b82f34342763f4924cb358e,0xf7c5f06cca2dce73f07de767233be35fc15058d5eeb107b101437a4e0ac96bca90480a89395989dd7d56e90da35ab61e', [(0, 'AAAAE2VjZHNhLXNoYTItbmlzdHAzODQAAABpAAAAMDmHrtXCADzLvkkWG/duBAHlf6B1mVvdt6F0uzXfsf8Yub8WXNUNVnYq6ovrWPzLggAAADEA9izzwoUuFcXYRJeKcRLZEGMmSDDPzUZb7oZR0UgD1jsMQXs8UfpO31Qur/FDSCRK')]),
            ('p521', 'AAAAE2VjZHNhLXNoYTItbmlzdHA1MjEAAAAIbmlzdHA1MjEAAACFBAFrGthlKM152vu2Ghk+R7iO9/M6e+hTehNZ6+FBwof4HPkPB2/HHXj5+w5ynWyUrWiX5TI2riuJEIrJErcRH5LglADnJDX2w4yrKZ+wDHSz9lwh9p2F+B5R952es6gX3RJRkGA+qhKpKup8gKx78RMbleX8wgRtIu+4YMUnKb1edREiRg==', 'AAAAQgFh7VNJFUljWhhyAEiL0z+UPs/QggcMTd3Vv2aKDeBdCRl5di8r+BMm39L7bRzxRMEtW5NSKlDtE8MFEGdIE9khsw==', 521, b'nistp521,0x16b1ad86528cd79dafbb61a193e47b88ef7f33a7be8537a1359ebe141c287f81cf90f076fc71d78f9fb0e729d6c94ad6897e53236ae2b89108ac912b7111f92e094,0xe72435f6c38cab299fb00c74b3f65c21f69d85f81e51f79d9eb3a817dd125190603eaa12a92aea7c80ac7bf1131b95e5fcc2046d22efb860c52729bd5e75112246', [(0, 'AAAAE2VjZHNhLXNoYTItbmlzdHA1MjEAAACMAAAAQgCLgvftvwM3CUaigrW0yzmCHoYjC6GLtO+6S91itqpgMEtWPNlaTZH6QQqkgscijWdXx98dDkQao/gcAKVmOZKPXgAAAEIB1PIrsDF1y6poJ/czqujB7NSUWt31v+c2t6UA8m2gTA1ARuVJ9XBGLMdceOTB00Hi9psC2RYFLpaWREOGCeDa6ow=')]),
            ('dsa', 'AAAAB3NzaC1kc3MAAABhAJyWZzjVddGdyc5JPu/WPrC07vKRAmlqO6TUi49ah96iRcM7/D1aRMVAdYBepQ2mf1fsQTmvoC9KgQa79nN3kHhz0voQBKOuKI1ZAodfVOgpP4xmcXgjaA73Vjz22n4newAAABUA6l7/vIveaiA33YYv+SKcKLQaA8cAAABgbErc8QLw/WDz7mhVRZrU+9x3Tfs68j3eW+B/d7Rz1ZCqMYDk7r/F8dlBdQlYhpQvhuSBgzoFa0+qPvSSxPmutgb94wNqhHlVIUb9ZOJNloNr2lXiPP//Wu51TxXAEvAAAAAAYQCcQ9mufXtZa5RyfwT4NuLivdsidP4HRoLXdlnppfFAbNdbhxE0Us8WZt+a/443bwKnYxgif8dgxv5UROnWTngWu0jbJHpaDcTc9lRyTeSUiZZK312s/Sl7qDk3/Du7RUI=', 'AAAAFGx3ft7G8AQzFsjhle7PWardUXh3', 768, b'0x9c966738d575d19dc9ce493eefd63eb0b4eef29102696a3ba4d48b8f5a87dea245c33bfc3d5a44c54075805ea50da67f57ec4139afa02f4a8106bbf67377907873d2fa1004a3ae288d5902875f54e8293f8c66717823680ef7563cf6da7e277b,0xea5effbc8bde6a2037dd862ff9229c28b41a03c7,0x6c4adcf102f0fd60f3ee6855459ad4fbdc774dfb3af23dde5be07f77b473d590aa3180e4eebfc5f1d94175095886942f86e481833a056b4faa3ef492c4f9aeb606fde3036a8479552146fd64e24d96836bda55e23cffff5aee754f15c012f000,0x9c43d9ae7d7b596b94727f04f836e2e2bddb2274fe074682d77659e9a5f1406cd75b87113452cf1666df9aff8e376f02a76318227fc760c6fe5444e9d64e7816bb48db247a5a0dc4dcf654724de49489964adf5dacfd297ba83937fc3bbb4542', [(0, 'AAAAB3NzaC1kc3MAAAAo0T2t6dr8Qr5DK2B0ETwUa3BhxMLPjLY0ZtlOACmP/kUt3JgByLv+3g==')]),
            ('rsa', 'AAAAB3NzaC1yc2EAAAABJQAAAGEA2ChX9+mQD/NULFkBrxLDI8d1PHgrInC2u11U4Grqu4oVzKvnFROo6DZeCu6sKhFJE5CnIL7evAthQ9hkXVHDhQ7xGVauzqyHGdIU4/pHRScAYWBv/PZOlNMrSoP/PP91', 'AAAAYCMNdgyGvWpez2EjMLSbQj0nQ3GW8jzvru3zdYwtA3hblNUU9QpWNxDmOMOApkwCzUgsdIPsBxctIeWT2h+v8sVOH+d66LCaNmNR0lp+dQ+iXM67hcGNuxJwRdMupD9ZbQAAADEA7XMrMAb4WuHaFafoTfGrf6Jhdy9Ozjqi1fStuld7Nj9JkoZluiL2dCwIrxqOjwU5AAAAMQDpC1gYiGVSPeDRILr2oxREtXWOsW+/ZZTfZNX7lvoufnp+qvwZPqvZnXQFHyZ8qB0AAAAwQE0wx8TPgcvRVEVv8Wt+o1NFlkJZayWD5hqpe/8AqUMZbqfg/aiso5mvecDLFgfV', 768, b'0x25,0xd82857f7e9900ff3542c5901af12c323c7753c782b2270b6bb5d54e06aeabb8a15ccabe71513a8e8365e0aeeac2a11491390a720bedebc0b6143d8645d51c3850ef11956aeceac8719d214e3fa4745270061606ffcf64e94d32b4a83ff3cff75', [(0, 'AAAAB3NzaC1yc2EAAABgrLSC4635RCsH1b3en58NqLsrH7PKRZyb3YmRasOyr8xIZMSlKZyxNg+kkn9OgBzbH9vChafzarfHyVwtJE2IMt3uwxTIWjwgwH19tc16k8YmNfDzujmB6OFOArmzKJgJ'), (2, 'AAAADHJzYS1zaGEyLTI1NgAAAGAJszr04BZlVBEdRLGOv1rTJwPiid/0I6/MycSH+noahvUH2wjrRhqDuv51F4nKYF5J9vBsEotTSrSF/cnLsliCdvVkEfmvhdcn/jx2LWF2OfjqETiYSc69Dde9UFmAPds='), (4, 'AAAADHJzYS1zaGEyLTUxMgAAAGBxfZ2m+WjvZ5YV5RFm0+w84CgHQ95EPndoAha0PCMc93AUHBmoHnezsJvEGuLovUm35w/0POmUNHI7HzM9PECwXrV0rO6N/HL/oFxJuDYmeqCpjMVmN8QXka+yxs2GEtA=')]),
        ]

        for alg, pubb64, privb64, bits, cachestr, siglist in test_keys:
            # Decode the blobs in the above test data.
            pubblob = b64(pubb64)
            privblob = b64(privb64)

            # Check the method that examines a public blob directly
            # and returns an integer showing the key size.
            self.assertEqual(ssh_key_public_bits(alg, pubblob), bits)

            # Make a public-only and a full ssh_key object.
            pubkey = ssh_key_new_pub(alg, pubblob)
            privkey = ssh_key_new_priv(alg, pubblob, privblob)

            # Test that they re-export the public and private key
            # blobs unchanged.
            self.assertEqual(ssh_key_public_blob(pubkey), pubblob)
            self.assertEqual(ssh_key_public_blob(privkey), pubblob)
            self.assertEqual(ssh_key_private_blob(privkey), privblob)

            # Round-trip through the OpenSSH wire encoding used by the
            # agent protocol (and the newer OpenSSH key file format),
            # and check the result still exports all the same blobs.
            osshblob = ssh_key_openssh_blob(privkey)
            privkey2 = ssh_key_new_priv_openssh(alg, osshblob)
            self.assertEqual(ssh_key_public_blob(privkey2), pubblob)
            self.assertEqual(ssh_key_private_blob(privkey2), privblob)
            self.assertEqual(ssh_key_openssh_blob(privkey2), osshblob)

            # Test that the string description used in the host key
            # cache is as expected.
            for key in [pubkey, privkey, privkey2]:
                self.assertEqual(ssh_key_cache_str(key), cachestr)

            # Now test signatures, separately for each provided flags
            # value.
            for flags, sigb64 in siglist:
                # Decode the signature blob from the test data.
                sigblob = b64(sigb64)

                # Sign our test message, and check it produces exactly
                # the expected signature blob.
                #
                # We do this with both the original private key and
                # the one we round-tripped through OpenSSH wire
                # format, just in case that round trip made some kind
                # of a mess that didn't show up in the re-extraction
                # of the blobs.
                for key in [privkey, privkey2]:
                    self.assertEqual(ssh_key_sign(
                        key, test_message, flags), sigblob)

                if flags != 0:
                    # Currently we only support _generating_
                    # signatures with flags != 0, not verifying them.
                    continue

                # Check the signature verifies successfully, with all
                # three of the key objects we have.
                for key in [pubkey, privkey, privkey2]:
                    self.assertTrue(ssh_key_verify(key, sigblob, test_message))

                # A crude check that at least _something_ doesn't
                # verify successfully: flip a bit of the signature
                # and expect it to fail.
                #
                # We do this twice, at the 1/3 and 2/3 points along
                # the signature's length, so that in the case of
                # signatures in two parts (DSA-like) we try perturbing
                # both parts. Other than that, we don't do much to
                # make this a rigorous cryptographic test.
                for n, d in [(1,3),(2,3)]:
                    sigbytes = list(sigblob)
                    bit = 8 * len(sigbytes) * n // d
                    sigbytes[bit // 8] ^= 1 << (bit % 8)
                    badsig = bytes(sigbytes)
                    for key in [pubkey, privkey, privkey2]:
                        self.assertFalse(ssh_key_verify(
                            key, badsig, test_message))

    def testPPKLoadSave(self):
        # Stability test of PPK load/save functions.
        input_clear_key = b"""\
PuTTY-User-Key-File-3: ssh-ed25519
Encryption: none
Comment: ed25519-key-20200105
Public-Lines: 2
AAAAC3NzaC1lZDI1NTE5AAAAIHJCszOHaI9X/yGLtjn22f0hO6VPMQDVtctkym6F
JH1W
Private-Lines: 1
AAAAIGvvIpl8jyqn8Xufkw6v3FnEGtXF3KWw55AP3/AGEBpY
Private-MAC: 816c84093fc4877e8411b8e5139c5ce35d8387a2630ff087214911d67417a54d
"""
        input_encrypted_key = b"""\
PuTTY-User-Key-File-3: ssh-ed25519
Encryption: aes256-cbc
Comment: ed25519-key-20200105
Public-Lines: 2
AAAAC3NzaC1lZDI1NTE5AAAAIHJCszOHaI9X/yGLtjn22f0hO6VPMQDVtctkym6F
JH1W
Key-Derivation: Argon2id
Argon2-Memory: 8192
Argon2-Passes: 13
Argon2-Parallelism: 1
Argon2-Salt: 37c3911bfefc8c1d11ec579627d2b3d9
Private-Lines: 1
amviz4sVUBN64jLO3gt4HGXJosUArghc4Soi7aVVLb2Tir5Baj0OQClorycuaPRd
Private-MAC: 6f5e588e475e55434106ec2c3569695b03f423228b44993a9e97d52ffe7be5a8
"""
        algorithm = b'ssh-ed25519'
        comment = b'ed25519-key-20200105'
        pp = b'test-passphrase'
        public_blob = unhex(
            '0000000b7373682d65643235353139000000207242b33387688f57ff218bb639'
            'f6d9fd213ba54f3100d5b5cb64ca6e85247d56')

        self.assertEqual(ppk_encrypted_s(input_clear_key), (False, comment))
        self.assertEqual(ppk_encrypted_s(input_encrypted_key), (True, comment))
        self.assertEqual(ppk_encrypted_s("not a key file"), (False, None))

        self.assertEqual(ppk_loadpub_s(input_clear_key),
                         (True, algorithm, public_blob, comment, None))
        self.assertEqual(ppk_loadpub_s(input_encrypted_key),
                         (True, algorithm, public_blob, comment, None))
        self.assertEqual(ppk_loadpub_s("not a key file"),
                         (False, None, b'', None,
                          b'not a public key or a PuTTY SSH-2 private key'))

        k1, c, e = ppk_load_s(input_clear_key, None)
        self.assertEqual((c, e), (comment, None))
        k2, c, e = ppk_load_s(input_encrypted_key, pp)
        self.assertEqual((c, e), (comment, None))
        privblob = ssh_key_private_blob(k1)
        self.assertEqual(ssh_key_private_blob(k2), privblob)

        salt = unhex('37c3911bfefc8c1d11ec579627d2b3d9')
        with queued_specific_random_data(salt):
            self.assertEqual(ppk_save_sb(k1, comment, None,
                                         3, 'id', 8192, 13, 1),
                             input_clear_key)
        with queued_specific_random_data(salt):
            self.assertEqual(ppk_save_sb(k2, comment, None,
                                         3, 'id', 8192, 13, 1),
                             input_clear_key)

        with queued_specific_random_data(salt):
            self.assertEqual(ppk_save_sb(k1, comment, pp,
                                         3, 'id', 8192, 13, 1),
                             input_encrypted_key)
        with queued_specific_random_data(salt):
            self.assertEqual(ppk_save_sb(k2, comment, pp,
                                         3, 'id', 8192, 13, 1),
                             input_encrypted_key)

        # And check we can still handle v2 key files.
        v2_clear_key = b"""\
PuTTY-User-Key-File-2: ssh-ed25519
Encryption: none
Comment: ed25519-key-20200105
Public-Lines: 2
AAAAC3NzaC1lZDI1NTE5AAAAIHJCszOHaI9X/yGLtjn22f0hO6VPMQDVtctkym6F
JH1W
Private-Lines: 1
AAAAIGvvIpl8jyqn8Xufkw6v3FnEGtXF3KWw55AP3/AGEBpY
Private-MAC: 2a629acfcfbe28488a1ba9b6948c36406bc28422
"""
        v2_encrypted_key = b"""\
PuTTY-User-Key-File-2: ssh-ed25519
Encryption: aes256-cbc
Comment: ed25519-key-20200105
Public-Lines: 2
AAAAC3NzaC1lZDI1NTE5AAAAIHJCszOHaI9X/yGLtjn22f0hO6VPMQDVtctkym6F
JH1W
Private-Lines: 1
4/jKlTgC652oa9HLVGrMjHZw7tj0sKRuZaJPOuLhGTvb25Jzpcqpbi+Uf+y+uo+Z
Private-MAC: 5b1f6f4cc43eb0060d2c3e181bc0129343adba2b
"""

        self.assertEqual(ppk_encrypted_s(v2_clear_key), (False, comment))
        self.assertEqual(ppk_encrypted_s(v2_encrypted_key), (True, comment))
        self.assertEqual(ppk_encrypted_s("not a key file"), (False, None))

        self.assertEqual(ppk_loadpub_s(v2_clear_key),
                         (True, algorithm, public_blob, comment, None))
        self.assertEqual(ppk_loadpub_s(v2_encrypted_key),
                         (True, algorithm, public_blob, comment, None))
        self.assertEqual(ppk_loadpub_s("not a key file"),
                         (False, None, b'', None,
                          b'not a public key or a PuTTY SSH-2 private key'))

        k1, c, e = ppk_load_s(v2_clear_key, None)
        self.assertEqual((c, e), (comment, None))
        k2, c, e = ppk_load_s(v2_encrypted_key, pp)
        self.assertEqual((c, e), (comment, None))
        self.assertEqual(ssh_key_private_blob(k1), privblob)
        self.assertEqual(ssh_key_private_blob(k2), privblob)

        self.assertEqual(ppk_save_sb(k2, comment, None,
                                     2, 'id', 8192, 13, 1),
                         v2_clear_key)
        self.assertEqual(ppk_save_sb(k1, comment, pp,
                                     2, 'id', 8192, 13, 1),
                         v2_encrypted_key)

    def testRSA1LoadSave(self):
        # Stability test of SSH-1 RSA key-file load/save functions.
        input_clear_key = unhex(
            "5353482050524956415445204B45592046494C4520464F524D415420312E310A"
            "000000000000000002000200BB115A85B741E84E3D940E690DF96A0CBFDC07CA"
            "70E51DA8234D211DE77341CEF40C214CAA5DCF68BE2127447FD6C84CCB17D057"
            "A74F2365B9D84A78906AEB51000625000000107273612D6B65792D3230323030"
            "313036208E208E0200929EE615C6FC4E4B29585E52570F984F2E97B3144AA5BD"
            "4C6EB2130999BB339305A21FFFA79442462A8397AF8CAC395A3A3827DE10457A"
            "1F1B277ABFB8C069C100FF55B1CAD69B3BD9E42456CF28B1A4B98130AFCE08B2"
            "8BCFFF5FFFED76C5D51E9F0100C5DE76889C62B1090A770AE68F087A19AB5126"
            "E60DF87710093A2AD57B3380FB0100F2068AC47ECB33BF8F13DF402BABF35EE7"
            "26BD32F7564E51502DF5C8F4888B2300000000")
        input_encrypted_key = unhex(
            "5353482050524956415445204b45592046494c4520464f524d415420312e310a"
            "000300000000000002000200bb115a85b741e84e3d940e690df96a0cbfdc07ca"
            "70e51da8234d211de77341cef40c214caa5dcf68be2127447fd6c84ccb17d057"
            "a74f2365b9d84a78906aeb51000625000000107273612d6b65792d3230323030"
            "3130363377f926e811a5f044c52714801ecdcf9dd572ee0a193c4f67e87ab2ce"
            "4569d0c5776fd6028909ed8b6d663bef15d207d3ef6307e7e21dbec56e8d8b4e"
            "894ded34df891bb29bae6b2b74805ac80f7304926abf01ae314dd69c64240761"
            "34f15d50c99f7573252993530ec9c4d5016dd1f5191730cda31a5d95d362628b"
            "2a26f4bb21840d01c8360e4a6ce216c4686d25b8699d45cf361663bb185e2c5e"
            "652012a1e0f9d6d19afbb28506f7775bfd8129")

        comment = b'rsa-key-20200106'
        pp = b'test-passphrase'
        public_blob = unhex(
            "000002000006250200bb115a85b741e84e3d940e690df96a0cbfdc07ca70e51d"
            "a8234d211de77341cef40c214caa5dcf68be2127447fd6c84ccb17d057a74f23"
            "65b9d84a78906aeb51")

        self.assertEqual(rsa1_encrypted_s(input_clear_key), (False, comment))
        self.assertEqual(rsa1_encrypted_s(input_encrypted_key),
                         (True, comment))
        self.assertEqual(rsa1_encrypted_s("not a key file"), (False, None))

        self.assertEqual(rsa1_loadpub_s(input_clear_key),
                         (1, public_blob, comment, None))
        self.assertEqual(rsa1_loadpub_s(input_encrypted_key),
                         (1, public_blob, comment, None))

        k1 = rsa_new()
        status, c, e = rsa1_load_s(input_clear_key, k1, None)
        self.assertEqual((status, c, e), (1, comment, None))
        k2 = rsa_new()
        status, c, e = rsa1_load_s(input_clear_key, k2, None)
        self.assertEqual((status, c, e), (1, comment, None))

        with queued_specific_random_data(unhex("208e")):
            self.assertEqual(rsa1_save_sb(k1, comment, None), input_clear_key)
        with queued_specific_random_data(unhex("208e")):
            self.assertEqual(rsa1_save_sb(k2, comment, None), input_clear_key)

        with queued_specific_random_data(unhex("99f3")):
            self.assertEqual(rsa1_save_sb(k1, comment, pp),
                             input_encrypted_key)
        with queued_specific_random_data(unhex("99f3")):
            self.assertEqual(rsa1_save_sb(k2, comment, pp),
                             input_encrypted_key)

    def testOpenSSHCert(self):
        def per_base_keytype_tests(alg, run_validation_tests=False,
                                   run_ca_rsa_tests=False, ca_signflags=None):
            cert_pub = sign_cert_via_testcrypt(
                make_signature_preimage(
                    key_to_certify = base_key.public_blob(),
                    ca_key = ca_key,
                    certtype = CertType.user,
                    keyid = b'id',
                    serial = 111,
                    principals = [b'username'],
                    valid_after = 1000,
                    valid_before = 2000), ca_key, signflags=ca_signflags)

            certified_key = ssh_key_new_priv(alg + '-cert', cert_pub,
                                             base_key.private_blob())

            # Check the simple certificate methods
            self.assertEqual(certified_key.cert_id_string(), b'id')
            self.assertEqual(certified_key.ca_public_blob(),
                             ca_key.public_blob())
            recovered_base_key = certified_key.base_key()
            self.assertEqual(recovered_base_key.public_blob(),
                             base_key.public_blob())
            self.assertEqual(recovered_base_key.private_blob(),
                             base_key.private_blob())

            # Check that an ordinary key also supports base_key()
            redundant_base_key = base_key.base_key()
            self.assertEqual(redundant_base_key.public_blob(),
                             base_key.public_blob())
            self.assertEqual(redundant_base_key.private_blob(),
                             base_key.private_blob())

            # Test signing and verifying using the certified key type
            test_string = b'hello, world'
            base_sig = base_key.sign(test_string, 0)
            certified_sig = certified_key.sign(test_string, 0)
            self.assertEqual(base_sig, certified_sig)
            self.assertEqual(certified_key.verify(base_sig, test_string), True)

            # Check a successful certificate verification
            result, err = certified_key.check_cert(
                False, b'username', 1000, '')
            self.assertEqual(result, True)

            # If the key type is RSA, check that the validator rejects
            # wrong kinds of CA signature
            if run_ca_rsa_tests:
                forbid_all = ",".join(["permit_rsa_sha1=false",
                                       "permit_rsa_sha256=false,"
                                       "permit_rsa_sha512=false"])
                result, err = certified_key.check_cert(
                    False, b'username', 1000, forbid_all)
                self.assertEqual(result, False)

                algname = ("rsa-sha2-512" if ca_signflags == 4 else
                           "rsa-sha2-256" if ca_signflags == 2 else
                           "ssh-rsa")
                self.assertEqual(err, (
                    "Certificate signature uses '{}' signature type "
                    "(forbidden by user configuration)".format(algname)
                    .encode("ASCII")))

                permitflag = ("permit_rsa_sha512" if ca_signflags == 4 else
                              "permit_rsa_sha256" if ca_signflags == 2 else
                              "permit_rsa_sha1")
                result, err = certified_key.check_cert(
                    False, b'username', 1000, "{},{}=true".format(
                        forbid_all, permitflag))
                self.assertEqual(result, True)

            # That's the end of the tests we need to repeat for all
            # the key types. Now we move on to detailed tests of the
            # validation, which are independent of key type, so we
            # only need to test this part once.
            if not run_validation_tests:
                return

            # Check cert verification at the other end of the valid
            # time range
            result, err = certified_key.check_cert(
                False, b'username', 1999, '')
            self.assertEqual(result, True)

            # Oops, wrong certificate type
            result, err = certified_key.check_cert(
                True, b'username', 1000, '')
            self.assertEqual(result, False)
            self.assertEqual(err, b'Certificate type is user; expected host')

            # Oops, wrong username
            result, err = certified_key.check_cert(
                False, b'someoneelse', 1000, '')
            self.assertEqual(result, False)
            self.assertEqual(err, b'Certificate\'s username list ["username"] '
                             b'does not contain expected username "someoneelse"')

            # Oops, time is wrong. (But we can't check the full error
            # message including the translated start/end times, because
            # those vary with LC_TIME.)
            result, err = certified_key.check_cert(
                False, b'someoneelse', 999, '')
            self.assertEqual(result, False)
            self.assertEqual(err[:30], b'Certificate is not valid until')
            result, err = certified_key.check_cert(
                False, b'someoneelse', 2000, '')
            self.assertEqual(result, False)
            self.assertEqual(err[:22], b'Certificate expired at')

            # Modify the certificate so that the signature doesn't validate
            username_position = cert_pub.index(b'username')
            bytelist = list(cert_pub)
            bytelist[username_position] ^= 1
            miscertified_key = ssh_key_new_priv(alg + '-cert', bytes(bytelist),
                                                base_key.private_blob())
            result, err = miscertified_key.check_cert(
                False, b'username', 1000, '')
            self.assertEqual(result, False)
            self.assertEqual(err, b"Certificate's signature is invalid")

            # Make a certificate containing a critical option, to test we
            # reject it
            cert_pub = sign_cert_via_testcrypt(
                make_signature_preimage(
                    key_to_certify = base_key.public_blob(),
                    ca_key = ca_key,
                    certtype = CertType.user,
                    keyid = b'id',
                    serial = 112,
                    principals = [b'username'],
                    critical_options = {b'unknown-option': b'yikes!'}), ca_key)
            certified_key = ssh_key_new_priv(alg + '-cert', cert_pub,
                                               base_key.private_blob())
            result, err = certified_key.check_cert(
                False, b'username', 1000, '')
            self.assertEqual(result, False)
            self.assertEqual(err, b'Certificate specifies an unsupported '
                             b'critical option "unknown-option"')

            # Make a certificate containing a non-critical extension, to
            # test we _accept_ it
            cert_pub = sign_cert_via_testcrypt(
                make_signature_preimage(
                    key_to_certify = base_key.public_blob(),
                    ca_key = ca_key,
                    certtype = CertType.user,
                    keyid = b'id',
                    serial = 113,
                    principals = [b'username'],
                    extensions = {b'unknown-ext': b'whatever, dude'}), ca_key)
            certified_key = ssh_key_new_priv(alg + '-cert', cert_pub,
                                               base_key.private_blob())
            result, err = certified_key.check_cert(
                False, b'username', 1000, '')
            self.assertEqual(result, True)

            # Make a certificate on the CA key, and re-sign the main
            # key using that, to ensure that two-level certs are rejected
            ca_self_certificate = sign_cert_via_testcrypt(
                make_signature_preimage(
                    key_to_certify = ca_key.public_blob(),
                    ca_key = ca_key,
                    certtype = CertType.user,
                    keyid = b'id',
                    serial = 111,
                    principals = [b"doesn't matter"],
                    valid_after = 1000,
                    valid_before = 2000), ca_key, signflags=ca_signflags)
            import base64
            self_signed_ca_key = ssh_key_new_pub(
                alg + '-cert', ca_self_certificate)
            cert_pub = sign_cert_via_testcrypt(
                make_signature_preimage(
                    key_to_certify = base_key.public_blob(),
                    ca_key = self_signed_ca_key,
                    certtype = CertType.user,
                    keyid = b'id',
                    serial = 111,
                    principals = [b'username'],
                    valid_after = 1000,
                    valid_before = 2000), ca_key, signflags=ca_signflags)
            certified_key = ssh_key_new_priv(alg + '-cert', cert_pub,
                                             base_key.private_blob())
            result, err = certified_key.check_cert(
                False, b'username', 1500, '')
            self.assertEqual(result, False)
            self.assertEqual(
                err, b'Certificate is signed with a certified key '
                b'(forbidden by OpenSSH certificate specification)')

            # Now try a host certificate. We don't need to do _all_ the
            # checks over again, but at least make sure that setting
            # CertType.host leads to the certificate validating with
            # host=True and not with host=False.
            #
            # Also, in this test, give two hostnames.
            cert_pub = sign_cert_via_testcrypt(
                make_signature_preimage(
                    key_to_certify = base_key.public_blob(),
                    ca_key = ca_key,
                    certtype = CertType.host,
                    keyid = b'id',
                    serial = 114,
                    principals = [b'hostname.example.com',
                                  b'hostname2.example.com'],
                    valid_after = 1000,
                    valid_before = 2000), ca_key)

            certified_key = ssh_key_new_priv(alg + '-cert', cert_pub,
                                             base_key.private_blob())

            # Check certificate type
            result, err = certified_key.check_cert(
                True, b'hostname.example.com', 1000, '')
            self.assertEqual(result, True)
            result, err = certified_key.check_cert(
                False, b'hostname.example.com', 1000, '')
            self.assertEqual(result, False)
            self.assertEqual(err, b'Certificate type is host; expected user')

            # Check the second hostname and an unknown one
            result, err = certified_key.check_cert(
                True, b'hostname2.example.com', 1000, '')
            self.assertEqual(result, True)
            result, err = certified_key.check_cert(
                True, b'hostname3.example.com', 1000, '')
            self.assertEqual(result, False)
            self.assertEqual(err, b'Certificate\'s hostname list ['
                             b'"hostname.example.com", "hostname2.example.com"] '
                             b'does not contain expected hostname '
                             b'"hostname3.example.com"')

            # And just for luck, try a totally unknown certificate type,
            # making sure that it's rejected in both modes and gives the
            # right error message
            cert_pub = sign_cert_via_testcrypt(
                make_signature_preimage(
                    key_to_certify = base_key.public_blob(),
                    ca_key = ca_key,
                    certtype = 12345,
                    keyid = b'id',
                    serial = 114,
                    principals = [b'username', b'hostname.example.com'],
                    valid_after = 1000,
                    valid_before = 2000), ca_key)
            certified_key = ssh_key_new_priv(alg + '-cert', cert_pub,
                                             base_key.private_blob())
            result, err = certified_key.check_cert(
                False, b'username', 1000, '')
            self.assertEqual(result, False)
            self.assertEqual(err, b'Certificate type is unknown value 12345; '
                             b'expected user')
            result, err = certified_key.check_cert(
                True, b'hostname.example.com', 1000, '')
            self.assertEqual(result, False)
            self.assertEqual(err, b'Certificate type is unknown value 12345; '
                             b'expected host')

        ca_key = ssh_key_new_priv('ed25519', b64('AAAAC3NzaC1lZDI1NTE5AAAAIMUJEFAmSV/qtoxSmVOHUgTMKYjqkDy8fTfsfCKV+sN7'), b64('AAAAIK4STyaf63xHidqhvUop9/OKiYqSh/YEWLCp1lL5Vs4u'))

        base_key = ssh_key_new_priv('ed25519', b64('AAAAC3NzaC1lZDI1NTE5AAAAIMt0/CMBL+64GQ/r/JyGxo6oHs86i9bOHhMJYbDbxEJf'), b64('AAAAIB38jy02ZWYb4EXrJG9RIljEhqidrG5DdhZvMvoeOTZs'))
        per_base_keytype_tests('ed25519', run_validation_tests=True)

        base_key = ssh_key_new_priv('p256', b64('AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBGc8VXplXScdWckJgAw6Hag5PP7g0JEVdLY5lP2ujvVxU5GwwquYLbX3yyj1zY5h2n9GoXrnRxzR5+5g8wsNjTA='), b64('AAAAICVRicPD5MyOHfKdnC/8IP84t+nQ4bqmMUyX7NHyCKjS'))
        per_base_keytype_tests('p256')

        base_key = ssh_key_new_priv('p384', b64('AAAAE2VjZHNhLXNoYTItbmlzdHAzODQAAAAIbmlzdHAzODQAAABhBLITujAbKwHDEzVDFqWtA+CleAhN/Y+53mHbEoTpU0aof9L+2lHeUshXdxHDLxY69wO5+WfqWJCwSY58PuXIZzIisQkvIKq6LhpzK6C5JpWJ8Kbv7su+qZPf5sYoxx0xZg=='), b64('AAAAMHyQTQYcIA/bR4ZvWS86ohb5Lu0MhzjD8bUb3q8jnROOe3BrE9I8oJcx+l1lddPouA=='))
        per_base_keytype_tests('p384')

        base_key = ssh_key_new_priv('p521', b64('AAAAE2VjZHNhLXNoYTItbmlzdHA1MjEAAAAIbmlzdHA1MjEAAACFBADButwMRGdLkFhWcSDsLhRhgyrLQq1/A0M8x4GgEmesh4iydo4tGKZR14GhHvx150IWTE1Tre4wyH+1FsTfAlpUBgBDQjsZE0D3u3SLp4qjjhzyrJGhEUDd9J6lsr6JrXbTefz5+LkM9m5l86y9PoAgT+F25OiTYlfvR5qx/pzIPoCnpA=='), b64('AAAAQgFV8xBXC7XZNxdW1oWg6yCZjys2AX4beZVehE9A2R/4m11dHnfqoE1FzbRxj9xqwKvHZRhMOJ//DYuhtcG6+6yHsA=='))
        per_base_keytype_tests('p521')

        base_key = ssh_key_new_priv('dsa', b64('AAAAB3NzaC1kc3MAAABCAXgDrF9Fw/Ty+QcoljAGjGL/Ph5+NBQqUYADm4wxF+aazjQXLuZ0VW9OdYBisgDZlYDj/w7y9NxCBgax2BSkhDNxAAAAFQC/YwnFzcom6cRRHPXtOUDLi2I29QAAAEIAqGOUYpfFPwzhgAmYXwWKdK8ouSUplNE29FOpv6NYjyf7k+tLSWF3b8oZdtw6XP8lr4vcKXC9Ik0YpKYKM7iKfb8AAABCAUDCcojlDLQmLHg8HhFCtT/CpayNh4OfmSrP8XOwJnFD/eBaSGuPB5EvGd+m6gr+Pc0RSAlWP1aIzUbYkQ33Yk58'), b64('AAAAFQChVuOTNrCwLSJygxlRQhDwHozwSg=='))
        per_base_keytype_tests('dsa')

        base_key = ssh_key_new_priv('rsa', b64('AAAAB3NzaC1yc2EAAAADAQABAAAAgQDXLnqGPQLL9byoHFQWPiF5Uzcd0KedMRRJmuwyCAWprlh8EN43mL2F7q27Uv54m/ztqW4DsVtiCN6cDYvB9QPNYFR5npwsEAJ06Ro4s9ZpFsZVOvitqeoYIs+jkS8vq5V8X4hwLlJ8vXYPD6rHJhOz6HFpImHmVu40Mu5lq+MCQQ=='), b64('AAAAgH5dBwrJzVilKHK4oBCnz9SFr7pMjAHdjoJi/g2rdFfe0IubBEQ16CY8sb1t0Y5WXEPc2YRFpNp/RurxcX8nOWFPzgNJXEtkKpKO9Juqu5hL4xcf8QKC2aJFk3EXrn/M6dXEdjqN4UhsT6iFTsHKU4b8T6VTtgKzwkOdic/YotaBAAAAQQD6liDTlzTKzLhbypI6l+y2BGA3Kkzz71Y2o7XH/6bZ6HJOFgHuJeL3eNQptzd8Q+ctfvR0fa2PItYydDOlVUeZAAAAQQDb1IsO1/fkflDZhPQT2XOxtrjgQhotKjr6CSmJtDNmo1mOCN+mOgxtDfJ0PNEEM1P9CO2Ia3njtkxt4Ep2EpjpAAAAQQClRxLEHsRK9nMPZ4HW45iyw5dHhYar9pYUql2VnixWQxrHy13ZIaWxi6xwWjuPglrdBgEQfYwH9KGmlFmZXT/Z'))
        per_base_keytype_tests('rsa')

        # Now switch to an RSA certifying key, and test different RSA
        # signature subtypes being used to sign the certificate
        ca_key = ssh_key_new_priv('rsa', b64('AAAAB3NzaC1yc2EAAAADAQABAAAAgQCKHiavhtnAZQLUPtYlzlQmVTHSKq2ChCKZP0cLNtN2YSS0/f4D1hi8W04Qh/JuSXZAdUThTAVjxDmxpiOMNwa/2WDXMuqip47dzZSQxtSdvTfeL9TVC/M1NaOzy8bqFx6pzi37zPATETT4PP1Zt/Pd23ZJYhwjxSyTlqj7529v0w=='), b64('AAAAgCwTZyEIlaCyG28EBm7WI0CAW3/IIsrNxATHjrJjcqQKaB5iF5e90PL66DSaTaEoTFZRlgOXsPiffBHXBO0P+lTyZ2jlq2J2zgeofRH3Yong4BT4xDtqBKtxixgC1MAHmrOnRXjAcDUiLxIGgU0YKSv0uAlgARsUwDsk0GEvK+jBAAAAQQDMi7liRBQ4/Z6a4wDL/rVnIJ9x+2h2UPK9J8U7f97x/THIBtfkbf9O7nDP6onValuSr86tMR24DJZsEXaGPwjDAAAAQQCs3J3D3jNVwwk16oySRSjA5x3tKCEITYMluyXX06cvFew8ldgRCYl1sh8RYAfbBKXhnJD77qIxtVNaF1yl/guxAAAAQFTRdKRUF2wLu/K/Rr34trwKrV6aW0GWyHlLuWvF7FUB85aDmtqYI2BSk92mVCKHBNw2T3cJMabN9JOznjtADiM='))
        per_base_keytype_tests('rsa', run_ca_rsa_tests=True)
        per_base_keytype_tests('rsa', run_ca_rsa_tests=True, ca_signflags=2)
        per_base_keytype_tests('rsa', run_ca_rsa_tests=True, ca_signflags=4)

    def testAESGCMBlockBoundaries(self):
        # For standard AES-GCM test vectors, see the separate tests in
        # standard_test_vectors.testAESGCM. This function will test
        # the local interface, including the skip length and the
        # machinery for incremental MAC update.

        def aesgcm(key, iv, aes_impl, gcm_impl):
            c = ssh_cipher_new('aes{:d}_gcm_{}'.format(8*len(key), aes_impl))
            m = ssh2_mac_new('aesgcm_{}'.format(gcm_impl), c)
            if m is None: return # skip test if HW GCM not available
            c.setkey(key)
            c.setiv(iv + b'\0'*4)
            m.setkey(b'')
            return c, m

        def test_one(aes_impl, gcm_impl):
            # An actual test from a session with OpenSSH, which
            # demonstrates that the implementation in practice matches up
            # to what the test vectors say. This is its SSH2_MSG_EXT_INFO
            # packet.
            key = unhex('dbf98b2f56c83fb2f9476aa876511225')
            iv = unhex('9af15ecccf2bacaaa9625a6a')
            plain = unhex('1007000000020000000f736572766572'
                          '2d7369672d616c6773000000db737368'
                          '2d656432353531392c736b2d7373682d'
                          '65643235353139406f70656e7373682e'
                          '636f6d2c7373682d7273612c7273612d'
                          '736861322d3235362c7273612d736861'
                          '322d3531322c7373682d6473732c6563'
                          '6473612d736861322d6e697374703235'
                          '362c65636473612d736861322d6e6973'
                          '74703338342c65636473612d73686132'
                          '2d6e697374703532312c736b2d656364'
                          '73612d736861322d6e69737470323536'
                          '406f70656e7373682e636f6d2c776562'
                          '617574686e2d736b2d65636473612d73'
                          '6861322d6e69737470323536406f7065'
                          '6e7373682e636f6d0000001f7075626c'
                          '69636b65792d686f7374626f756e6440'
                          '6f70656e7373682e636f6d0000000130'
                          '5935130804ad4b19ed2789210290c438')
            aad = unhex('00000130')
            cipher = unhex('c4b88f35c1ef8aa6225033c3f185d648'
                           '3c485d84930d5846f7851daacbff49d5'
                           '8cf72169fca7ab3c170376df65dd69de'
                           'c40a94c6b8e3da6d61161ab19be27466'
                           '02e0dfa3330faae291ef4173a20e87a4'
                           'd40728c645baa72916c1958531ef7b54'
                           '27228513e53005e6d17b9bb384b8d8c1'
                           '92b8a10b731459eed5a0fb120c283412'
                           'e34445981df1257f1c35a06196731fed'
                           '1b3115f419e754de0b634bf68768cb02'
                           '29e70bb2259cedb5101ff6a4ac19aaad'
                           '46f1c30697361b45d6c152c3069cee6b'
                           'd46e9785d65ea6bf7fca41f0ac3c8e93'
                           'ce940b0059c39d51e49c17f60d48d633'
                           '5bae4402faab61d8d65221b24b400e65'
                           '89f941ff48310231a42641851ea00832'
                           '2c2d188f4cc6a4ec6002161c407d0a92'
                           'f1697bb319fbec1ca63fa8e7ac171c85'
                           '5b60142bfcf4e5b0a9ada3451799866e')

            c, m = aesgcm(key, iv, aes_impl, gcm_impl)
            len_dec = c.decrypt_length(aad, 123)
            self.assertEqual(len_dec, aad) # length not actually encrypted
            m.start()
            # We expect 4 bytes skipped (the sequence number that
            # ChaCha20-Poly1305 wants at the start of its MAC), and 4
            # bytes AAD. These were initialised by the call to
            # encrypt_length.
            m.update(b'fake' + aad + cipher)
            self.assertEqualBin(m.genresult(),
                                unhex('4a5a6d57d54888b4e58c57a96e00b73a'))
            self.assertEqualBin(c.decrypt(cipher), plain)

            c, m = aesgcm(key, iv, aes_impl, gcm_impl)
            len_enc = c.encrypt_length(aad, 123)
            self.assertEqual(len_enc, aad) # length not actually encrypted
            self.assertEqualBin(c.encrypt(plain), cipher)

            # Test incremental update.
            def testIncremental(skiplen, aad, plain):
                key, iv = b'SomeRandomKeyVal', b'SomeRandomIV'
                mac_input = b'x' * skiplen + aad + plain

                c, m = aesgcm(key, iv, aes_impl, gcm_impl)
                aesgcm_set_prefix_lengths(m, skiplen, len(aad))

                m.start()
                m.update(mac_input)
                reference_mac = m.genresult()

                # Break the input just once, at each possible byte
                # position.
                for i in range(1, len(mac_input)):
                    c.setiv(iv + b'\0'*4)
                    m.setkey(b'')
                    aesgcm_set_prefix_lengths(m, skiplen, len(aad))
                    m.start()
                    m.update(mac_input[:i])
                    m.update(mac_input[i:])
                    self.assertEqualBin(m.genresult(), reference_mac)

                # Feed the entire input in a byte at a time.
                c.setiv(iv + b'\0'*4)
                m.setkey(b'')
                aesgcm_set_prefix_lengths(m, skiplen, len(aad))
                m.start()
                for i in range(len(mac_input)):
                    m.update(mac_input[i:i+1])
                self.assertEqualBin(m.genresult(), reference_mac)

            # Incremental test with more than a full block of each thing
            testIncremental(23, b'abcdefghijklmnopqrst',
                            b'Lorem ipsum dolor sit amet')

            # Incremental test with exactly a full block of each thing
            testIncremental(16, b'abcdefghijklmnop',
                            b'Lorem ipsum dolo')

            # Incremental test with less than a full block of each thing
            testIncremental(7, b'abcdefghij',
                            b'Lorem ipsum')

        for aes_impl in get_aes_impls():
            for gcm_impl in get_aesgcm_impls():
                with self.subTest(aes_impl=aes_impl, gcm_impl=gcm_impl):
                    test_one(aes_impl, gcm_impl)

    def testAESGCMIV(self):
        key = b'SomeRandomKeyVal'

        def test(gcm, cbc, iv_fixed, iv_msg):
            gcm.setiv(ssh_uint32(iv_fixed) + ssh_uint64(iv_msg) + b'fake')

            cbc.setiv(b'\0' * 16)
            preimage = cbc.decrypt(gcm.encrypt(b'\0' * 16))
            self.assertEqualBin(preimage, ssh_uint32(iv_fixed) +
                                ssh_uint64(iv_msg) + ssh_uint32(1))
            cbc.setiv(b'\0' * 16)
            preimage = cbc.decrypt(gcm.encrypt(b'\0' * 16))
            self.assertEqualBin(preimage, ssh_uint32(iv_fixed) +
                                ssh_uint64(iv_msg) + ssh_uint32(2))

            gcm.next_message()
            iv_msg = (iv_msg + 1) & ((1<<64)-1)

            cbc.setiv(b'\0' * 16)
            preimage = cbc.decrypt(gcm.encrypt(b'\0' * 16))
            self.assertEqualBin(preimage, ssh_uint32(iv_fixed) +
                                ssh_uint64(iv_msg) + ssh_uint32(1))
            cbc.setiv(b'\0' * 16)
            preimage = cbc.decrypt(gcm.encrypt(b'\0' * 16))
            self.assertEqualBin(preimage, ssh_uint32(iv_fixed) +
                                ssh_uint64(iv_msg) + ssh_uint32(2))


        for impl in get_aes_impls():
            with self.subTest(aes_impl=impl):
                gcm = ssh_cipher_new('aes{:d}_gcm_{}'.format(8*len(key), impl))
                gcm.setkey(key)

                cbc = ssh_cipher_new('aes{:d}_cbc_{}'.format(8*len(key), impl))
                cbc.setkey(key)

                # A simple test to ensure the low word gets
                # incremented and that the whole IV looks basically
                # the way we expect it to
                test(gcm, cbc, 0x27182818, 0x3141592653589793)

                # Test that carries are propagated into the high word
                test(gcm, cbc, 0x27182818, 0x00000000FFFFFFFF)

                # Test that carries _aren't_ propagated out of the
                # high word of the message counter into the fixed word
                # at the top
                test(gcm, cbc, 0x27182818, 0xFFFFFFFFFFFFFFFF)

class standard_test_vectors(MyTestBase):
    def testAES(self):
        def vector(cipher, key, plaintext, ciphertext):
            for suffix in get_aes_impls():
                c = ssh_cipher_new("{}_{}".format(cipher, suffix))
                if c is None: return # skip test if HW AES not available
                ssh_cipher_setkey(c, key)

                # The AES test vectors are implicitly in ECB mode,
                # because they're testing the cipher primitive rather
                # than any mode layered on top of it. We fake this by
                # using PuTTY's CBC setting, and clearing the IV to
                # all zeroes before each operation.

                ssh_cipher_setiv(c, b'\x00' * 16)
                self.assertEqualBin(
                    ssh_cipher_encrypt(c, plaintext), ciphertext)

                ssh_cipher_setiv(c, b'\x00' * 16)
                self.assertEqualBin(
                    ssh_cipher_decrypt(c, ciphertext), plaintext)

        # The test vector from FIPS 197 appendix B. (This is also the
        # same key whose key setup phase is shown in detail in
        # appendix A.)
        vector('aes128_cbc',
               unhex('2b7e151628aed2a6abf7158809cf4f3c'),
               unhex('3243f6a8885a308d313198a2e0370734'),
               unhex('3925841d02dc09fbdc118597196a0b32'))

        # The test vectors from FIPS 197 appendix C: the key bytes go
        # 00 01 02 03 ... for as long as needed, and the plaintext
        # bytes go 00 11 22 33 ... FF.
        fullkey = struct.pack("B"*32, *range(32))
        plaintext = struct.pack("B"*16, *[0x11*i for i in range(16)])
        vector('aes128_cbc', fullkey[:16], plaintext,
               unhex('69c4e0d86a7b0430d8cdb78070b4c55a'))
        vector('aes192_cbc', fullkey[:24], plaintext,
               unhex('dda97ca4864cdfe06eaf70a0ec0d7191'))
        vector('aes256_cbc', fullkey[:32], plaintext,
               unhex('8ea2b7ca516745bfeafc49904b496089'))

    def testDES(self):
        c = ssh_cipher_new("des_cbc")
        def vector(key, plaintext, ciphertext):
            key = unhex(key)
            plaintext = unhex(plaintext)
            ciphertext = unhex(ciphertext)

            # Similarly to above, we fake DES ECB by using DES CBC and
            # resetting the IV to zero all the time
            ssh_cipher_setkey(c, key)
            ssh_cipher_setiv(c, b'\x00' * 8)
            self.assertEqualBin(ssh_cipher_encrypt(c, plaintext), ciphertext)
            ssh_cipher_setiv(c, b'\x00' * 8)
            self.assertEqualBin(ssh_cipher_decrypt(c, ciphertext), plaintext)

        # Source: FIPS SP PUB 500-20

        # 'Initial permutation and expansion tests': key fixed at 8
        # copies of the byte 01, but ciphertext and plaintext in turn
        # run through all possible values with exactly 1 bit set.
        # Expected plaintexts and ciphertexts (respectively) listed in
        # the arrays below.
        ipe_key = '01' * 8
        ipe_plaintexts = [
'166B40B44ABA4BD6', '06E7EA22CE92708F', 'D2FD8867D50D2DFE', 'CC083F1E6D9E85F6',
'5B711BC4CEEBF2EE', '0953E2258E8E90A1', 'E07C30D7E4E26E12', '2FBC291A570DB5C4',
'DD7C0BBD61FAFD54', '48221B9937748A23', 'E643D78090CA4207', '8405D1ABE24FB942',
'CE332329248F3228', '1D1CA853AE7C0C5F', '5D86CB23639DBEA9', '1029D55E880EC2D0',
'8DD45A2DDF90796C', 'CAFFC6AC4542DE31', 'EA51D3975595B86B', '8B54536F2F3E64A8',
'866ECEDD8072BB0E', '79E90DBC98F92CCA', 'AB6A20C0620D1C6F', '25EB5FC3F8CF0621',
'4D49DB1532919C9F', '814EEB3B91D90726', '5E0905517BB59BCF', 'CA3A2B036DBC8502',
'FA0752B07D9C4AB8', 'B160E4680F6C696F', 'DF98C8276F54B04B', 'E943D7568AEC0C5C',
'AEB5F5EDE22D1A36', 'E428581186EC8F46', 'E1652C6B138C64A5', 'D106FF0BED5255D7',
'9D64555A9A10B852', 'F02B263B328E2B60', '64FEED9C724C2FAF', '750D079407521363',
'FBE00A8A1EF8AD72', 'A484C3AD38DC9C19', '12A9F5817FF2D65D', 'E7FCE22557D23C97',
'329A8ED523D71AEC', 'E19E275D846A1298', '889DE068A16F0BE6', '2B9F982F20037FA9',
'F356834379D165CD', 'ECBFE3BD3F591A5E', 'E6D5F82752AD63D1', 'ADD0CC8D6E5DEBA1',
'F15D0F286B65BD28', 'B8061B7ECD9A21E5', '424250B37C3DD951', 'D9031B0271BD5A0A',
'0D9F279BA5D87260', '6CC5DEFAAF04512F', '55579380D77138EF', '20B9E767B2FB1456',
'4BD388FF6CD81D4F', '2E8653104F3834EA', 'DD7F121CA5015619', '95F8A5E5DD31D900',
        ]
        ipe_ciphertexts = [
'166B40B44ABA4BD6', '06E7EA22CE92708F', 'D2FD8867D50D2DFE', 'CC083F1E6D9E85F6',
'5B711BC4CEEBF2EE', '0953E2258E8E90A1', 'E07C30D7E4E26E12', '2FBC291A570DB5C4',
'DD7C0BBD61FAFD54', '48221B9937748A23', 'E643D78090CA4207', '8405D1ABE24FB942',
'CE332329248F3228', '1D1CA853AE7C0C5F', '5D86CB23639DBEA9', '1029D55E880EC2D0',
'8DD45A2DDF90796C', 'CAFFC6AC4542DE31', 'EA51D3975595B86B', '8B54536F2F3E64A8',
'866ECEDD8072BB0E', '79E90DBC98F92CCA', 'AB6A20C0620D1C6F', '25EB5FC3F8CF0621',
'4D49DB1532919C9F', '814EEB3B91D90726', '5E0905517BB59BCF', 'CA3A2B036DBC8502',
'FA0752B07D9C4AB8', 'B160E4680F6C696F', 'DF98C8276F54B04B', 'E943D7568AEC0C5C',
'AEB5F5EDE22D1A36', 'E428581186EC8F46', 'E1652C6B138C64A5', 'D106FF0BED5255D7',
'9D64555A9A10B852', 'F02B263B328E2B60', '64FEED9C724C2FAF', '750D079407521363',
'FBE00A8A1EF8AD72', 'A484C3AD38DC9C19', '12A9F5817FF2D65D', 'E7FCE22557D23C97',
'329A8ED523D71AEC', 'E19E275D846A1298', '889DE068A16F0BE6', '2B9F982F20037FA9',
'F356834379D165CD', 'ECBFE3BD3F591A5E', 'E6D5F82752AD63D1', 'ADD0CC8D6E5DEBA1',
'F15D0F286B65BD28', 'B8061B7ECD9A21E5', '424250B37C3DD951', 'D9031B0271BD5A0A',
'0D9F279BA5D87260', '6CC5DEFAAF04512F', '55579380D77138EF', '20B9E767B2FB1456',
'4BD388FF6CD81D4F', '2E8653104F3834EA', 'DD7F121CA5015619', '95F8A5E5DD31D900',
        ]
        ipe_single_bits = ["{:016x}".format(1 << bit) for bit in range(64)]
        for plaintext, ciphertext in zip(ipe_plaintexts, ipe_single_bits):
            vector(ipe_key, plaintext, ciphertext)
        for plaintext, ciphertext in zip(ipe_single_bits, ipe_ciphertexts):
            vector(ipe_key, plaintext, ciphertext)

        # 'Key permutation tests': plaintext fixed at all zeroes, key
        # is a succession of tweaks of the previous key made by
        # replacing each 01 byte in turn with one containing a
        # different single set bit (e.g. 01 20 01 01 01 01 01 01).
        # Expected ciphertexts listed.
        kp_ciphertexts = [
'95A8D72813DAA94D', '0EEC1487DD8C26D5', '7AD16FFB79C45926', 'D3746294CA6A6CF3',
'809F5F873C1FD761', 'C02FAFFEC989D1FC', '4615AA1D33E72F10', '2055123350C00858',
'DF3B99D6577397C8', '31FE17369B5288C9', 'DFDD3CC64DAE1642', '178C83CE2B399D94',
'50F636324A9B7F80', 'A8468EE3BC18F06D', 'A2DC9E92FD3CDE92', 'CAC09F797D031287',
'90BA680B22AEB525', 'CE7A24F350E280B6', '882BFF0AA01A0B87', '25610288924511C2',
'C71516C29C75D170', '5199C29A52C9F059', 'C22F0A294A71F29F', 'EE371483714C02EA',
'A81FBD448F9E522F', '4F644C92E192DFED', '1AFA9A66A6DF92AE', 'B3C1CC715CB879D8',
'19D032E64AB0BD8B', '3CFAA7A7DC8720DC', 'B7265F7F447AC6F3', '9DB73B3C0D163F54',
'8181B65BABF4A975', '93C9B64042EAA240', '5570530829705592', '8638809E878787A0',
'41B9A79AF79AC208', '7A9BE42F2009A892', '29038D56BA6D2745', '5495C6ABF1E5DF51',
'AE13DBD561488933', '024D1FFA8904E389', 'D1399712F99BF02E', '14C1D7C1CFFEC79E',
'1DE5279DAE3BED6F', 'E941A33F85501303', 'DA99DBBC9A03F379', 'B7FC92F91D8E92E9',
'AE8E5CAA3CA04E85', '9CC62DF43B6EED74', 'D863DBB5C59A91A0', 'A1AB2190545B91D7',
'0875041E64C570F7', '5A594528BEBEF1CC', 'FCDB3291DE21F0C0', '869EFD7F9F265A09',
        ]
        kp_key_repl_bytes = ["{:02x}".format(0x80>>i) for i in range(7)]
        kp_keys = ['01'*j + b + '01'*(7-j)
                   for j in range(8) for b in kp_key_repl_bytes]
        kp_plaintext = '0' * 16
        for key, ciphertext in zip(kp_keys, kp_ciphertexts):
            vector(key, kp_plaintext, ciphertext)

        # 'Data permutation test': plaintext fixed at all zeroes,
        # pairs of key and expected ciphertext listed below.
        dp_keys_and_ciphertexts = [
'1046913489980131:88D55E54F54C97B4', '1007103489988020:0C0CC00C83EA48FD',
'10071034C8980120:83BC8EF3A6570183', '1046103489988020:DF725DCAD94EA2E9',
'1086911519190101:E652B53B550BE8B0', '1086911519580101:AF527120C485CBB0',
'5107B01519580101:0F04CE393DB926D5', '1007B01519190101:C9F00FFC74079067',
'3107915498080101:7CFD82A593252B4E', '3107919498080101:CB49A2F9E91363E3',
'10079115B9080140:00B588BE70D23F56', '3107911598080140:406A9A6AB43399AE',
'1007D01589980101:6CB773611DCA9ADA', '9107911589980101:67FD21C17DBB5D70',
'9107D01589190101:9592CB4110430787', '1007D01598980120:A6B7FF68A318DDD3',
'1007940498190101:4D102196C914CA16', '0107910491190401:2DFA9F4573594965',
'0107910491190101:B46604816C0E0774', '0107940491190401:6E7E6221A4F34E87',
'19079210981A0101:AA85E74643233199', '1007911998190801:2E5A19DB4D1962D6',
'10079119981A0801:23A866A809D30894', '1007921098190101:D812D961F017D320',
'100791159819010B:055605816E58608F', '1004801598190101:ABD88E8B1B7716F1',
'1004801598190102:537AC95BE69DA1E1', '1004801598190108:AED0F6AE3C25CDD8',
'1002911498100104:B3E35A5EE53E7B8D', '1002911598190104:61C79C71921A2EF8',
'1002911598100201:E2F5728F0995013C', '1002911698100101:1AEAC39A61F0A464',
        ]
        dp_plaintext = '0' * 16
        for key_and_ciphertext in dp_keys_and_ciphertexts:
            key, ciphertext = key_and_ciphertext.split(":")
            vector(key, dp_plaintext, ciphertext)

        # Tests intended to select every entry in every S-box. Full
        # arbitrary triples (key, plaintext, ciphertext).
        sb_complete_tests = [
            '7CA110454A1A6E57:01A1D6D039776742:690F5B0D9A26939B',
            '0131D9619DC1376E:5CD54CA83DEF57DA:7A389D10354BD271',
            '07A1133E4A0B2686:0248D43806F67172:868EBB51CAB4599A',
            '3849674C2602319E:51454B582DDF440A:7178876E01F19B2A',
            '04B915BA43FEB5B6:42FD443059577FA2:AF37FB421F8C4095',
            '0113B970FD34F2CE:059B5E0851CF143A:86A560F10EC6D85B',
            '0170F175468FB5E6:0756D8E0774761D2:0CD3DA020021DC09',
            '43297FAD38E373FE:762514B829BF486A:EA676B2CB7DB2B7A',
            '07A7137045DA2A16:3BDD119049372802:DFD64A815CAF1A0F',
            '04689104C2FD3B2F:26955F6835AF609A:5C513C9C4886C088',
            '37D06BB516CB7546:164D5E404F275232:0A2AEEAE3FF4AB77',
            '1F08260D1AC2465E:6B056E18759F5CCA:EF1BF03E5DFA575A',
            '584023641ABA6176:004BD6EF09176062:88BF0DB6D70DEE56',
            '025816164629B007:480D39006EE762F2:A1F9915541020B56',
            '49793EBC79B3258F:437540C8698F3CFA:6FBF1CAFCFFD0556',
            '4FB05E1515AB73A7:072D43A077075292:2F22E49BAB7CA1AC',
            '49E95D6D4CA229BF:02FE55778117F12A:5A6B612CC26CCE4A',
            '018310DC409B26D6:1D9D5C5018F728C2:5F4C038ED12B2E41',
            '1C587F1C13924FEF:305532286D6F295A:63FAC0D034D9F793',
        ]
        for test in sb_complete_tests:
            key, plaintext, ciphertext = test.split(":")
            vector(key, plaintext, ciphertext)

    def testMD5(self):
        MD5 = lambda s: hash_str('md5', s)

        # The test vectors from RFC 1321 section A.5.
        self.assertEqualBin(MD5(""),
                            unhex('d41d8cd98f00b204e9800998ecf8427e'))
        self.assertEqualBin(MD5("a"),
                            unhex('0cc175b9c0f1b6a831c399e269772661'))
        self.assertEqualBin(MD5("abc"),
                            unhex('900150983cd24fb0d6963f7d28e17f72'))
        self.assertEqualBin(MD5("message digest"),
                            unhex('f96b697d7cb7938d525a2f31aaf161d0'))
        self.assertEqualBin(MD5("abcdefghijklmnopqrstuvwxyz"),
                            unhex('c3fcd3d76192e4007dfb496cca67e13b'))
        self.assertEqualBin(MD5("ABCDEFGHIJKLMNOPQRSTUVWXYZ"
                                "abcdefghijklmnopqrstuvwxyz0123456789"),
                            unhex('d174ab98d277d9f5a5611c2c9f419d9f'))
        self.assertEqualBin(MD5("1234567890123456789012345678901234567890"
                                "1234567890123456789012345678901234567890"),
                            unhex('57edf4a22be3c955ac49da2e2107b67a'))

    def testHmacMD5(self):
        # The test vectors from the RFC 2104 Appendix.
        self.assertEqualBin(mac_str('hmac_md5', unhex('0b'*16), "Hi There"),
                         unhex('9294727a3638bb1c13f48ef8158bfc9d'))
        self.assertEqualBin(mac_str('hmac_md5', "Jefe",
                                 "what do ya want for nothing?"),
                         unhex('750c783e6ab0b503eaa86e310a5db738'))
        self.assertEqualBin(mac_str('hmac_md5', unhex('aa'*16), unhex('dd'*50)),
                         unhex('56be34521d144c88dbb8c733f0e8b3f6'))

    def testSHA1(self):
        for hashname in get_implementations("sha1"):
            if ssh_hash_new(hashname) is None:
                continue # skip testing of unavailable HW implementation

            # Test cases from RFC 6234 section 8.5, omitting the ones
            # whose input is not a multiple of 8 bits
            self.assertEqualBin(hash_str(hashname, "abc"), unhex(
                "a9993e364706816aba3e25717850c26c9cd0d89d"))
            self.assertEqualBin(hash_str(hashname,
                "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"),
                unhex("84983e441c3bd26ebaae4aa1f95129e5e54670f1"))
            self.assertEqualBin(hash_str_iter(hashname,
                ("a" * 1000 for _ in range(1000))), unhex(
                "34aa973cd4c4daa4f61eeb2bdbad27316534016f"))
            self.assertEqualBin(hash_str(hashname,
                "01234567012345670123456701234567" * 20), unhex(
                "dea356a2cddd90c7a7ecedc5ebb563934f460452"))
            self.assertEqualBin(hash_str(hashname, b"\x5e"), unhex(
                "5e6f80a34a9798cafc6a5db96cc57ba4c4db59c2"))
            self.assertEqualBin(hash_str(hashname,
                unhex("9a7dfdf1ecead06ed646aa55fe757146")), unhex(
                "82abff6605dbe1c17def12a394fa22a82b544a35"))
            self.assertEqualBin(hash_str(hashname, unhex(
                "f78f92141bcd170ae89b4fba15a1d59f"
                "3fd84d223c9251bdacbbae61d05ed115"
                "a06a7ce117b7beead24421ded9c32592"
                "bd57edeae39c39fa1fe8946a84d0cf1f"
                "7beead1713e2e0959897347f67c80b04"
                "00c209815d6b10a683836fd5562a56ca"
                "b1a28e81b6576654631cf16566b86e3b"
                "33a108b05307c00aff14a768ed735060"
                "6a0f85e6a91d396f5b5cbe577f9b3880"
                "7c7d523d6d792f6ebc24a4ecf2b3a427"
                "cdbbfb")), unhex(
                "cb0082c8f197d260991ba6a460e76e202bad27b3"))

    def testSHA256(self):
        for hashname in get_implementations("sha256"):
            if ssh_hash_new(hashname) is None:
                continue # skip testing of unavailable HW implementation

            # Test cases from RFC 6234 section 8.5, omitting the ones
            # whose input is not a multiple of 8 bits
            self.assertEqualBin(hash_str(hashname, "abc"),
                                unhex("ba7816bf8f01cfea414140de5dae2223"
                                      "b00361a396177a9cb410ff61f20015ad"))
            self.assertEqualBin(hash_str(hashname,
                "abcdbcdecdefdefgefghfghighijhijk""ijkljklmklmnlmnomnopnopq"),
                                unhex("248d6a61d20638b8e5c026930c3e6039"
                                      "a33ce45964ff2167f6ecedd419db06c1"))
            self.assertEqualBin(
                hash_str_iter(hashname, ("a" * 1000 for _ in range(1000))),
                unhex("cdc76e5c9914fb9281a1c7e284d73e67"
                      "f1809a48a497200e046d39ccc7112cd0"))
            self.assertEqualBin(
                hash_str(hashname, "01234567012345670123456701234567" * 20),
                unhex("594847328451bdfa85056225462cc1d8"
                      "67d877fb388df0ce35f25ab5562bfbb5"))
            self.assertEqualBin(hash_str(hashname, b"\x19"),
                                unhex("68aa2e2ee5dff96e3355e6c7ee373e3d"
                                      "6a4e17f75f9518d843709c0c9bc3e3d4"))
            self.assertEqualBin(
                hash_str(hashname, unhex("e3d72570dcdd787ce3887ab2cd684652")),
                unhex("175ee69b02ba9b58e2b0a5fd13819cea"
                      "573f3940a94f825128cf4209beabb4e8"))
            self.assertEqualBin(hash_str(hashname, unhex(
                "8326754e2277372f4fc12b20527afef0"
                "4d8a056971b11ad57123a7c137760000"
                "d7bef6f3c1f7a9083aa39d810db31077"
                "7dab8b1e7f02b84a26c773325f8b2374"
                "de7a4b5a58cb5c5cf35bcee6fb946e5b"
                "d694fa593a8beb3f9d6592ecedaa66ca"
                "82a29d0c51bcf9336230e5d784e4c0a4"
                "3f8d79a30a165cbabe452b774b9c7109"
                "a97d138f129228966f6c0adc106aad5a"
                "9fdd30825769b2c671af6759df28eb39"
                "3d54d6")), unhex(
                    "97dbca7df46d62c8a422c941dd7e835b"
                    "8ad3361763f7e9b2d95f4f0da6e1ccbc"))

    def testSHA384(self):
        for hashname in get_implementations("sha384"):
            if ssh_hash_new(hashname) is None:
                continue # skip testing of unavailable HW implementation

            # Test cases from RFC 6234 section 8.5, omitting the ones
            # whose input is not a multiple of 8 bits
            self.assertEqualBin(hash_str(hashname, "abc"), unhex(
                'cb00753f45a35e8bb5a03d699ac65007272c32ab0eded163'
                '1a8b605a43ff5bed8086072ba1e7cc2358baeca134c825a7'))
            self.assertEqualBin(hash_str(hashname,
                "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn"
                "hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu"),
                unhex('09330c33f71147e83d192fc782cd1b4753111b173b3b05d2'
                      '2fa08086e3b0f712fcc7c71a557e2db966c3e9fa91746039'))
            self.assertEqualBin(hash_str_iter(hashname,
                ("a" * 1000 for _ in range(1000))), unhex(
                '9d0e1809716474cb086e834e310a4a1ced149e9c00f24852'
                '7972cec5704c2a5b07b8b3dc38ecc4ebae97ddd87f3d8985'))
            self.assertEqualBin(hash_str(hashname,
                "01234567012345670123456701234567" * 20), unhex(
                '2fc64a4f500ddb6828f6a3430b8dd72a368eb7f3a8322a70'
                'bc84275b9c0b3ab00d27a5cc3c2d224aa6b61a0d79fb4596'))
            self.assertEqualBin(hash_str(hashname, b"\xB9"), unhex(
                'bc8089a19007c0b14195f4ecc74094fec64f01f90929282c'
                '2fb392881578208ad466828b1c6c283d2722cf0ad1ab6938'))
            self.assertEqualBin(hash_str(hashname,
                unhex("a41c497779c0375ff10a7f4e08591739")), unhex(
                'c9a68443a005812256b8ec76b00516f0dbb74fab26d66591'
                '3f194b6ffb0e91ea9967566b58109cbc675cc208e4c823f7'))
            self.assertEqualBin(hash_str(hashname, unhex(
                "399669e28f6b9c6dbcbb6912ec10ffcf74790349b7dc8fbe4a8e7b3b5621"
                "db0f3e7dc87f823264bbe40d1811c9ea2061e1c84ad10a23fac1727e7202"
                "fc3f5042e6bf58cba8a2746e1f64f9b9ea352c711507053cf4e5339d5286"
                "5f25cc22b5e87784a12fc961d66cb6e89573199a2ce6565cbdf13dca4038"
                "32cfcb0e8b7211e83af32a11ac17929ff1c073a51cc027aaedeff85aad7c"
                "2b7c5a803e2404d96d2a77357bda1a6daeed17151cb9bc5125a422e941de"
                "0ca0fc5011c23ecffefdd09676711cf3db0a3440720e1615c1f22fbc3c72"
                "1de521e1b99ba1bd5577408642147ed096")), unhex(
                '4f440db1e6edd2899fa335f09515aa025ee177a79f4b4aaf'
                '38e42b5c4de660f5de8fb2a5b2fbd2a3cbffd20cff1288c0'))

    def testSHA512(self):
        for hashname in get_implementations("sha512"):
            if ssh_hash_new(hashname) is None:
                continue # skip testing of unavailable HW implementation

            # Test cases from RFC 6234 section 8.5, omitting the ones
            # whose input is not a multiple of 8 bits
            self.assertEqualBin(hash_str(hashname, "abc"), unhex(
                'ddaf35a193617abacc417349ae20413112e6fa4e89a97ea20a9eeee64b55'
                'd39a2192992a274fc1a836ba3c23a3feebbd454d4423643ce80e2a9ac94f'
                'a54ca49f'))
            self.assertEqualBin(hash_str(hashname,
                "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmn"
                "hijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu"),
                unhex('8e959b75dae313da8cf4f72814fc143f8f7779c6eb9f7fa17299'
                'aeadb6889018501d289e4900f7e4331b99dec4b5433ac7d329eeb6dd26'
                '545e96e55b874be909'))
            self.assertEqualBin(hash_str_iter(hashname,
                ("a" * 1000 for _ in range(1000))), unhex(
                'e718483d0ce769644e2e42c7bc15b4638e1f98b13b2044285632a803afa9'
                '73ebde0ff244877ea60a4cb0432ce577c31beb009c5c2c49aa2e4eadb217'
                'ad8cc09b'))
            self.assertEqualBin(hash_str(hashname,
                "01234567012345670123456701234567" * 20), unhex(
                '89d05ba632c699c31231ded4ffc127d5a894dad412c0e024db872d1abd2b'
                'a8141a0f85072a9be1e2aa04cf33c765cb510813a39cd5a84c4acaa64d3f'
                '3fb7bae9'))
            self.assertEqualBin(hash_str(hashname, b"\xD0"), unhex(
                '9992202938e882e73e20f6b69e68a0a7149090423d93c81bab3f21678d4a'
                'ceeee50e4e8cafada4c85a54ea8306826c4ad6e74cece9631bfa8a549b4a'
                'b3fbba15'))
            self.assertEqualBin(hash_str(hashname,
                unhex("8d4e3c0e3889191491816e9d98bff0a0")), unhex(
                'cb0b67a4b8712cd73c9aabc0b199e9269b20844afb75acbdd1c153c98289'
                '24c3ddedaafe669c5fdd0bc66f630f6773988213eb1b16f517ad0de4b2f0'
                'c95c90f8'))
            self.assertEqualBin(hash_str(hashname, unhex(
                "a55f20c411aad132807a502d65824e31a2305432aa3d06d3e282a8d84e0d"
                "e1de6974bf495469fc7f338f8054d58c26c49360c3e87af56523acf6d89d"
                "03e56ff2f868002bc3e431edc44df2f0223d4bb3b243586e1a7d92493669"
                "4fcbbaf88d9519e4eb50a644f8e4f95eb0ea95bc4465c8821aacd2fe15ab"
                "4981164bbb6dc32f969087a145b0d9cc9c67c22b763299419cc4128be9a0"
                "77b3ace634064e6d99283513dc06e7515d0d73132e9a0dc6d3b1f8b246f1"
                "a98a3fc72941b1e3bb2098e8bf16f268d64f0b0f4707fe1ea1a1791ba2f3"
                "c0c758e5f551863a96c949ad47d7fb40d2")), unhex(
                'c665befb36da189d78822d10528cbf3b12b3eef726039909c1a16a270d48'
                '719377966b957a878e720584779a62825c18da26415e49a7176a894e7510'
                'fd1451f5'))

    def testSHA3(self):
        # Source: all the SHA-3 test strings from
        # https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/example-values#aHashing
        # which are a multiple of 8 bits long.

        self.assertEqualBin(hash_str('sha3_224', ''), unhex("6b4e03423667dbb73b6e15454f0eb1abd4597f9a1b078e3f5b5a6bc7"))
        self.assertEqualBin(hash_str('sha3_224', unhex('a3')*200), unhex("9376816aba503f72f96ce7eb65ac095deee3be4bf9bbc2a1cb7e11e0"))
        self.assertEqualBin(hash_str('sha3_256', ''), unhex("a7ffc6f8bf1ed76651c14756a061d662f580ff4de43b49fa82d80a4b80f8434a"))
        self.assertEqualBin(hash_str('sha3_256', unhex('a3')*200), unhex("79f38adec5c20307a98ef76e8324afbfd46cfd81b22e3973c65fa1bd9de31787"))
        self.assertEqualBin(hash_str('sha3_384', ''), unhex("0c63a75b845e4f7d01107d852e4c2485c51a50aaaa94fc61995e71bbee983a2ac3713831264adb47fb6bd1e058d5f004"))
        self.assertEqualBin(hash_str('sha3_384', unhex('a3')*200), unhex("1881de2ca7e41ef95dc4732b8f5f002b189cc1e42b74168ed1732649ce1dbcdd76197a31fd55ee989f2d7050dd473e8f"))
        self.assertEqualBin(hash_str('sha3_512', ''), unhex("a69f73cca23a9ac5c8b567dc185a756e97c982164fe25859e0d1dcc1475c80a615b2123af1f5f94c11e3e9402c3ac558f500199d95b6d3e301758586281dcd26"))
        self.assertEqualBin(hash_str('sha3_512', unhex('a3')*200), unhex("e76dfad22084a8b1467fcf2ffa58361bec7628edf5f3fdc0e4805dc48caeeca81b7c13c30adf52a3659584739a2df46be589c51ca1a4a8416df6545a1ce8ba00"))
        self.assertEqualBin(hash_str('shake256_114bytes', ''), unhex("46b9dd2b0ba88d13233b3feb743eeb243fcd52ea62b81b82b50c27646ed5762fd75dc4ddd8c0f200cb05019d67b592f6fc821c49479ab48640292eacb3b7c4be141e96616fb13957692cc7edd0b45ae3dc07223c8e92937bef84bc0eab862853349ec75546f58fb7c2775c38462c5010d846"))
        self.assertEqualBin(hash_str('shake256_114bytes', unhex('a3')*200), unhex("cd8a920ed141aa0407a22d59288652e9d9f1a7ee0c1e7c1ca699424da84a904d2d700caae7396ece96604440577da4f3aa22aeb8857f961c4cd8e06f0ae6610b1048a7f64e1074cd629e85ad7566048efc4fb500b486a3309a8f26724c0ed628001a1099422468de726f1061d99eb9e93604"))

    def testBLAKE2b(self):
        # Test case from RFC 7693 appendix A.
        self.assertEqualBin(hash_str('blake2b', b'abc'), unhex(
            "ba80a53f981c4d0d6a2797b69f12f6e94c212f14685ac4b74b12bb6fdbffa2d1"
            "7d87c5392aab792dc252d5de4533cc9518d38aa8dbf1925ab92386edd4009923"))

        # A small number of test cases from the larger test vector
        # set, testing multiple blocks and the empty input.
        self.assertEqualBin(hash_str('blake2b', b''), unhex(
            "786a02f742015903c6c6fd852552d272912f4740e15847618a86e217f71f5419"
            "d25e1031afee585313896444934eb04b903a685b1448b755d56f701afe9be2ce"))
        self.assertEqualBin(hash_str('blake2b', unhex('00')), unhex(
            "2fa3f686df876995167e7c2e5d74c4c7b6e48f8068fe0e44208344d480f7904c"
            "36963e44115fe3eb2a3ac8694c28bcb4f5a0f3276f2e79487d8219057a506e4b"))
        self.assertEqualBin(hash_str('blake2b', bytes(range(255))), unhex(
            "5b21c5fd8868367612474fa2e70e9cfa2201ffeee8fafab5797ad58fefa17c9b"
            "5b107da4a3db6320baaf2c8617d5a51df914ae88da3867c2d41f0cc14fa67928"))

        # You can get this test program to run the full version of the
        # test vectors by modifying the source temporarily to set this
        # variable to a pathname where you downloaded the JSON file
        # blake2-kat.json.
        blake2_test_vectors_path = None
        if blake2_test_vectors_path is not None:
            with open(blake2_test_vectors_path) as fh:
                vectors = json.load(fh)
            for vector in vectors:
                if vector['hash'] != 'blake2b':
                    continue
                if len(vector['key']) != 0:
                    continue

                h = blake2b_new_general(len(vector['out']) // 2)
                ssh_hash_update(h, unhex(vector['in']))
                digest = ssh_hash_digest(h)
                self.assertEqualBin(digest, unhex(vector['out']))

    def testArgon2(self):
        # draft-irtf-cfrg-argon2-12 section 5
        self.assertEqualBin(
            argon2('d', 32, 3, 4, 32, b'\x01' * 32, b'\x02' * 16,
                   b'\x03' * 8, b'\x04' * 12),
            unhex("512b391b6f1162975371d30919734294"
                  "f868e3be3984f3c1a13a4db9fabe4acb"))
        self.assertEqualBin(
            argon2('i', 32, 3, 4, 32, b'\x01' * 32, b'\x02' * 16,
                   b'\x03' * 8, b'\x04' * 12),
            unhex("c814d9d1dc7f37aa13f0d77f2494bda1"
                  "c8de6b016dd388d29952a4c4672b6ce8"))
        self.assertEqualBin(
            argon2('id', 32, 3, 4, 32, b'\x01' * 32, b'\x02' * 16,
                   b'\x03' * 8, b'\x04' * 12),
            unhex("0d640df58d78766c08c037a34a8b53c9"
                  "d01ef0452d75b65eb52520e96b01e659"))

    def testHmacSHA(self):
        # Test cases from RFC 6234 section 8.5.
        def vector(key, message, s1=None, s256=None):
            if s1 is not None:
                self.assertEqualBin(
                    mac_str('hmac_sha1', key, message), unhex(s1))
            if s256 is not None:
                self.assertEqualBin(
                    mac_str('hmac_sha256', key, message), unhex(s256))
        vector(
            unhex("0b"*20), "Hi There",
            "b617318655057264e28bc0b6fb378c8ef146be00",
            "b0344c61d8db38535ca8afceaf0bf12b881dc200c9833da726e9376c2e32cff7")
        vector(
            "Jefe", "what do ya want for nothing?",
            "effcdf6ae5eb2fa2d27416d5f184df9c259a7c79",
            "5bdcc146bf60754e6a042426089575c75a003f089d2739839dec58b964ec3843")
        vector(
            unhex("aa"*20), unhex('dd'*50),
            "125d7342b9ac11cd91a39af48aa17b4f63f175d3",
            "773ea91e36800e46854db8ebd09181a72959098b3ef8c122d9635514ced565FE")
        vector(
            unhex("0102030405060708090a0b0c0d0e0f10111213141516171819"),
            unhex("cd"*50),
            "4c9007f4026250c6bc8414f9bf50c86c2d7235da",
            "82558a389a443c0ea4cc819899f2083a85f0faa3e578f8077a2e3ff46729665b")
        vector(
            unhex("aa"*80),
            "Test Using Larger Than Block-Size Key - Hash Key First",
            s1="aa4ae5e15272d00e95705637ce8a3b55ed402112")
        vector(
            unhex("aa"*131),
            "Test Using Larger Than Block-Size Key - Hash Key First",
            s256="60e431591ee0b67f0d8a26aacbf5b77f"
            "8e0bc6213728c5140546040f0ee37f54")
        vector(
            unhex("aa"*80),
            "Test Using Larger Than Block-Size Key and "
            "Larger Than One Block-Size Data",
            s1="e8e99d0f45237d786d6bbaa7965c7808bbff1a91")
        vector(
            unhex("aa"*131),
            "This is a test using a larger than block-size key and a "
            "larger than block-size data. The key needs to be hashed "
            "before being used by the HMAC algorithm.",
            s256="9B09FFA71B942FCB27635FBCD5B0E944BFDC63644F0713938A7F51535C3A35E2")

    def testEd25519(self):
        def vector(privkey, pubkey, message, signature):
            x, y = ecc_edwards_get_affine(eddsa_public(
                mp_from_bytes_le(privkey), 'ed25519'))
            self.assertEqual(int(y) | ((int(x) & 1) << 255),
                             int(mp_from_bytes_le(pubkey)))
            pubblob = ssh_string(b"ssh-ed25519") + ssh_string(pubkey)
            privblob = ssh_string(privkey)
            sigblob = ssh_string(b"ssh-ed25519") + ssh_string(signature)
            pubkey = ssh_key_new_pub('ed25519', pubblob)
            self.assertTrue(ssh_key_verify(pubkey, sigblob, message))
            privkey = ssh_key_new_priv('ed25519', pubblob, privblob)
            # By testing that the signature is exactly the one expected in
            # the test vector and not some equivalent one generated with a
            # different nonce, we're verifying in particular that we do
            # our deterministic nonce generation in the manner specified
            # by Ed25519. Getting that wrong would lead to no obvious
            # failure, but would surely turn out to be a bad idea sooner
            # or later...
            self.assertEqualBin(ssh_key_sign(privkey, message, 0), sigblob)

        # A cherry-picked example from DJB's test vector data at
        # https://ed25519.cr.yp.to/python/sign.input, which is too
        # large to copy into here in full.
        privkey = unhex(
            'c89955e0f7741d905df0730b3dc2b0ce1a13134e44fef3d40d60c020ef19df77')
        pubkey = unhex(
            'fdb30673402faf1c8033714f3517e47cc0f91fe70cf3836d6c23636e3fd2287c')
        message = unhex(
            '507c94c8820d2a5793cbf3442b3d71936f35fe3afef316')
        signature = unhex(
            '7ef66e5e86f2360848e0014e94880ae2920ad8a3185a46b35d1e07dea8fa8ae4'
            'f6b843ba174d99fa7986654a0891c12a794455669375bf92af4cc2770b579e0c')
        vector(privkey, pubkey, message, signature)

        # You can get this test program to run the full version of
        # DJB's test vectors by modifying the source temporarily to
        # set this variable to a pathname where you downloaded the
        # file.
        ed25519_test_vector_path = None
        if ed25519_test_vector_path is not None:
            with open(ed25519_test_vector_path) as f:
                for line in iter(f.readline, ""):
                    words = line.split(":")
                    # DJB's test vector input format concatenates a
                    # spare copy of the public key to the end of the
                    # private key, and a spare copy of the message to
                    # the end of the signature. Strip those off.
                    privkey = unhex(words[0])[:32]
                    pubkey = unhex(words[1])
                    message = unhex(words[2])
                    signature = unhex(words[3])[:64]
                    vector(privkey, pubkey, message, signature)

    def testEd448(self):
        def vector(privkey, pubkey, message, signature):
            x, y = ecc_edwards_get_affine(eddsa_public(
                mp_from_bytes_le(privkey), 'ed448'))
            self.assertEqual(int(y) | ((int(x) & 1) << 455),
                             int(mp_from_bytes_le(pubkey)))
            pubblob = ssh_string(b"ssh-ed448") + ssh_string(pubkey)
            privblob = ssh_string(privkey)
            sigblob = ssh_string(b"ssh-ed448") + ssh_string(signature)
            pubkey = ssh_key_new_pub('ed448', pubblob)
            self.assertTrue(ssh_key_verify(pubkey, sigblob, message))
            privkey = ssh_key_new_priv('ed448', pubblob, privblob)
            # Deterministic signature check as in Ed25519
            self.assertEqualBin(ssh_key_sign(privkey, message, 0), sigblob)

        # Source: RFC 8032 section 7.4

        privkey = unhex('6c82a562cb808d10d632be89c8513ebf6c929f34ddfa8c9f63c9960ef6e348a3528c8a3fcc2f044e39a3fc5b94492f8f032e7549a20098f95b')
        pubkey = unhex('5fd7449b59b461fd2ce787ec616ad46a1da1342485a70e1f8a0ea75d80e96778edf124769b46c7061bd6783df1e50f6cd1fa1abeafe8256180')
        message = b''
        signature = unhex('533a37f6bbe457251f023c0d88f976ae2dfb504a843e34d2074fd823d41a591f2b233f034f628281f2fd7a22ddd47d7828c59bd0a21bfd3980ff0d2028d4b18a9df63e006c5d1c2d345b925d8dc00b4104852db99ac5c7cdda8530a113a0f4dbb61149f05a7363268c71d95808ff2e652600')
        vector(privkey, pubkey, message, signature)

        privkey = unhex('c4eab05d357007c632f3dbb48489924d552b08fe0c353a0d4a1f00acda2c463afbea67c5e8d2877c5e3bc397a659949ef8021e954e0a12274e')
        pubkey = unhex('43ba28f430cdff456ae531545f7ecd0ac834a55d9358c0372bfa0c6c6798c0866aea01eb00742802b8438ea4cb82169c235160627b4c3a9480')
        message = unhex('03')
        signature = unhex('26b8f91727bd62897af15e41eb43c377efb9c610d48f2335cb0bd0087810f4352541b143c4b981b7e18f62de8ccdf633fc1bf037ab7cd779805e0dbcc0aae1cbcee1afb2e027df36bc04dcecbf154336c19f0af7e0a6472905e799f1953d2a0ff3348ab21aa4adafd1d234441cf807c03a00')
        vector(privkey, pubkey, message, signature)

        privkey = unhex('cd23d24f714274e744343237b93290f511f6425f98e64459ff203e8985083ffdf60500553abc0e05cd02184bdb89c4ccd67e187951267eb328')
        pubkey = unhex('dcea9e78f35a1bf3499a831b10b86c90aac01cd84b67a0109b55a36e9328b1e365fce161d71ce7131a543ea4cb5f7e9f1d8b00696447001400')
        message = unhex('0c3e544074ec63b0265e0c')
        signature = unhex('1f0a8888ce25e8d458a21130879b840a9089d999aaba039eaf3e3afa090a09d389dba82c4ff2ae8ac5cdfb7c55e94d5d961a29fe0109941e00b8dbdeea6d3b051068df7254c0cdc129cbe62db2dc957dbb47b51fd3f213fb8698f064774250a5028961c9bf8ffd973fe5d5c206492b140e00')
        vector(privkey, pubkey, message, signature)

        privkey = unhex('258cdd4ada32ed9c9ff54e63756ae582fb8fab2ac721f2c8e676a72768513d939f63dddb55609133f29adf86ec9929dccb52c1c5fd2ff7e21b')
        pubkey = unhex('3ba16da0c6f2cc1f30187740756f5e798d6bc5fc015d7c63cc9510ee3fd44adc24d8e968b6e46e6f94d19b945361726bd75e149ef09817f580')
        message = unhex('64a65f3cdedcdd66811e2915')
        signature = unhex('7eeeab7c4e50fb799b418ee5e3197ff6bf15d43a14c34389b59dd1a7b1b85b4ae90438aca634bea45e3a2695f1270f07fdcdf7c62b8efeaf00b45c2c96ba457eb1a8bf075a3db28e5c24f6b923ed4ad747c3c9e03c7079efb87cb110d3a99861e72003cbae6d6b8b827e4e6c143064ff3c00')
        vector(privkey, pubkey, message, signature)

        privkey = unhex('d65df341ad13e008567688baedda8e9dcdc17dc024974ea5b4227b6530e339bff21f99e68ca6968f3cca6dfe0fb9f4fab4fa135d5542ea3f01')
        pubkey = unhex('df9705f58edbab802c7f8363cfe5560ab1c6132c20a9f1dd163483a26f8ac53a39d6808bf4a1dfbd261b099bb03b3fb50906cb28bd8a081f00')
        message = unhex('bd0f6a3747cd561bdddf4640a332461a4a30a12a434cd0bf40d766d9c6d458e5512204a30c17d1f50b5079631f64eb3112182da3005835461113718d1a5ef944')
        signature = unhex('554bc2480860b49eab8532d2a533b7d578ef473eeb58c98bb2d0e1ce488a98b18dfde9b9b90775e67f47d4a1c3482058efc9f40d2ca033a0801b63d45b3b722ef552bad3b4ccb667da350192b61c508cf7b6b5adadc2c8d9a446ef003fb05cba5f30e88e36ec2703b349ca229c2670833900')
        vector(privkey, pubkey, message, signature)

        privkey = unhex('2ec5fe3c17045abdb136a5e6a913e32ab75ae68b53d2fc149b77e504132d37569b7e766ba74a19bd6162343a21c8590aa9cebca9014c636df5')
        pubkey = unhex('79756f014dcfe2079f5dd9e718be4171e2ef2486a08f25186f6bff43a9936b9bfe12402b08ae65798a3d81e22e9ec80e7690862ef3d4ed3a00')
        message = unhex('15777532b0bdd0d1389f636c5f6b9ba734c90af572877e2d272dd078aa1e567cfa80e12928bb542330e8409f3174504107ecd5efac61ae7504dabe2a602ede89e5cca6257a7c77e27a702b3ae39fc769fc54f2395ae6a1178cab4738e543072fc1c177fe71e92e25bf03e4ecb72f47b64d0465aaea4c7fad372536c8ba516a6039c3c2a39f0e4d832be432dfa9a706a6e5c7e19f397964ca4258002f7c0541b590316dbc5622b6b2a6fe7a4abffd96105eca76ea7b98816af0748c10df048ce012d901015a51f189f3888145c03650aa23ce894c3bd889e030d565071c59f409a9981b51878fd6fc110624dcbcde0bf7a69ccce38fabdf86f3bef6044819de11')
        signature = unhex('c650ddbb0601c19ca11439e1640dd931f43c518ea5bea70d3dcde5f4191fe53f00cf966546b72bcc7d58be2b9badef28743954e3a44a23f880e8d4f1cfce2d7a61452d26da05896f0a50da66a239a8a188b6d825b3305ad77b73fbac0836ecc60987fd08527c1a8e80d5823e65cafe2a3d00')
        vector(privkey, pubkey, message, signature)

        privkey = unhex('872d093780f5d3730df7c212664b37b8a0f24f56810daa8382cd4fa3f77634ec44dc54f1c2ed9bea86fafb7632d8be199ea165f5ad55dd9ce8')
        pubkey = unhex('a81b2e8a70a5ac94ffdbcc9badfc3feb0801f258578bb114ad44ece1ec0e799da08effb81c5d685c0c56f64eecaef8cdf11cc38737838cf400')
        message = unhex('6ddf802e1aae4986935f7f981ba3f0351d6273c0a0c22c9c0e8339168e675412a3debfaf435ed651558007db4384b650fcc07e3b586a27a4f7a00ac8a6fec2cd86ae4bf1570c41e6a40c931db27b2faa15a8cedd52cff7362c4e6e23daec0fbc3a79b6806e316efcc7b68119bf46bc76a26067a53f296dafdbdc11c77f7777e972660cf4b6a9b369a6665f02e0cc9b6edfad136b4fabe723d2813db3136cfde9b6d044322fee2947952e031b73ab5c603349b307bdc27bc6cb8b8bbd7bd323219b8033a581b59eadebb09b3c4f3d2277d4f0343624acc817804728b25ab797172b4c5c21a22f9c7839d64300232eb66e53f31c723fa37fe387c7d3e50bdf9813a30e5bb12cf4cd930c40cfb4e1fc622592a49588794494d56d24ea4b40c89fc0596cc9ebb961c8cb10adde976a5d602b1c3f85b9b9a001ed3c6a4d3b1437f52096cd1956d042a597d561a596ecd3d1735a8d570ea0ec27225a2c4aaff26306d1526c1af3ca6d9cf5a2c98f47e1c46db9a33234cfd4d81f2c98538a09ebe76998d0d8fd25997c7d255c6d66ece6fa56f11144950f027795e653008f4bd7ca2dee85d8e90f3dc315130ce2a00375a318c7c3d97be2c8ce5b6db41a6254ff264fa6155baee3b0773c0f497c573f19bb4f4240281f0b1f4f7be857a4e59d416c06b4c50fa09e1810ddc6b1467baeac5a3668d11b6ecaa901440016f389f80acc4db977025e7f5924388c7e340a732e554440e76570f8dd71b7d640b3450d1fd5f0410a18f9a3494f707c717b79b4bf75c98400b096b21653b5d217cf3565c9597456f70703497a078763829bc01bb1cbc8fa04eadc9a6e3f6699587a9e75c94e5bab0036e0b2e711392cff0047d0d6b05bd2a588bc109718954259f1d86678a579a3120f19cfb2963f177aeb70f2d4844826262e51b80271272068ef5b3856fa8535aa2a88b2d41f2a0e2fda7624c2850272ac4a2f561f8f2f7a318bfd5caf9696149e4ac824ad3460538fdc25421beec2cc6818162d06bbed0c40a387192349db67a118bada6cd5ab0140ee273204f628aad1c135f770279a651e24d8c14d75a6059d76b96a6fd857def5e0b354b27ab937a5815d16b5fae407ff18222c6d1ed263be68c95f32d908bd895cd76207ae726487567f9a67dad79abec316f683b17f2d02bf07e0ac8b5bc6162cf94697b3c27cd1fea49b27f23ba2901871962506520c392da8b6ad0d99f7013fbc06c2c17a569500c8a7696481c1cd33e9b14e40b82e79a5f5db82571ba97bae3ad3e0479515bb0e2b0f3bfcd1fd33034efc6245eddd7ee2086ddae2600d8ca73e214e8c2b0bdb2b047c6a464a562ed77b73d2d841c4b34973551257713b753632efba348169abc90a68f42611a40126d7cb21b58695568186f7e569d2ff0f9e745d0487dd2eb997cafc5abf9dd102e62ff66cba87')
        signature = unhex('e301345a41a39a4d72fff8df69c98075a0cc082b802fc9b2b6bc503f926b65bddf7f4c8f1cb49f6396afc8a70abe6d8aef0db478d4c6b2970076c6a0484fe76d76b3a97625d79f1ce240e7c576750d295528286f719b413de9ada3e8eb78ed573603ce30d8bb761785dc30dbc320869e1a00')
        vector(privkey, pubkey, message, signature)

    def testMontgomeryKex(self):
        # Unidirectional tests, consisting of an input random number
        # string and peer public value, giving the expected output
        # shared key. Source: RFC 7748 section 5.2.
        rfc7748s5_2 = [
            ('curve25519',
             'a546e36bf0527c9d3b16154b82465edd62144c0ac1fc5a18506a2244ba449ac4',
             'e6db6867583030db3594c1a424b15f7c726624ec26b3353b10a903a6d0ab1c4c',
             0xc3da55379de9c6908e94ea4df28d084f32eccf03491c71f754b4075577a28552),
            ('curve25519',
             '4b66e9d4d1b4673c5ad22691957d6af5c11b6421e0ea01d42ca4169e7918ba0d',
             'e5210f12786811d3f4b7959d0538ae2c31dbe7106fc03c3efc4cd549c715a493',
             0x95cbde9476e8907d7aade45cb4b873f88b595a68799fa152e6f8f7647aac7957),
            ('curve448',
             '3d262fddf9ec8e88495266fea19a34d28882acef045104d0d1aae121700a779c984c24f8cdd78fbff44943eba368f54b29259a4f1c600ad3',
             '06fce640fa3487bfda5f6cf2d5263f8aad88334cbd07437f020f08f9814dc031ddbdc38c19c6da2583fa5429db94ada18aa7a7fb4ef8a086',
             0xce3e4ff95a60dc6697da1db1d85e6afbdf79b50a2412d7546d5f239fe14fbaadeb445fc66a01b0779d98223961111e21766282f73dd96b6f),
            ('curve448',
             '203d494428b8399352665ddca42f9de8fef600908e0d461cb021f8c538345dd77c3e4806e25f46d3315c44e0a5b4371282dd2c8d5be3095f',
             '0fbcc2f993cd56d3305b0b7d9e55d4c1a8fb5dbb52f8e9a1e9b6201b165d015894e56c4d3570bee52fe205e28a78b91cdfbde71ce8d157db',
             0x884a02576239ff7a2f2f63b2db6a9ff37047ac13568e1e30fe63c4a7ad1b3ee3a5700df34321d62077e63633c575c1c954514e99da7c179d),
        ]

        for method, priv, pub, expected in rfc7748s5_2:
            with queued_specific_random_data(unhex(priv)):
                ecdh = ecdh_key_new(method, False)
            key = ecdh_key_getkey(ecdh, unhex(pub))
            self.assertEqual(key, ssh2_mpint(expected))

        # Bidirectional tests, consisting of the input random number
        # strings for both parties, and the expected public values and
        # shared key. Source: RFC 7748 section 6.
        rfc7748s6 = [
            ('curve25519', # section 6.1
             '77076d0a7318a57d3c16c17251b26645df4c2f87ebc0992ab177fba51db92c2a',
             '8520f0098930a754748b7ddcb43ef75a0dbf3a0d26381af4eba4a98eaa9b4e6a',
             '5dab087e624a8a4b79e17f8b83800ee66f3bb1292618b6fd1c2f8b27ff88e0eb',
             'de9edb7d7b7dc1b4d35b61c2ece435373f8343c85b78674dadfc7e146f882b4f',
             0x4a5d9d5ba4ce2de1728e3bf480350f25e07e21c947d19e3376f09b3c1e161742),
            ('curve448', # section 6.2
             '9a8f4925d1519f5775cf46b04b5800d4ee9ee8bae8bc5565d498c28dd9c9baf574a9419744897391006382a6f127ab1d9ac2d8c0a598726b',
             '9b08f7cc31b7e3e67d22d5aea121074a273bd2b83de09c63faa73d2c22c5d9bbc836647241d953d40c5b12da88120d53177f80e532c41fa0',
             '1c306a7ac2a0e2e0990b294470cba339e6453772b075811d8fad0d1d6927c120bb5ee8972b0d3e21374c9c921b09d1b0366f10b65173992d',
             '3eb7a829b0cd20f5bcfc0b599b6feccf6da4627107bdb0d4f345b43027d8b972fc3e34fb4232a13ca706dcb57aec3dae07bdc1c67bf33609',
             0x07fff4181ac6cc95ec1c16a94a0f74d12da232ce40a77552281d282bb60c0b56fd2464c335543936521c24403085d59a449a5037514a879d),
        ]

        for method, apriv, apub, bpriv, bpub, expected in rfc7748s6:
            with queued_specific_random_data(unhex(apriv)):
                alice = ecdh_key_new(method, False)
            with queued_specific_random_data(unhex(bpriv)):
                bob = ecdh_key_new(method, False)
            self.assertEqualBin(ecdh_key_getpublic(alice), unhex(apub))
            self.assertEqualBin(ecdh_key_getpublic(bob), unhex(bpub))
            akey = ecdh_key_getkey(alice, unhex(bpub))
            bkey = ecdh_key_getkey(bob, unhex(apub))
            self.assertEqual(akey, ssh2_mpint(expected))
            self.assertEqual(bkey, ssh2_mpint(expected))

    def testCRC32(self):
        self.assertEqual(crc32_rfc1662("123456789"), 0xCBF43926)
        self.assertEqual(crc32_ssh1("123456789"), 0x2DFD2D88)

        # Source:
        # http://reveng.sourceforge.net/crc-catalogue/17plus.htm#crc.cat.crc-32-iso-hdlc
        # which collected these from various sources.
        reveng_tests = [
            '000000001CDF4421',
            'F20183779DAB24',
            '0FAA005587B2C9B6',
            '00FF55111262A032',
            '332255AABBCCDDEEFF3D86AEB0',
            '926B559BA2DE9C',
            'FFFFFFFFFFFFFFFF',
            'C008300028CFE9521D3B08EA449900E808EA449900E8300102007E649416',
            '6173640ACEDE2D15',
        ]
        for vec in map(unhex, reveng_tests):
            # Each of these test vectors can be read two ways. One
            # interpretation is that the last four bytes are the
            # little-endian encoding of the CRC of the rest. (Because
            # that's how the CRC is attached to a string at the
            # sending end.)
            #
            # The other interpretation is that if you CRC the whole
            # string, _including_ the final four bytes, you expect to
            # get the same value for any correct string (because the
            # little-endian encoding matches the way the rest of the
            # string was interpreted as a polynomial in the first
            # place). That's how a receiver is intended to check
            # things.
            #
            # The expected output value is listed in RFC 1662, and in
            # the reveng.sourceforge.net catalogue, as 0xDEBB20E3. But
            # that's because their checking procedure omits the final
            # complement step that the construction procedure
            # includes. Our crc32_rfc1662 function does do the final
            # complement, so we expect the bitwise NOT of that value,
            # namely 0x2144DF1C.
            expected = struct.unpack("<L", vec[-4:])[0]
            self.assertEqual(crc32_rfc1662(vec[:-4]), expected)
            self.assertEqual(crc32_rfc1662(vec), 0x2144DF1C)

    def testHttpDigest(self):
        # RFC 7616 section 3.9.1
        params = ["Mufasa", "Circle of Life", "http-auth@example.org",
                  "GET", "/dir/index.html", "auth",
                  "7ypf/xlj9XXwfDPEoM4URrv/xwf94BcCAzFZH4GiTo0v",
                  "FQhe/qaU925kfnzjCev0ciny7QMkPqMAFRtzCUYo5tdS", 1,
                  "MD5", False]
        cnonce = b64('f2/wE4q74E6zIJEtWaHKaf5wv/H5QzzpXusqGemxURZJ')
        with queued_specific_random_data(cnonce):
            self.assertEqual(http_digest_response(*params),
                             b'username="Mufasa", '
                             b'realm="http-auth@example.org", '
                             b'uri="/dir/index.html", '
                             b'algorithm=MD5, '
                             b'nonce="7ypf/xlj9XXwfDPEoM4URrv/xwf94BcCAzFZH4GiTo0v", '
                             b'nc=00000001, '
                             b'cnonce="f2/wE4q74E6zIJEtWaHKaf5wv/H5QzzpXusqGemxURZJ", '
                             b'qop=auth, '
                             b'response="8ca523f5e9506fed4657c9700eebdbec", '
                             b'opaque="FQhe/qaU925kfnzjCev0ciny7QMkPqMAFRtzCUYo5tdS"')

        # And again with all the same details except the hash
        params[9] = "SHA-256"
        with queued_specific_random_data(cnonce):
            self.assertEqual(http_digest_response(*params),
                             b'username="Mufasa", '
                             b'realm="http-auth@example.org", '
                             b'uri="/dir/index.html", '
                             b'algorithm=SHA-256, '
                             b'nonce="7ypf/xlj9XXwfDPEoM4URrv/xwf94BcCAzFZH4GiTo0v", '
                             b'nc=00000001, '
                             b'cnonce="f2/wE4q74E6zIJEtWaHKaf5wv/H5QzzpXusqGemxURZJ", '
                             b'qop=auth, '
                             b'response="753927fa0e85d155564e2e272a28d1802ca10daf4496794697cf8db5856cb6c1", '
                             b'opaque="FQhe/qaU925kfnzjCev0ciny7QMkPqMAFRtzCUYo5tdS"')

        # RFC 7616 section 3.9.2, using SHA-512-256 (demonstrating
        # that they think it's just a 256-bit truncation of SHA-512,
        # and not the version defined in FIPS 180-4 which also uses
        # a different initial hash state), and username hashing.
        #
        # We don't actually support SHA-512-256 in the top-level proxy
        # client code (see the comment in proxy/cproxy.h). However,
        # this internal http_digest_response function still provides
        # it, simply so that we can run this test case from the RFC,
        # because it's the only provided test case for username
        # hashing, and this confirms that we've got the preimage right
        # for the username hash.
        params = ["J\u00E4s\u00F8n Doe".encode("UTF-8"),
                  "Secret, or not?", "api@example.org",
                  "GET", "/doe.json", "auth",
                  "5TsQWLVdgBdmrQ0XsxbDODV+57QdFR34I9HAbC/RVvkK",
                  "HRPCssKJSGjCrkzDg8OhwpzCiGPChXYjwrI2QmXDnsOS", 1,
                  "SHA-512-256", True]
        cnonce = b64('NTg6RKcb9boFIAS3KrFK9BGeh+iDa/sm6jUMp2wds69v')
        with queued_specific_random_data(cnonce):
            self.assertEqual(http_digest_response(*params),
                             b'username="488869477bf257147b804c45308cd62ac4e25eb717b12b298c79e62dcea254ec", '
                             b'realm="api@example.org", '
                             b'uri="/doe.json", '
                             b'algorithm=SHA-512-256, '
                             b'nonce="5TsQWLVdgBdmrQ0XsxbDODV+57QdFR34I9HAbC/RVvkK", '
                             b'nc=00000001, '
                             b'cnonce="NTg6RKcb9boFIAS3KrFK9BGeh+iDa/sm6jUMp2wds69v", '
                             b'qop=auth, '
                             b'response="ae66e67d6b427bd3f120414a82e4acff38e8ecd9101d6c861229025f607a79dd", '
                             b'opaque="HRPCssKJSGjCrkzDg8OhwpzCiGPChXYjwrI2QmXDnsOS", '
                             b'userhash=true')

    def testAESGCM(self):
        def test(key, iv, plaintext, aad, ciphertext, mac):
            c = ssh_cipher_new('aes{:d}_gcm'.format(8*len(key)))
            m = ssh2_mac_new('aesgcm_{}'.format(impl), c)
            if m is None: return # skip test if HW GCM not available
            c.setkey(key)
            c.setiv(iv + b'\0'*4)
            m.setkey(b'')
            aesgcm_set_prefix_lengths(m, 0, len(aad))

            # Some test cases have plaintext/ciphertext that is not a
            # multiple of the cipher block size. Our MAC
            # implementation supports this, but the cipher
            # implementation expects block-granular input.
            padlen = 15 & -len(plaintext)
            ciphertext_got = c.encrypt(plaintext + b'0' * padlen)[
                :len(plaintext)]

            m.start()
            m.update(aad + ciphertext)
            mac_got = m.genresult()

            self.assertEqualBin(ciphertext_got, ciphertext)
            self.assertEqualBin(mac_got, mac)

            c.setiv(iv + b'\0'*4)

        for impl in get_aesgcm_impls():
            # 'The Galois/Counter Mode of Operation', McGrew and
            # Viega, Appendix B. All the tests except the ones whose
            # IV is the wrong length, because handling that requires
            # an extra evaluation of the polynomial hash, which is
            # never used in an SSH context, so I didn't implement it
            # just for the sake of test vectors.

            # Test Case 1
            test(unhex('00000000000000000000000000000000'),
                 unhex('000000000000000000000000'),
                 unhex(''), unhex(''), unhex(''),
                 unhex('58e2fccefa7e3061367f1d57a4e7455a'))

            # Test Case 2
            test(unhex('00000000000000000000000000000000'),
                 unhex('000000000000000000000000'),
                 unhex('00000000000000000000000000000000'),
                 unhex(''),
                 unhex('0388dace60b6a392f328c2b971b2fe78'),
                 unhex('ab6e47d42cec13bdf53a67b21257bddf'))

            # Test Case 3
            test(unhex('feffe9928665731c6d6a8f9467308308'),
                 unhex('cafebabefacedbaddecaf888'),
                 unhex('d9313225f88406e5a55909c5aff5269a'
                       '86a7a9531534f7da2e4c303d8a318a72'
                       '1c3c0c95956809532fcf0e2449a6b525'
                       'b16aedf5aa0de657ba637b391aafd255'),
                 unhex(''),
                 unhex('42831ec2217774244b7221b784d0d49c'
                       'e3aa212f2c02a4e035c17e2329aca12e'
                       '21d514b25466931c7d8f6a5aac84aa05'
                       '1ba30b396a0aac973d58e091473f5985'),
                 unhex('4d5c2af327cd64a62cf35abd2ba6fab4'))

            # Test Case 4
            test(unhex('feffe9928665731c6d6a8f9467308308'),
                 unhex('cafebabefacedbaddecaf888'),
                 unhex('d9313225f88406e5a55909c5aff5269a'
                       '86a7a9531534f7da2e4c303d8a318a72'
                       '1c3c0c95956809532fcf0e2449a6b525'
                       'b16aedf5aa0de657ba637b39'),
                 unhex('feedfacedeadbeeffeedfacedeadbeef'
                       'abaddad2'),
                 unhex('42831ec2217774244b7221b784d0d49c'
                       'e3aa212f2c02a4e035c17e2329aca12e'
                       '21d514b25466931c7d8f6a5aac84aa05'
                       '1ba30b396a0aac973d58e091'),
                 unhex('5bc94fbc3221a5db94fae95ae7121a47'))

            # Test Case 7
            test(unhex('00000000000000000000000000000000'
                       '0000000000000000'),
                 unhex('000000000000000000000000'),
                 unhex(''), unhex(''), unhex(''),
                 unhex('cd33b28ac773f74ba00ed1f312572435'))

            # Test Case 8
            test(unhex('00000000000000000000000000000000'
                       '0000000000000000'),
                 unhex('000000000000000000000000'),
                 unhex('00000000000000000000000000000000'),
                 unhex(''),
                 unhex('98e7247c07f0fe411c267e4384b0f600'),
                 unhex('2ff58d80033927ab8ef4d4587514f0fb'))

            # Test Case 9
            test(unhex('feffe9928665731c6d6a8f9467308308'
                       'feffe9928665731c'),
                 unhex('cafebabefacedbaddecaf888'),
                 unhex('d9313225f88406e5a55909c5aff5269a'
                       '86a7a9531534f7da2e4c303d8a318a72'
                       '1c3c0c95956809532fcf0e2449a6b525'
                       'b16aedf5aa0de657ba637b391aafd255'),
                 unhex(''),
                 unhex('3980ca0b3c00e841eb06fac4872a2757'
                       '859e1ceaa6efd984628593b40ca1e19c'
                       '7d773d00c144c525ac619d18c84a3f47'
                       '18e2448b2fe324d9ccda2710acade256'),
                 unhex('9924a7c8587336bfb118024db8674a14'))

            # Test Case 10
            test(unhex('feffe9928665731c6d6a8f9467308308'
                       'feffe9928665731c'),
                 unhex('cafebabefacedbaddecaf888'),
                 unhex('d9313225f88406e5a55909c5aff5269a'
                       '86a7a9531534f7da2e4c303d8a318a72'
                       '1c3c0c95956809532fcf0e2449a6b525'
                       'b16aedf5aa0de657ba637b39'),
                 unhex('feedfacedeadbeeffeedfacedeadbeef'
                       'abaddad2'),
                 unhex('3980ca0b3c00e841eb06fac4872a2757'
                       '859e1ceaa6efd984628593b40ca1e19c'
                       '7d773d00c144c525ac619d18c84a3f47'
                       '18e2448b2fe324d9ccda2710'),
                 unhex('2519498e80f1478f37ba55bd6d27618c'))

            # Test Case 13
            test(unhex('00000000000000000000000000000000'
                       '00000000000000000000000000000000'),
                 unhex('000000000000000000000000'),
                 unhex(''), unhex(''), unhex(''),
                 unhex('530f8afbc74536b9a963b4f1c4cb738b'))

            # Test Case 14
            test(unhex('00000000000000000000000000000000'
                       '00000000000000000000000000000000'),
                 unhex('000000000000000000000000'),
                 unhex('00000000000000000000000000000000'),
                 unhex(''),
                 unhex('cea7403d4d606b6e074ec5d3baf39d18'),
                 unhex('d0d1c8a799996bf0265b98b5d48ab919'))

            # Test Case 15
            test(unhex('feffe9928665731c6d6a8f9467308308'
                       'feffe9928665731c6d6a8f9467308308'),
                 unhex('cafebabefacedbaddecaf888'),
                 unhex('d9313225f88406e5a55909c5aff5269a'
                       '86a7a9531534f7da2e4c303d8a318a72'
                       '1c3c0c95956809532fcf0e2449a6b525'
                       'b16aedf5aa0de657ba637b391aafd255'),
                 unhex(''),
                 unhex('522dc1f099567d07f47f37a32a84427d'
                       '643a8cdcbfe5c0c97598a2bd2555d1aa'
                       '8cb08e48590dbb3da7b08b1056828838'
                       'c5f61e6393ba7a0abcc9f662898015ad'),
                 unhex('b094dac5d93471bdec1a502270e3cc6c'))

            # Test Case 16
            test(unhex('feffe9928665731c6d6a8f9467308308'
                       'feffe9928665731c6d6a8f9467308308'),
                 unhex('cafebabefacedbaddecaf888'),
                 unhex('d9313225f88406e5a55909c5aff5269a'
                       '86a7a9531534f7da2e4c303d8a318a72'
                       '1c3c0c95956809532fcf0e2449a6b525'
                       'b16aedf5aa0de657ba637b39'),
                 unhex('feedfacedeadbeeffeedfacedeadbeef'
                       'abaddad2'),
                 unhex('522dc1f099567d07f47f37a32a84427d'
                       '643a8cdcbfe5c0c97598a2bd2555d1aa'
                       '8cb08e48590dbb3da7b08b1056828838'
                       'c5f61e6393ba7a0abcc9f662'),
                 unhex('76fc6ece0f4e1768cddf8853bb2d551b'))

if __name__ == "__main__":
    # Run the tests, suppressing automatic sys.exit and collecting the
    # unittest.TestProgram instance returned by unittest.main instead.
    testprogram = unittest.main(exit=False)

    # If any test failed, just exit with failure status.
    if not testprogram.result.wasSuccessful():
        childprocess.wait_for_exit()
        sys.exit(1)

    # But if no tests failed, we have one last check to do: look at
    # the subprocess's return status, so that if Leak Sanitiser
    # detected any memory leaks, the success return status will turn
    # into a failure at the last minute.
    childprocess.check_return_status()