Welcome to mirror list, hosted at ThFree Co, Russian Federation.

thread_pool_delayed.cpp « base - github.com/mapsme/omim.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 5bab6538a919877b3557e80363fc169f98c3adf8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
#include "base/thread_pool_delayed.hpp"

#include <array>

using namespace std;

namespace base
{
namespace thread_pool
{
namespace delayed
{
namespace
{
TaskLoop::TaskId MakeNextId(TaskLoop::TaskId id, TaskLoop::TaskId minId, TaskLoop::TaskId maxId)
{
  if (id == maxId)
    return minId;

  return ++id;
}
}  // namespace

ThreadPool::ThreadPool(size_t threadsCount /* = 1 */, Exit e /* = Exit::SkipPending */)
  : m_exit(e)
  , m_immediateLastId(kImmediateMaxId)
  , m_delayedLastId(kDelayedMaxId)
{
  for (size_t i = 0; i < threadsCount; ++i)
    m_threads.emplace_back(threads::SimpleThread(&ThreadPool::ProcessTasks, this));
}

ThreadPool::~ThreadPool()
{
  ShutdownAndJoin();
}

TaskLoop::PushResult ThreadPool::Push(Task && t)
{
  return AddImmediate(move(t));
}

TaskLoop::PushResult ThreadPool::Push(Task const & t)
{
  return AddImmediate(t);
}

TaskLoop::PushResult ThreadPool::PushDelayed(Duration const & delay, Task && t)
{
  return AddDelayed(delay, move(t));
}

TaskLoop::PushResult ThreadPool::PushDelayed(Duration const & delay, Task const & t)
{
  return AddDelayed(delay, t);
}

template <typename T>
TaskLoop::PushResult ThreadPool::AddImmediate(T && task)
{
  return AddTask([&]() {
    auto const newId = MakeNextId(m_immediateLastId, kImmediateMinId, kImmediateMaxId);
    VERIFY(m_immediate.Emplace(newId, forward<T>(task)), ());
    m_immediateLastId = newId;
    return newId;
  });
}

template <typename T>
TaskLoop::PushResult ThreadPool::AddDelayed(Duration const & delay, T && task)
{
  auto const when = Now() + delay;
  return AddTask([&]() {
    auto const newId = MakeNextId(m_delayedLastId, kDelayedMinId, kDelayedMaxId);
    m_delayed.Add(newId, make_shared<DelayedTask>(newId, when, forward<T>(task)));
    m_delayedLastId = newId;
    return newId;
  });
}

template <typename Add>
TaskLoop::PushResult ThreadPool::AddTask(Add && add)
{
  lock_guard<mutex> lk(m_mu);
  if (m_shutdown)
    return {};

  auto const newId = add();
  m_cv.notify_one();
  return {true, newId};
}

void ThreadPool::ProcessTasks()
{
  ImmediateQueue pendingImmediate;
  DelayedQueue pendingDelayed;

  while (true)
  {
    array<Task, QUEUE_TYPE_COUNT> tasks;

    {
      unique_lock<mutex> lk(m_mu);
      if (!m_delayed.IsEmpty())
      {
        // We need to wait until the moment when the earliest delayed
        // task may be executed, given that an immediate task or a
        // delayed task with an earlier execution time may arrive
        // while we are waiting.
        auto const when = m_delayed.GetFirstValue()->m_when;
        m_cv.wait_until(lk, when, [this, when]() {
          return m_shutdown || !m_immediate.IsEmpty() || m_delayed.IsEmpty() ||
                 (!m_delayed.IsEmpty() && m_delayed.GetFirstValue()->m_when < when);
        });
      }
      else
      {
        // When there are no delayed tasks in the queue, we need to
        // wait until there is at least one immediate or delayed task.
        m_cv.wait(lk,
                  [this]() { return m_shutdown || !m_immediate.IsEmpty() || !m_delayed.IsEmpty(); });
      }

      if (m_shutdown)
      {
        switch (m_exit)
        {
        case Exit::ExecPending:
          ASSERT(pendingImmediate.IsEmpty(), ());
          m_immediate.Swap(pendingImmediate);

          ASSERT(pendingDelayed.IsEmpty(), ());
          m_delayed.Swap(pendingDelayed);
          break;
        case Exit::SkipPending: break;
        }

        break;
      }

      auto const canExecImmediate = !m_immediate.IsEmpty();
      auto const canExecDelayed =
          !m_delayed.IsEmpty() && Now() >= m_delayed.GetFirstValue()->m_when;

      if (canExecImmediate)
      {
        tasks[QUEUE_TYPE_IMMEDIATE] = move(m_immediate.Front());
        m_immediate.PopFront();
      }

      if (canExecDelayed)
      {
        tasks[QUEUE_TYPE_DELAYED] = move(m_delayed.GetFirstValue()->m_task);
        m_delayed.RemoveValue(m_delayed.GetFirstValue());
      }
    }

    for (auto const & task : tasks)
    {
      if (task)
        task();
    }
  }

  for (; !pendingImmediate.IsEmpty(); pendingImmediate.PopFront())
    pendingImmediate.Front()();

  while (!pendingDelayed.IsEmpty())
  {
    auto const & top = *pendingDelayed.GetFirstValue();
    while (true)
    {
      auto const now = Now();
      if (now >= top.m_when)
        break;
      auto const delay = top.m_when - now;
      this_thread::sleep_for(delay);
    }
    ASSERT(Now() >= top.m_when, ());
    top.m_task();

    pendingDelayed.RemoveValue(pendingDelayed.GetFirstValue());
  }
}

bool ThreadPool::Cancel(TaskId id)
{
  lock_guard<mutex> lk(m_mu);

  if (m_shutdown || id == kNoId)
    return false;

  if (id <= kImmediateMaxId)
  {
    if (m_immediate.Erase(id))
    {
      m_cv.notify_one();
      return true;
    }
  }
  else
  {
    if (m_delayed.RemoveKey(id))
    {
      m_cv.notify_one();
      return true;
    }
  }

  return false;
}

bool ThreadPool::Shutdown(Exit e)
{
  lock_guard<mutex> lk(m_mu);
  if (m_shutdown)
    return false;
  m_shutdown = true;
  m_exit = e;
  m_cv.notify_all();
  return true;
}

void ThreadPool::ShutdownAndJoin()
{
  ASSERT(m_checker.CalledOnOriginalThread(), ());
  Shutdown(m_exit);
  for (auto & thread : m_threads)
  {
    if (thread.joinable())
      thread.join();
  }
  m_threads.clear();
}

bool ThreadPool::IsShutDown()
{
  lock_guard<mutex> lk(m_mu);
  return m_shutdown;
}
}  // namespace delayed
}  // namespace thread_pool
}  // namespace base