Welcome to mirror list, hosted at ThFree Co, Russian Federation.

trie_builder.hpp « coding - github.com/mapsme/omim.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: f14461284c8f33d2c7069692db8cafda8ee2bc57 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
#pragma once
#include "../coding/byte_stream.hpp"
#include "../coding/varint.hpp"
#include "../base/buffer_vector.hpp"
#include "../std/algorithm.hpp"

// Trie format:
// [1: header]
// [node] ... [node]

// Nodes are written in post-order (first child, last child, parent). Contents of nodes is writern
// reversed. The resulting file should be reverese before use! Then its contents will appear in
// pre-order alphabetically reversed (parent, last child, first child).

// Leaf node format:
// [value] ... [value]

// Internal node format:
// [1: header]: [2: min(valueCount, 3)] [6: min(childCount, 63)]
// [vu valueCount]: if valueCount in header == 3
// [vu childCount]: if childCount in header == 63
// [value] ... [value]
// [childInfo] ... [childInfo]

// Child info format:
// Every char of the edge is encoded as varint difference from the previous char. First char is
// encoded as varint difference from the base char, which is the last char of the current prefix.
//
// [1: header]: [1: isLeaf] [1: isShortEdge] [6: (edgeChar0 - baseChar) or min(edgeLen-1, 63)]
// [vu edgeLen-1]: if edgeLen-1 in header == 63
// [vi edgeChar0 - baseChar]
// [vi edgeChar1 - edgeChar0]
// ...
// [vi edgeCharN - edgeCharN-1]
// [edge value]
// [child size]: if the child is not the last one when reading

namespace trie
{
namespace builder
{

template <typename SinkT, typename ChildIterT>
void WriteNode(SinkT & sink, TrieChar baseChar, uint32_t const valueCount,
               void const * const valuesDataSize, uint32_t const valuesSize,
               ChildIterT const begChild, ChildIterT const endChild,
               bool isRoot = false)
{
  if (begChild == endChild && !isRoot)
  {
    // Leaf node.
    sink.Write(valuesDataSize, valuesSize);
    return;
  }
  uint32_t const childCount = endChild - begChild;
  uint8_t const header = static_cast<uint32_t>((min(valueCount, 3U) << 6) + min(childCount, 63U));
  sink.Write(&header, 1);
  if (valueCount >= 3)
    WriteVarUint(sink, valueCount);
  if (childCount >= 63)
    WriteVarUint(sink, childCount);
  sink.Write(valuesDataSize, valuesSize);
  for (ChildIterT it = begChild; it != endChild; /*++it*/)
  {
    uint8_t header = (it->IsLeaf() ? 128 : 0);
    TrieChar const * const edge = it->GetEdge();
    uint32_t const edgeSize = it->GetEdgeSize();
    CHECK_NOT_EQUAL(edgeSize, 0, ());
    CHECK_LESS(edgeSize, 100000, ());
    uint32_t const diff0 = bits::ZigZagEncode(int32_t(edge[0] - baseChar));
    if (edgeSize == 1 && (diff0 & ~63U) == 0)
    {
        header |= 64;
        header |= diff0;
        WriteToSink(sink, header);
    }
    else
    {
      if (edgeSize - 1 < 63)
      {
        header |= edgeSize - 1;
        WriteToSink(sink, header);
      }
      else
      {
        header |= 63;
        WriteToSink(sink, header);
        WriteVarUint(sink, edgeSize - 1);
      }
      for (uint32_t i = 0; i < edgeSize; ++i)
      {
        WriteVarInt(sink, int32_t(edge[i] - baseChar));
        baseChar = edge[i];
      }
    }
    baseChar = edge[0];
    sink.Write(it->GetEdgeValue(), it->GetEdgeValueSize());

    uint32_t const childSize = it->Size();
    if (++it != endChild)
      WriteVarUint(sink, childSize);
  }
}

template <typename SinkT, typename ChildIterT>
void WriteNodeReverse(SinkT & sink, TrieChar baseChar, uint32_t const valueCount,
                      void const * const valuesDataSize, uint32_t const valuesSize,
                      ChildIterT const begChild, ChildIterT const endChild,
                      bool isRoot = false)
{
  typedef buffer_vector<uint8_t, 64> OutStorageType;
  OutStorageType out;
  PushBackByteSink<OutStorageType> outSink(out);
  WriteNode(outSink, baseChar, valueCount, valuesDataSize, valuesSize, begChild, endChild, isRoot);
  reverse(out.begin(), out.end());
  sink.Write(out.data(), out.size());
}

struct ChildInfo
{
  bool m_isLeaf;
  uint32_t m_size;
  buffer_vector<TrieChar, 8> m_edge;
  typedef buffer_vector<uint8_t, 8> EdgeValueStorageType;
  EdgeValueStorageType m_edgeValue;

  ChildInfo(bool isLeaf, uint32_t size, TrieChar c) : m_isLeaf(isLeaf), m_size(size), m_edge(1, c)
  {
  }

  uint32_t Size() const { return m_size; }
  bool IsLeaf() const { return m_isLeaf; }
  TrieChar const * GetEdge() const { return m_edge.data(); }
  uint32_t GetEdgeSize() const { return m_edge.size(); }
  void const * GetEdgeValue() const { return m_edgeValue.data(); }
  uint32_t GetEdgeValueSize() const { return m_edgeValue.size(); }
};

template <class EdgeBuilderT>
struct NodeInfo
{
  uint64_t m_begPos;
  TrieChar m_char;
  vector<ChildInfo> m_children;
  buffer_vector<uint8_t, 32> m_values;
  uint32_t m_valueCount;
  EdgeBuilderT m_edgeBuilder;

  NodeInfo() : m_valueCount(0) {}
  NodeInfo(uint64_t pos, TrieChar trieChar, EdgeBuilderT const & edgeBuilder)
    : m_begPos(pos), m_char(trieChar), m_valueCount(0), m_edgeBuilder(edgeBuilder) {}
};

template <typename SinkT, class NodesT>
void PopNodes(SinkT & sink, NodesT & nodes, int nodesToPop)
{
  typedef typename NodesT::value_type NodeInfoType;
  ASSERT_GREATER(nodes.size(), nodesToPop, ());
  for (; nodesToPop > 0; --nodesToPop)
  {
    NodeInfoType & node = nodes.back();
    NodeInfoType & prevNode = nodes[nodes.size() - 2];

    if (node.m_valueCount == 0 && node.m_children.size() <= 1)
    {
      ASSERT(node.m_values.empty(), ());
      ASSERT_EQUAL(node.m_children.size(), 1, ());
      ChildInfo & child = node.m_children[0];
      prevNode.m_children.push_back(ChildInfo(child.m_isLeaf, child.m_size, node.m_char));
      prevNode.m_children.back().m_edge.append(child.m_edge.begin(), child.m_edge.end());
    }
    else
    {
      WriteNodeReverse(sink, node.m_char, node.m_valueCount,
                       node.m_values.data(), node.m_values.size(),
                       node.m_children.rbegin(), node.m_children.rend());
      prevNode.m_children.push_back(ChildInfo(node.m_children.empty(),
                                              static_cast<uint32_t>(sink.Pos() - node.m_begPos),
                                              node.m_char));
    }

    prevNode.m_edgeBuilder.AddEdge(node.m_edgeBuilder);
    PushBackByteSink<ChildInfo::EdgeValueStorageType> sink(prevNode.m_children.back().m_edgeValue);
    node.m_edgeBuilder.StoreValue(sink);

    nodes.pop_back();
  }
}

struct EmptyEdgeBuilder
{
  typedef unsigned char ValueType;

  void AddValue(void const *, uint32_t) {}
  void AddEdge(EmptyEdgeBuilder &) {}
  template <typename SinkT> void StoreValue(SinkT &) const {}
};

template <typename MaxValueCalcT>
struct MaxValueEdgeBuilder
{
  typedef typename MaxValueCalcT::ValueType ValueType;

  MaxValueCalcT m_maxCalc;
  ValueType m_value;

  explicit MaxValueEdgeBuilder(MaxValueCalcT const & maxCalc = MaxValueCalcT())
    : m_maxCalc(maxCalc), m_value() {}

  MaxValueEdgeBuilder(MaxValueEdgeBuilder<MaxValueCalcT> const & edgeBuilder)
    : m_maxCalc(edgeBuilder.m_maxCalc), m_value(edgeBuilder.m_value) {}

  void AddValue(void const * p, uint32_t size)
  {
    ValueType value = m_maxCalc(p, size);
    if (m_value < value)
      m_value = value;
  }

  void AddEdge(MaxValueEdgeBuilder & edgeBuilder)
  {
    if (m_value < edgeBuilder.m_value)
      m_value = edgeBuilder.m_value;
  }

  template <typename SinkT> void StoreValue(SinkT & sink) const
  {
    sink.Write(&m_value, sizeof(m_value));
  }
};

}  // namespace builder

template <typename SinkT, typename IterT, class EdgeBuilderT>
void Build(SinkT & sink, IterT const beg, IterT const end, EdgeBuilderT const & edgeBuilder)
{
  typedef buffer_vector<TrieChar, 32> TrieString;
  typedef buffer_vector<uint8_t, 32> TrieValue;
  typedef builder::NodeInfo<EdgeBuilderT> NodeInfoT;

  buffer_vector<NodeInfoT, 32> nodes;
  nodes.push_back(NodeInfoT(sink.Pos(), DEFAULT_CHAR, edgeBuilder));

  TrieString prevKey;
  TrieValue value;

  typedef typename IterT::value_type ElementT;
  ElementT prevE;

  for (IterT it = beg; it != end; ++it)
  {
    ElementT e = *it;
    if (e == prevE && it != beg)
      continue;

    TrieChar const * const pKeyData = e.GetKeyData();
    TrieString key(pKeyData, pKeyData + e.GetKeySize());
    CHECK(!(key < prevKey), (key, prevKey));
    size_t nCommon = 0;
    while (nCommon < min(key.size(), prevKey.size()) && prevKey[nCommon] == key[nCommon])
      ++nCommon;

    builder::PopNodes(sink, nodes, nodes.size() - nCommon - 1); // Root is also a common node.

    uint64_t const pos = sink.Pos();
    for (size_t i = nCommon; i < key.size(); ++i)
      nodes.push_back(builder::NodeInfo<EdgeBuilderT>(pos, key[i], edgeBuilder));

    e.SerializeValue(value);
    nodes.back().m_values.insert(nodes.back().m_values.end(),
                                 value.begin(), value.end());
    nodes.back().m_valueCount += 1;
    nodes.back().m_edgeBuilder.AddValue(value.data(), value.size());

    prevKey.swap(key);
    prevE.Swap(e);
  }

  // Pop all the nodes from the stack.
  builder::PopNodes(sink, nodes, nodes.size() - 1);

  // Write the root.
  WriteNodeReverse(sink, DEFAULT_CHAR, nodes.back().m_valueCount,
                   nodes.back().m_values.data(), nodes.back().m_values.size(),
                   nodes.back().m_children.rbegin(), nodes.back().m_children.rend(),
                   true);
}

}  // namespace trie