Welcome to mirror list, hosted at ThFree Co, Russian Federation.

batcher_helpers.cpp « drape - github.com/mapsme/omim.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 7fea0d6f82a34d7db025a46c83d0235e639ff5a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
#include "drape/batcher_helpers.hpp"
#include "drape/attribute_provider.hpp"
#include "drape/cpu_buffer.hpp"
#include "drape/index_storage.hpp"
#include "drape/glextensions_list.hpp"

#include "base/assert.hpp"
#include "base/math.hpp"

#include "std/algorithm.hpp"

namespace dp
{

namespace
{

bool IsEnoughMemory(uint32_t avVertex, uint32_t existVertex, uint32_t avIndex, uint32_t existIndex)
{
  return avVertex >= existVertex && avIndex >= existIndex;
}

template<typename TGenerator> void GenerateIndices(void * indexStorage, uint32_t count, uint32_t startIndex)
{
  GenerateIndices<TGenerator>(indexStorage, count, TGenerator(startIndex));
}

template<typename TGenerator> void GenerateIndices(void * indexStorage, uint32_t count, TGenerator const & generator)
{
  if (dp::IndexStorage::IsSupported32bit())
  {
    uint32_t * pIndexStorage = static_cast<uint32_t *>(indexStorage);
    generate(pIndexStorage, pIndexStorage + count, generator);
  }
  else
  {
    uint16_t * pIndexStorage = static_cast<uint16_t *>(indexStorage);
    generate(pIndexStorage, pIndexStorage + count, generator);
  }
}

class IndexGenerator
{
public:
  IndexGenerator(uint32_t startIndex)
    : m_startIndex(startIndex)
    , m_counter(0)
    , m_minStriptCounter(0) {}

protected:
  uint32_t GetCounter() { return m_counter++; }
  void ResetCounter()
  {
    m_counter = 0;
    m_minStriptCounter = 0;
  }

  uint32_t const m_startIndex;

  int16_t GetCWNormalizer()
  {
    int16_t tmp = m_minStriptCounter;
    m_minStriptCounter = my::cyclicClamp(m_minStriptCounter + 1, 0, 5);
    switch (tmp)
    {
      case 4: return 1;
      case 5: return -1;
      default: return 0;
    }
  }

private:
  uint32_t m_counter;
  uint8_t m_minStriptCounter;
};

class ListIndexGenerator : public IndexGenerator
{
public:
  ListIndexGenerator(uint32_t startIndex) : IndexGenerator(startIndex) {}
  uint32_t operator()() { return m_startIndex + GetCounter(); }
};

class StripIndexGenerator : public IndexGenerator
{
public:
  StripIndexGenerator(uint32_t startIndex)
    : IndexGenerator(startIndex)
    , m_minStriptCounter(0) {}
  uint32_t operator()()
  {
    uint32_t const counter = GetCounter();
    return m_startIndex + counter - 2 * (counter / 3) + GetCWNormalizer();
  }

private:
  uint32_t m_minStriptCounter;
};

class FanIndexGenerator : public IndexGenerator
{
public:
  FanIndexGenerator(uint32_t startIndex) : IndexGenerator(startIndex) {}
  uint32_t operator()()
  {
    uint32_t const counter = GetCounter();
    if ((counter % 3) == 0)
      return m_startIndex;
    return m_startIndex + counter - 2 * (counter / 3);
  }
};

class ListOfStriptGenerator : public IndexGenerator
{
public:
  ListOfStriptGenerator(uint32_t startIndex, uint32_t vertexStride, uint32_t indexPerStrip)
    : IndexGenerator(startIndex)
    , m_vertexStride(vertexStride)
    , m_indexPerStrip(indexPerStrip)
    , m_base(0) {}

  uint32_t operator()()
  {
    uint32_t const counter = GetCounter();
    uint32_t const result = m_startIndex + m_base + counter - 2 * (counter / 3) + GetCWNormalizer();
    if (counter + 1 == m_indexPerStrip)
    {
      m_base += m_vertexStride;
      ResetCounter();
    }

    return result;
  }

private:
  uint32_t m_vertexStride;
  uint32_t m_indexPerStrip;
  uint32_t m_base;
};

} // namespace

TriangleBatch::TriangleBatch(BatchCallbacks & callbacks)
  : m_callbacks(callbacks)
  , m_canDevideStreams(true)
{
}

void TriangleBatch::SetIsCanDevideStreams(bool canDevide)
{
  m_canDevideStreams = canDevide;
}

bool TriangleBatch::IsCanDevideStreams() const
{
  return m_canDevideStreams;
}

void TriangleBatch::SetVertexStride(uint8_t vertexStride)
{
  m_vertexStride = vertexStride;
}

void TriangleBatch::FlushData(ref_ptr<AttributeProvider> streams, uint32_t vertexCount) const
{
  for (uint8_t i = 0; i < streams->GetStreamCount(); ++i)
    FlushData(streams->GetBindingInfo(i), streams->GetRawPointer(i), vertexCount);
}

void TriangleBatch::FlushData(BindingInfo const & info, void const * data, uint32_t elementCount) const
{
  m_callbacks.FlushData(info, data, elementCount);
}

void * TriangleBatch::GetIndexStorage(uint32_t indexCount, uint32_t & startIndex)
{
  return m_callbacks.GetIndexStorage(indexCount, startIndex);
}

void TriangleBatch::SubmitIndex()
{
  m_callbacks.SubmitIndeces();
}

uint32_t TriangleBatch::GetAvailableVertexCount() const
{
  return m_callbacks.GetAvailableVertexCount();
}

uint32_t TriangleBatch::GetAvailableIndexCount() const
{
  return m_callbacks.GetAvailableIndexCount();
}

void TriangleBatch::ChangeBuffer() const
{
  return m_callbacks.ChangeBuffer();
}

uint8_t TriangleBatch::GetVertexStride() const
{
  return m_vertexStride;
}

bool TriangleBatch::IsBufferFilled(uint32_t availableVerticesCount, uint32_t availableIndicesCount) const
{
  return availableVerticesCount < 3 || availableIndicesCount < 3;
}

TriangleListBatch::TriangleListBatch(BatchCallbacks & callbacks) : TBase(callbacks) {}

void TriangleListBatch::BatchData(ref_ptr<AttributeProvider> streams)
{
  while (streams->IsDataExists())
  {
    if (IsBufferFilled(GetAvailableVertexCount(), GetAvailableIndexCount()))
      ChangeBuffer();

    uint32_t avVertex = GetAvailableVertexCount();
    uint32_t avIndex  = GetAvailableIndexCount();
    uint32_t vertexCount = streams->GetVertexCount();

    if (IsCanDevideStreams())
    {
      vertexCount = min(vertexCount, avVertex);
      vertexCount = min(vertexCount, avIndex);
      ASSERT(vertexCount >= 3, ());
      vertexCount -= vertexCount % 3;
    }
    else if (!IsEnoughMemory(avVertex, vertexCount, avIndex, vertexCount))
    {
      ChangeBuffer();
      avVertex = GetAvailableVertexCount();
      avIndex  = GetAvailableIndexCount();
      ASSERT(IsEnoughMemory(avVertex, vertexCount, avIndex, vertexCount), ());
      ASSERT(vertexCount % 3 == 0, ());
    }

    uint32_t startIndex = 0;
    void * indicesStorage = GetIndexStorage(vertexCount, startIndex);
    GenerateIndices<ListIndexGenerator>(indicesStorage, vertexCount, startIndex);
    SubmitIndex();

    FlushData(streams, vertexCount);
    streams->Advance(vertexCount);
  }
}

FanStripHelper::FanStripHelper(BatchCallbacks & callbacks)
  : TBase(callbacks)
  , m_isFullUploaded(false)
{
}

uint32_t FanStripHelper::BatchIndexes(uint32_t vertexCount)
{
  uint32_t avVertex = GetAvailableVertexCount();
  uint32_t avIndex  = GetAvailableIndexCount();

  uint32_t batchVertexCount = 0;
  uint32_t batchIndexCount = 0;
  CalcBatchPortion(vertexCount, avVertex, avIndex, batchVertexCount, batchIndexCount);

  if (!IsFullUploaded() && !IsCanDevideStreams())
  {
    ChangeBuffer();
    avVertex = GetAvailableVertexCount();
    avIndex  = GetAvailableIndexCount();
    CalcBatchPortion(vertexCount, avVertex, avIndex, batchVertexCount, batchIndexCount);
    ASSERT(IsFullUploaded(), ());
  }

  uint32_t startIndex = 0;
  void * pIndexStorage = GetIndexStorage(batchIndexCount, startIndex);
  GenerateIndexes(pIndexStorage, batchIndexCount, startIndex);
  SubmitIndex();

  return batchVertexCount;
}

void FanStripHelper::CalcBatchPortion(uint32_t vertexCount, uint32_t avVertex, uint32_t avIndex,
                                      uint32_t & batchVertexCount, uint32_t & batchIndexCount)
{
  uint32_t const indexCount = VtoICount(vertexCount);
  batchVertexCount = vertexCount;
  batchIndexCount = indexCount;
  m_isFullUploaded = true;

  if (vertexCount > avVertex || indexCount > avIndex)
  {
    uint32_t alignedAvVertex = AlignVCount(avVertex);
    uint32_t alignedAvIndex = AlignICount(avIndex);
    uint32_t indexCountForAvailableVertexCount = VtoICount(alignedAvVertex);
    if (indexCountForAvailableVertexCount <= alignedAvIndex)
    {
      batchVertexCount = alignedAvVertex;
      batchIndexCount = indexCountForAvailableVertexCount;
    }
    else
    {
      batchIndexCount = alignedAvIndex;
      batchVertexCount = ItoVCount(batchIndexCount);
    }
    m_isFullUploaded = false;
  }
}

bool FanStripHelper::IsFullUploaded() const
{
  return m_isFullUploaded;
}

uint32_t FanStripHelper::VtoICount(uint32_t vCount) const
{
  return 3 * (vCount - 2);
}

uint32_t FanStripHelper::ItoVCount(uint32_t iCount) const
{
  return iCount / 3 + 2;
}

uint32_t FanStripHelper::AlignVCount(uint32_t vCount) const
{
  return vCount;
}

uint32_t FanStripHelper::AlignICount(uint32_t iCount) const
{
  return iCount - iCount % 3;
}

TriangleStripBatch::TriangleStripBatch(BatchCallbacks & callbacks)
 : TBase(callbacks)
{
}

void TriangleStripBatch::BatchData(ref_ptr<AttributeProvider> streams)
{
  while (streams->IsDataExists())
  {
    if (IsBufferFilled(GetAvailableVertexCount(), GetAvailableIndexCount()))
      ChangeBuffer();

    uint32_t const batchVertexCount = BatchIndexes(streams->GetVertexCount());
    FlushData(streams, batchVertexCount);

    uint32_t const advanceCount = IsFullUploaded() ? batchVertexCount : (batchVertexCount - 2);
    streams->Advance(advanceCount);

  }
}

void TriangleStripBatch::GenerateIndexes(void * indexStorage, uint32_t count, uint32_t startIndex) const
{
  GenerateIndices<StripIndexGenerator>(indexStorage, count, startIndex);
}

TriangleFanBatch::TriangleFanBatch(BatchCallbacks & callbacks) : TBase(callbacks) {}


/*
 * What happens here
 *
 * We try to pack TriangleFan on GPU indexed like triangle list.
 * If we have enough memory in VertexArrayBuffer to store all data from params, we just copy it
 *
 * If we have not enough memory we broke data on parts.
 * On first iteration we create CPUBuffer for each separate atribute
 * in params and copy to it first vertex of fan. This vertex will be need
 * when we will upload second part of data.
 *
 * Than we copy vertex data on GPU as much as we can and move params cursor on
 * "uploaded vertex count" - 1. This last vertex will be used for uploading next part of data
 *
 * On second iteration we need upload first vertex of fan that stored in cpuBuffers and than upload
 * second part of data. But to avoid 2 separate call of glBufferSubData we at first do a copy of
 * data from params to cpuBuffer and than copy continuous block of memory from cpuBuffer
 */
void TriangleFanBatch::BatchData(ref_ptr<AttributeProvider> streams)
{
  vector<CPUBuffer> cpuBuffers;
  while (streams->IsDataExists())
  {
    if (IsBufferFilled(GetAvailableVertexCount(), GetAvailableIndexCount()))
      ChangeBuffer();

    uint32_t vertexCount = streams->GetVertexCount();
    uint32_t batchVertexCount = BatchIndexes(vertexCount);

    if (!cpuBuffers.empty())
    {
      // if cpuBuffers not empty than on previous interation we not move data on gpu
      // and in cpuBuffers stored first vertex of fan.
      // To avoid two separate call of glBufferSubData
      // (for first vertex and for next part of data)
      // we at first copy next part of data into
      // cpuBuffers, and than copy it from cpuBuffers to GPU
      for (size_t i = 0; i < streams->GetStreamCount(); ++i)
      {
        CPUBuffer & cpuBuffer = cpuBuffers[i];
        ASSERT(cpuBuffer.GetCurrentElementNumber() == 1, ());
        cpuBuffer.UploadData(streams->GetRawPointer(i), batchVertexCount);

        // now in cpuBuffer we have correct "fan" created from second part of data
        // first vertex of cpuBuffer if the first vertex of params, second vertex is
        // the last vertex of previous uploaded data. We copy this data on GPU.
        FlushData(streams->GetBindingInfo(i), cpuBuffer.Data(), batchVertexCount + 1);

        // Move cpu buffer cursor on second element of buffer.
        // On next iteration first vertex of fan will be also available
        cpuBuffer.Seek(1);
      }

      uint32_t advanceCount = batchVertexCount;
      if (!IsFullUploaded())
      {
        // not all data was moved on gpu and last vertex of fan
        // will need on second iteration
        advanceCount -= 1;
      }

      streams->Advance(advanceCount);
    }
    else // if m_cpuBuffer empty than it's first iteration
    {
      if (IsFullUploaded())
      {
        // We can upload all input data as one peace. For upload we need only one iteration
        FlushData(streams, batchVertexCount);
        streams->Advance(batchVertexCount);
      }
      else
      {
        // for each stream we must create CPU buffer.
        // Copy first vertex of fan into cpuBuffer for next iterations
        // Than move first part of data on GPU
        cpuBuffers.reserve(streams->GetStreamCount());
        for (size_t i = 0; i < streams->GetStreamCount(); ++i)
        {
          const BindingInfo & binding = streams->GetBindingInfo(i);
          const void * rawDataPointer = streams->GetRawPointer(i);
          FlushData(binding, rawDataPointer, batchVertexCount);

          /// "(vertexCount + 1) - batchVertexCount" we allocate CPUBuffer on all remaining data
          /// + first vertex of fan, that must be duplicate in nex buffer
          /// + last vertex of currently uploaded data.
          cpuBuffers.push_back(CPUBuffer(binding.GetElementSize(), (vertexCount + 2) - batchVertexCount));
          CPUBuffer & cpuBuffer = cpuBuffers.back();
          cpuBuffer.UploadData(rawDataPointer, 1);
        }

        // advance on uploadVertexCount - 1 to copy last vertex also into next VAO with
        // first vertex of data from CPUBuffers
        streams->Advance(batchVertexCount - 1);
      }
    }
  }
}

void TriangleFanBatch::GenerateIndexes(void * indexStorage, uint32_t count, uint32_t startIndex) const
{
  GenerateIndices<FanIndexGenerator>(indexStorage, count, startIndex);
}

TriangleListOfStripBatch::TriangleListOfStripBatch(BatchCallbacks & callbacks)
 : TBase(callbacks)
{
}

void TriangleListOfStripBatch::BatchData(ref_ptr<AttributeProvider> streams)
{
  while (streams->IsDataExists())
  {
    if (IsBufferFilled(GetAvailableVertexCount(), GetAvailableIndexCount()))
      ChangeBuffer();

    uint32_t const batchVertexCount = BatchIndexes(streams->GetVertexCount());
    FlushData(streams, batchVertexCount);
    streams->Advance(batchVertexCount);
  }
}

bool TriangleListOfStripBatch::IsBufferFilled(uint32_t availableVerticesCount, uint32_t availableIndicesCount) const
{
  uint8_t const vertexStride = GetVertexStride();
  ASSERT_GREATER_OR_EQUAL(vertexStride, 4, ());

  uint32_t const indicesPerStride = TBase::VtoICount(vertexStride);
  return availableVerticesCount < vertexStride || availableIndicesCount < indicesPerStride;
}

uint32_t TriangleListOfStripBatch::VtoICount(uint32_t vCount) const
{
  uint8_t const vertexStride = GetVertexStride();
  ASSERT_GREATER_OR_EQUAL(vertexStride, 4, ());
  ASSERT_EQUAL(vCount % vertexStride, 0, ());

  uint32_t const striptCount = vCount / vertexStride;
  return striptCount * TBase::VtoICount(vertexStride);
}

uint32_t TriangleListOfStripBatch::ItoVCount(uint32_t iCount) const
{
  uint8_t const vertexStride = GetVertexStride();
  ASSERT_GREATER_OR_EQUAL(vertexStride, 4, ());
  ASSERT_EQUAL(iCount % 3, 0, ());

  return vertexStride * iCount / TBase::VtoICount(vertexStride);
}

uint32_t TriangleListOfStripBatch::AlignVCount(uint32_t vCount) const
{
  return vCount - vCount % GetVertexStride();
}

uint32_t TriangleListOfStripBatch::AlignICount(uint32_t iCount) const
{
  uint8_t const vertexStride = GetVertexStride();
  ASSERT_GREATER_OR_EQUAL(vertexStride, 4, ());

  uint32_t const indicesPerStride = TBase::VtoICount(vertexStride);
  return iCount - iCount % indicesPerStride;
}

void TriangleListOfStripBatch::GenerateIndexes(void * indexStorage, uint32_t count, uint32_t startIndex) const
{
  uint8_t const vertexStride = GetVertexStride();
  GenerateIndices(indexStorage, count, ListOfStriptGenerator(startIndex, vertexStride, VtoICount(vertexStride)));
}

} // namespace dp