Welcome to mirror list, hosted at ThFree Co, Russian Federation.

turns_generator.cpp « routing - github.com/mapsme/omim.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: bdacb41fff1758bcb2389dff37afea0323a7c3ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
#include "routing/routing_mapping.h"
#include "routing/turns_generator.hpp"
#include "routing/vehicle_model.hpp"

#include "search/house_detector.hpp"

#include "indexer/ftypes_matcher.hpp"
#include "indexer/scales.hpp"

#include "geometry/angles.hpp"

#include "base/macros.hpp"

#include "3party/osrm/osrm-backend/data_structures/internal_route_result.hpp"

#include "std/numeric.hpp"
#include "std/string.hpp"

using namespace routing;
using namespace routing::turns;

namespace
{
double const kFeaturesNearTurnMeters = 3.0;

typedef vector<double> TGeomTurnCandidate;

double PiMinusTwoVectorsAngle(m2::PointD const & p, m2::PointD const & p1, m2::PointD const & p2)
{
  return math::pi - ang::TwoVectorsAngle(p, p1, p2);
}

/*!
 * \brief The TurnCandidate struct contains information about possible ways from a junction.
 */
struct TurnCandidate
{
  /*!
   * angle is an angle of the turn in degrees. It means angle is 180 minus
   * an angle between the current edge and the edge of the candidate. A counterclockwise rotation.
   * The current edge is an edge which belongs the route and located before the junction.
   * angle belongs to the range [-180; 180];
   */
  double angle;
  /*!
   * node is a possible node (a possible way) from the juction.
   */
  NodeID node;

  TurnCandidate(double a, NodeID n) : angle(a), node(n) {}
};
typedef vector<TurnCandidate> TTurnCandidates;

/*!
 * \brief The Point2Geometry class is responsable for looking for all adjacent to junctionPoint
 * road network edges. Including the current edge.
 */
class Point2Geometry
{
  m2::PointD m_junctionPoint, m_ingoingPoint;
  TGeomTurnCandidate & m_candidates;

public:
  Point2Geometry(m2::PointD const & junctionPoint, m2::PointD const & ingoingPoint,
                 TGeomTurnCandidate & candidates)
      : m_junctionPoint(junctionPoint), m_ingoingPoint(ingoingPoint), m_candidates(candidates)
  {
  }

  void operator()(FeatureType const & ft)
  {
    static CarModel const carModel;
    if (ft.GetFeatureType() != feature::GEOM_LINE || !carModel.IsRoad(ft))
      return;
    ft.ParseGeometry(FeatureType::BEST_GEOMETRY);
    size_t const count = ft.GetPointsCount();
    ASSERT_GREATER(count, 1, ());

    // @TODO(vbykoianko) instead of checking all the feature points probably
    // it's enough just to check the start and the finish of the feature.
    for (size_t i = 0; i < count; ++i)
    {
      if (MercatorBounds::DistanceOnEarth(m_junctionPoint, ft.GetPoint(i)) <
          kFeaturesNearTurnMeters)
      {
        if (i > 0)
          m_candidates.push_back(my::RadToDeg(
              PiMinusTwoVectorsAngle(m_junctionPoint, m_ingoingPoint, ft.GetPoint(i - 1))));
        if (i < count - 1)
          m_candidates.push_back(my::RadToDeg(
              PiMinusTwoVectorsAngle(m_junctionPoint, m_ingoingPoint, ft.GetPoint(i + 1))));
        return;
      }
    }
  }

  DISALLOW_COPY_AND_MOVE(Point2Geometry);
};

class Point2Node
{
  RoutingMapping const & m_routingMapping;
  vector<NodeID> & n_nodeIds;

public:
  Point2Node(RoutingMapping const & routingMapping, vector<NodeID> & nodeID)
      : m_routingMapping(routingMapping), n_nodeIds(nodeID)
  {
  }

  void operator()(FeatureType const & ft)
  {
    static CarModel const carModel;
    if (ft.GetFeatureType() != feature::GEOM_LINE || !carModel.IsRoad(ft))
      return;
    uint32_t const offset = ft.GetID().m_offset;
    for (auto const n : m_routingMapping.m_segMapping.GetNodeIdByFid(offset))
      n_nodeIds.push_back(n);
  }

  DISALLOW_COPY_AND_MOVE(Point2Node);
};

OsrmMappingTypes::FtSeg GetSegment(NodeID node, RoutingMapping const & routingMapping,
                                   TGetIndexFunction GetIndex)
{
  auto const segmentsRange = routingMapping.m_segMapping.GetSegmentsRange(node);
  OsrmMappingTypes::FtSeg seg;
  routingMapping.m_segMapping.GetSegmentByIndex(GetIndex(segmentsRange), seg);
  return seg;
}

ftypes::HighwayClass GetOutgoingHighwayClass(NodeID outgoingNode,
                                             RoutingMapping const & routingMapping,
                                             Index const & index)
{
  OsrmMappingTypes::FtSeg const seg =
      GetSegment(outgoingNode, routingMapping, GetFirstSegmentPointIndex);
  if (!seg.IsValid())
    return ftypes::HighwayClass::Error;
  Index::FeaturesLoaderGuard loader(index, routingMapping.GetMwmId());
  FeatureType ft;
  loader.GetFeature(seg.m_fid, ft);
  return ftypes::GetHighwayClass(ft);
}

/*!
 * \brief Returns false when
 * - the route leads from one big road to another one;
 * - and the other possible turns lead to small roads;
 * - and the turn is GoStraight or TurnSlight*.
 */
bool KeepTurnByHighwayClass(TurnDirection turn, TTurnCandidates const & possibleTurns,
                            TurnInfo const & turnInfo, Index const & index)
{
  if (!IsGoStraightOrSlightTurn(turn))
    return true;  // The road significantly changes its direction here. So this turn shall be kept.

  // There's only one exit from this junction. NodeID of the exit is outgoingNode.
  if (possibleTurns.size() == 1)
    return true;

  ftypes::HighwayClass maxClassForPossibleTurns = ftypes::HighwayClass::Error;
  for (auto const & t : possibleTurns)
  {
    if (t.node == turnInfo.m_outgoingNodeID)
      continue;
    ftypes::HighwayClass const highwayClass =
        GetOutgoingHighwayClass(t.node, turnInfo.m_routeMapping, index);
    if (static_cast<int>(highwayClass) > static_cast<int>(maxClassForPossibleTurns))
      maxClassForPossibleTurns = highwayClass;
  }
  if (maxClassForPossibleTurns == ftypes::HighwayClass::Error)
  {
    ASSERT(false, ("One of possible turns follows along an undefined HighwayClass."));
    return true;
  }

  ftypes::HighwayClass const minClassForTheRoute =
      static_cast<ftypes::HighwayClass>(min(static_cast<int>(turnInfo.m_ingoingHighwayClass),
                                            static_cast<int>(turnInfo.m_outgoingHighwayClass)));
  if (minClassForTheRoute == ftypes::HighwayClass::Error)
  {
    ASSERT(false, ("The route contains undefined HighwayClass."));
    return false;
  }

  int const kMaxHighwayClassDiffToKeepTheTurn = 2;
  if (static_cast<int>(maxClassForPossibleTurns) - static_cast<int>(minClassForTheRoute) >=
      kMaxHighwayClassDiffToKeepTheTurn)
  {
    // The turn shall be removed if the route goes near small roads without changing the direction.
    return false;
  }
  return true;
}

bool DiscardTurnByIngoingAndOutgoingEdges(TurnDirection intermediateDirection,
                                          TurnInfo const & turnInfo, TurnItem const & turn)
{
  return !turn.m_keepAnyway && !turnInfo.m_isIngoingEdgeRoundabout &&
         !turnInfo.m_isOutgoingEdgeRoundabout && IsGoStraightOrSlightTurn(intermediateDirection) &&
         turnInfo.m_ingoingHighwayClass == turnInfo.m_outgoingHighwayClass &&
         turn.m_sourceName == turn.m_targetName;
}

/*!
 * \brief GetTurnGeometry looks for all the road network edges near ingoingPoint.
 * GetTurnGeometry fills candidates with angles of all the incoming and outgoint segments.
 * \warning GetTurnGeometry should be used carefully because it's a time-consuming function.
 * \warning In multilevel crossroads there is an insignificant possibility that candidates
 * is filled with redundant segments of roads of different levels.
 */
void GetTurnGeometry(m2::PointD const & junctionPoint, m2::PointD const & ingoingPoint,
                     TGeomTurnCandidate & candidates, RoutingMapping const & mapping,
                     Index const & index)
{
  Point2Geometry getter(junctionPoint, ingoingPoint, candidates);
  index.ForEachInRectForMWM(
      getter, MercatorBounds::RectByCenterXYAndSizeInMeters(junctionPoint, kFeaturesNearTurnMeters),
      scales::GetUpperScale(), mapping.GetMwmId());
}

/*!
 * \param junctionPoint is a point of the junction.
 * \param ingoingPointOneSegment is a point one segment before the junction along the route.
 * \param mapping is a route mapping.
 * \return number of all the segments which joins junctionPoint. That means
 * the number of ingoing segments plus the number of outgoing segments.
 * \warning NumberOfIngoingAndOutgoingSegments should be used carefully because
 * it's a time-consuming function.
 * \warning In multilevel crossroads there is an insignificant possibility that the returned value
 * contains redundant segments of roads of different levels.
 */
size_t NumberOfIngoingAndOutgoingSegments(m2::PointD const & junctionPoint,
                                          m2::PointD const & ingoingPointOneSegment,
                                          RoutingMapping const & mapping, Index const & index)
{
  TGeomTurnCandidate geoNodes;
  // TODO(vbykoianko) It is repeating of a time consumption operation. The first time
  // the geometry is extracted in GetPossibleTurns and the second time here.
  // It shall be fixed. For the time being this repeating time consumption method
  // is called relevantly seldom.
  GetTurnGeometry(junctionPoint, ingoingPointOneSegment, geoNodes, mapping, index);
  return geoNodes.size();
}

bool KeepTurnByIngoingEdges(m2::PointD const & junctionPoint,
                            m2::PointD const & ingoingPointOneSegment,
                            m2::PointD const & outgoingPoint, bool hasMultiTurns,
                            RoutingMapping const & routingMapping, Index const & index)
{
  bool const isGoStraightOrSlightTurn = IsGoStraightOrSlightTurn(IntermediateDirection(
      my::RadToDeg(PiMinusTwoVectorsAngle(junctionPoint, ingoingPointOneSegment, outgoingPoint))));
  // The code below is resposible for cases when there is only one way to leave the junction.
  // Such junction has to be kept as a turn when it's not a slight turn and it has ingoing edges
  // (one or more);
  return hasMultiTurns || (!isGoStraightOrSlightTurn &&
                           NumberOfIngoingAndOutgoingSegments(junctionPoint, ingoingPointOneSegment,
                                                              routingMapping, index) > 2);
}

bool FixupLaneSet(TurnDirection turn, vector<SingleLaneInfo> & lanes,
                  function<bool(LaneWay l, TurnDirection t)> checker)
{
  bool isLaneConformed = false;
  // There are two nested loops below. (There is a for-loop in checker.)
  // But the number of calls of the body of inner one (in checker) is relatively small.
  // Less than 10 in most cases.
  for (auto & singleLane : lanes)
  {
    for (LaneWay laneWay : singleLane.m_lane)
    {
      if (checker(laneWay, turn))
      {
        singleLane.m_isRecommended = true;
        isLaneConformed = true;
        break;
      }
    }
  }
  return isLaneConformed;
}

/*!
 * \brief Converts a turn angle into a turn direction.
 * \note lowerBounds is a table of pairs: an angle and a direction.
 * lowerBounds shall be sorted by the first parameter (angle) from big angles to small angles.
 * These angles should be measured in degrees and should belong to the range [-180; 180].
 * The second paramer (angle) shall belong to the range [-180; 180] and is measured in degrees.
 */
TurnDirection FindDirectionByAngle(vector<pair<double, TurnDirection>> const & lowerBounds,
                                   double angle)
{
  ASSERT_GREATER_OR_EQUAL(angle, -180., (angle));
  ASSERT_LESS_OR_EQUAL(angle, 180., (angle));
  ASSERT(!lowerBounds.empty(), ());
  ASSERT(is_sorted(lowerBounds.cbegin(), lowerBounds.cend(),
             [](pair<double, TurnDirection> const & p1, pair<double, TurnDirection> const & p2)
         {
           return p1.first > p2.first;
         }), ());

  for (auto const & lower : lowerBounds)
  {
    if (angle >= lower.first)
      return lower.second;
  }

  ASSERT(false, ("The angle is not covered by the table. angle = ", angle));
  return TurnDirection::NoTurn;
}

/*!
 * \brief GetPointForTurn returns ingoingPoint or outgoingPoint for turns.
 * These points belongs to the route but they often are not neighbor of junctionPoint.
 * To calculate the resulting point the function implements the following steps:
 * - going from junctionPoint along feature ft according to the direction which is set in GetPointIndex().
 * - until one of following conditions is fulfilled:
 *   - the end of ft is reached; (returns the last feature point)
 *   - more than kMaxPointsCount points are passed; (returns the kMaxPointsCount-th point)
 *   - the length of passed parts of segment exceeds kMinDistMeters; (returns the next point after the event)
 * \param segment is a ingoing or outgoing feature segment.
 * \param ft is a ingoing or outgoing feature.
 * \param junctionPoint is a junction point.
 * \param GetPointIndex is a function for getting points by index.
 * It defines a direction of following along a feature. So it differs for ingoing and outgoing cases.
 * It has following parameters:
 * - start is an index of the start point of a feature segment. For example, FtSeg::m_pointStart.
 * - end is an index of the end point of a feature segment. For example, FtSeg::m_pointEnd.
 * - shift is a number of points which shall be added to end or start index. After that
 * the sum reflects an index of a point of a feature segment which will be used for turn calculation.
 * The sum shall belongs to a range [min(start, end), max(start, end)].
 * shift belongs to a  range [0, abs(end - start)].
 * \return an ingoing or outgoing point for turn calculation.
 */
m2::PointD GetPointForTurn(OsrmMappingTypes::FtSeg const & segment, FeatureType const & ft,
                           m2::PointD const & junctionPoint,
                           size_t (*GetPointIndex)(const size_t start, const size_t end, const size_t shift))
{
  // An ingoing and outgoing point could be farther then kMaxPointsCount points from the junctionPoint
  size_t const kMaxPointsCount = 7;
  // If ft feature is long enough and consist of short segments
  // the point for turn generation is taken as the next point the route after kMinDistMeters.
  double const kMinDistMeters = 300.;
  double curDistanceMeters = 0.;
  m2::PointD point = junctionPoint;
  m2::PointD nextPoint;

  size_t const numSegPoints = abs(segment.m_pointEnd - segment.m_pointStart);
  ASSERT_GREATER(numSegPoints, 0, ());
  ASSERT_LESS(numSegPoints, ft.GetPointsCount(), ());
  size_t const usedFtPntNum = min(kMaxPointsCount, numSegPoints);

  for (size_t i = 1; i <= usedFtPntNum; ++i)
  {
    nextPoint = ft.GetPoint(GetPointIndex(segment.m_pointStart, segment.m_pointEnd, i));
    curDistanceMeters += MercatorBounds::DistanceOnEarth(point, nextPoint);
    if (curDistanceMeters > kMinDistMeters)
      return nextPoint;
    point = nextPoint;
  }
  return nextPoint;
}

// OSRM graph contains preprocessed edges without proper information about adjecency.
// So, to determine we must read the nearest geometry and check its adjacency by OSRM road graph.
void GetPossibleTurns(Index const & index, NodeID node, m2::PointD const & ingoingPoint,
                      m2::PointD const & junctionPoint, RoutingMapping & routingMapping,
                      TTurnCandidates & candidates)
{
  double const kReadCrossEpsilon = 1.0E-4;

  // Geting nodes by geometry.
  vector<NodeID> geomNodes;
  Point2Node p2n(routingMapping, geomNodes);

  index.ForEachInRectForMWM(
      p2n, m2::RectD(junctionPoint.x - kReadCrossEpsilon, junctionPoint.y - kReadCrossEpsilon,
                     junctionPoint.x + kReadCrossEpsilon, junctionPoint.y + kReadCrossEpsilon),
      scales::GetUpperScale(), routingMapping.GetMwmId());

  sort(geomNodes.begin(), geomNodes.end());
  geomNodes.erase(unique(geomNodes.begin(), geomNodes.end()), geomNodes.end());

  // Filtering virtual edges.
  vector<NodeID> adjacentNodes;
  for (EdgeID const e : routingMapping.m_dataFacade.GetAdjacentEdgeRange(node))
  {
    QueryEdge::EdgeData const data = routingMapping.m_dataFacade.GetEdgeData(e, node);
    if (data.forward && !data.shortcut)
    {
      adjacentNodes.push_back(routingMapping.m_dataFacade.GetTarget(e));
      ASSERT_NOT_EQUAL(routingMapping.m_dataFacade.GetTarget(e), SPECIAL_NODEID, ());
    }
  }

  for (NodeID const adjacentNode : geomNodes)
  {
    if (adjacentNode == node)
      continue;
    for (EdgeID const e : routingMapping.m_dataFacade.GetAdjacentEdgeRange(adjacentNode))
    {
      if (routingMapping.m_dataFacade.GetTarget(e) != node)
        continue;
      QueryEdge::EdgeData const data = routingMapping.m_dataFacade.GetEdgeData(e, adjacentNode);
      if (!data.shortcut && data.backward)
        adjacentNodes.push_back(adjacentNode);
    }
  }

  // Preparing candidates.
  for (NodeID const targetNode : adjacentNodes)
  {
    auto const range = routingMapping.m_segMapping.GetSegmentsRange(targetNode);
    OsrmMappingTypes::FtSeg seg;
    routingMapping.m_segMapping.GetSegmentByIndex(range.first, seg);
    if (!seg.IsValid())
      continue;

    FeatureType ft;
    Index::FeaturesLoaderGuard loader(index, routingMapping.GetMwmId());
    loader.GetFeature(seg.m_fid, ft);
    ft.ParseGeometry(FeatureType::BEST_GEOMETRY);

    m2::PointD const outgoingPoint = ft.GetPoint(
        seg.m_pointStart < seg.m_pointEnd ? seg.m_pointStart + 1 : seg.m_pointStart - 1);
    ASSERT_LESS(MercatorBounds::DistanceOnEarth(junctionPoint, ft.GetPoint(seg.m_pointStart)),
                kFeaturesNearTurnMeters, ());

    double const a = my::RadToDeg(PiMinusTwoVectorsAngle(junctionPoint, ingoingPoint, outgoingPoint));
    candidates.emplace_back(a, targetNode);
  }

  sort(candidates.begin(), candidates.end(), [](TurnCandidate const & t1, TurnCandidate const & t2)
  {
    return t1.angle < t2.angle;
  });
}
}  // namespace

namespace routing
{
namespace turns
{
TurnInfo::TurnInfo(RoutingMapping & routeMapping, NodeID ingoingNodeID, NodeID outgoingNodeID)
    : m_routeMapping(routeMapping),
      m_ingoingNodeID(ingoingNodeID),
      m_ingoingHighwayClass(ftypes::HighwayClass::Undefined),
      m_isIngoingEdgeRoundabout(false),
      m_outgoingNodeID(outgoingNodeID),
      m_outgoingHighwayClass(ftypes::HighwayClass::Undefined),
      m_isOutgoingEdgeRoundabout(false)
{
  m_ingoingSegment = GetSegment(m_ingoingNodeID, m_routeMapping, GetLastSegmentPointIndex);
  m_outgoingSegment = GetSegment(m_outgoingNodeID, m_routeMapping, GetFirstSegmentPointIndex);
}

bool TurnInfo::IsSegmentsValid() const
{
  if (!m_ingoingSegment.IsValid() || !m_outgoingSegment.IsValid())
  {
    LOG(LWARNING, ("Some turns can't load the geometry."));
    return false;
  }
  return true;
}

size_t GetLastSegmentPointIndex(pair<size_t, size_t> const & p)
{
  ASSERT_GREATER(p.second, 0, ());
  return p.second - 1;
}

vector<SingleLaneInfo> GetLanesInfo(NodeID node, RoutingMapping const & routingMapping,
                                    TGetIndexFunction GetIndex, Index const & index)
{
  // seg1 is the last segment before a point of bifurcation (before turn)
  OsrmMappingTypes::FtSeg const seg1 = GetSegment(node, routingMapping, GetIndex);
  vector<SingleLaneInfo> lanes;
  if (seg1.IsValid())
  {
    FeatureType ft1;
    Index::FeaturesLoaderGuard loader1(index, routingMapping.GetMwmId());
    loader1.GetFeature(seg1.m_fid, ft1);

    using feature::Metadata;
    ft1.ParseMetadata();
    Metadata const & md = ft1.GetMetadata();

    if (ftypes::IsOneWayChecker::Instance()(ft1))
    {
      ParseLanes(md.Get(Metadata::FMD_TURN_LANES), lanes);
      return lanes;
    }
    // two way roads
    if (seg1.m_pointStart < seg1.m_pointEnd)
    {
      // forward direction
      ParseLanes(md.Get(Metadata::FMD_TURN_LANES_FORWARD), lanes);
      return lanes;
    }
    // backward direction
    ParseLanes(md.Get(Metadata::FMD_TURN_LANES_BACKWARD), lanes);
    return lanes;
  }
  return lanes;
}

void CalculateTurnGeometry(vector<m2::PointD> const & points, Route::TTurns const & turnsDir,
                           TTurnsGeom & turnsGeom)
{
  size_t const kNumPoints = points.size();
  // "Pivot point" is a point of bifurcation (a point of a turn).
  // kNumPointsBeforePivot is number of points before the pivot point.
  uint32_t const kNumPointsBeforePivot = 10;
  // kNumPointsAfterPivot is a number of points follows by the pivot point.
  // kNumPointsAfterPivot is greater because there are half body and the arrow after the pivot point
  uint32_t constexpr kNumPointsAfterPivot = kNumPointsBeforePivot + 10;

  for (TurnItem const & t : turnsDir)
  {
    ASSERT_LESS(t.m_index, kNumPoints, ());
    if (t.m_index == 0 || t.m_index == (kNumPoints - 1))
      continue;

    uint32_t const fromIndex = (t.m_index <= kNumPointsBeforePivot) ? 0 : t.m_index - kNumPointsBeforePivot;
    uint32_t toIndex = 0;
    if (t.m_index + kNumPointsAfterPivot >= kNumPoints || t.m_index + kNumPointsAfterPivot < t.m_index)
      toIndex = kNumPoints;
    else
      toIndex = t.m_index + kNumPointsAfterPivot;

    uint32_t const turnIndex = min(t.m_index, kNumPointsBeforePivot);
    turnsGeom.emplace_back(t.m_index, turnIndex, points.begin() + fromIndex,
                           points.begin() + toIndex);
  }
  return;
}

void FixupTurns(vector<m2::PointD> const & points, Route::TTurns & turnsDir)
{
  double const kMergeDistMeters = 30.0;
  // For turns that are not EnterRoundAbout exitNum is always equal to zero.
  // If a turn is EnterRoundAbout exitNum is a number of turns between two points:
  // (1) the route enters to the roundabout;
  // (2) the route leaves the roundabout;
  uint32_t exitNum = 0;
  // If a roundabout is worked up the roundabout value points to the turn
  // of the enter to the roundabout. If not, roundabout is equal to nullptr.
  TurnItem * roundabout = nullptr;

  auto routeDistanceMeters = [&points](uint32_t start, uint32_t end)
  {
    double res = 0.0;
    for (uint32_t i = start + 1; i < end; ++i)
      res += MercatorBounds::DistanceOnEarth(points[i - 1], points[i]);
    return res;
  };

  for (size_t idx = 0; idx < turnsDir.size(); )
  {
    TurnItem & t = turnsDir[idx];
    if (roundabout && t.m_turn != TurnDirection::StayOnRoundAbout &&
        t.m_turn != TurnDirection::LeaveRoundAbout)
    {
      exitNum = 0;
      roundabout = nullptr;
    }
    else if (t.m_turn == TurnDirection::EnterRoundAbout)
    {
      ASSERT(!roundabout, ());
      roundabout = &t;
    }
    else if (t.m_turn == TurnDirection::StayOnRoundAbout)
    {
      ++exitNum;
      turnsDir.erase(turnsDir.begin() + idx);
      continue;
    }
    else if (roundabout && t.m_turn == TurnDirection::LeaveRoundAbout)
    {
      roundabout->m_exitNum = exitNum + 1;
      roundabout = nullptr;
      exitNum = 0;
    }

    // Merging turns which are closed to each other under some circumstance.
    // distance(turnsDir[idx - 1].m_index, turnsDir[idx].m_index) < kMergeDistMeters
    // means the distance in meters between the former turn (idx - 1)
    // and the current turn (idx).
    if (idx > 0 && IsStayOnRoad(turnsDir[idx - 1].m_turn) &&
        IsLeftOrRightTurn(turnsDir[idx].m_turn) &&
        routeDistanceMeters(turnsDir[idx - 1].m_index, turnsDir[idx].m_index) < kMergeDistMeters)
    {
      turnsDir.erase(turnsDir.begin() + idx - 1);
      continue;
    }

    // @todo(vbykoianko) The sieve below is made for filtering unnecessary turns on Moscow's MKAD
    // and roads like it. It's a quick fix but it's possible to do better.
    // The better solution is to remove all "slight" turns if the route goes form one not-link road
    // to another not-link road and other possible turns are links. But it's not possible to
    // implement it quickly. To do that you need to calculate FeatureType for most possible turns.
    // But it is already made once in  KeepTurnByHighwayClass(GetOutgoingHighwayClass).
    // So it's a good idea to keep FeatureType for outgoing turns in TTurnCandidates
    // (if they have been calculated). For the time being I decided to postpone the implementation
    // of the feature but it is worth implementing it in the future.
    // To implement the new sieve (the better solution) use TurnInfo structure.
    if (!t.m_keepAnyway && IsGoStraightOrSlightTurn(t.m_turn) && !t.m_sourceName.empty() &&
        strings::AlmostEqual(t.m_sourceName, t.m_targetName, 2 /* mismatched symbols count */))
    {
      turnsDir.erase(turnsDir.begin() + idx);
      continue;
    }

    ++idx;
  }
  SelectRecommendedLanes(turnsDir);
  return;
}

void SelectRecommendedLanes(Route::TTurns & turnsDir)
{
  for (auto & t : turnsDir)
  {
    vector<SingleLaneInfo> & lanes = t.m_lanes;
    if (lanes.empty())
      continue;
    TurnDirection const turn = t.m_turn;
    // Checking if threre are elements in lanes which correspond with the turn exactly.
    // If so fixing up all the elements in lanes which correspond with the turn.
    if (FixupLaneSet(turn, lanes, &IsLaneWayConformedTurnDirection))
      continue;
    // If not checking if there are elements in lanes which corresponds with the turn
    // approximately. If so fixing up all these elements.
    FixupLaneSet(turn, lanes, &IsLaneWayConformedTurnDirectionApproximately);
  }
}

bool CheckRoundaboutEntrance(bool isIngoingEdgeRoundabout, bool isOutgoingEdgeRoundabout)
{
  return !isIngoingEdgeRoundabout && isOutgoingEdgeRoundabout;
}

bool CheckRoundaboutExit(bool isIngoingEdgeRoundabout, bool isOutgoingEdgeRoundabout)
{
  return isIngoingEdgeRoundabout && !isOutgoingEdgeRoundabout;
}

TurnDirection GetRoundaboutDirection(bool isIngoingEdgeRoundabout, bool isOutgoingEdgeRoundabout,
                                     bool isMultiTurnJunction, bool keepTurnByHighwayClass)
{
  if (isIngoingEdgeRoundabout && isOutgoingEdgeRoundabout)
  {
    if (isMultiTurnJunction)
      return keepTurnByHighwayClass ? TurnDirection::StayOnRoundAbout : TurnDirection::NoTurn;
    return TurnDirection::NoTurn;
  }

  if (CheckRoundaboutEntrance(isIngoingEdgeRoundabout, isOutgoingEdgeRoundabout))
    return TurnDirection::EnterRoundAbout;

  if (CheckRoundaboutExit(isIngoingEdgeRoundabout, isOutgoingEdgeRoundabout))
    return TurnDirection::LeaveRoundAbout;

  ASSERT(false, ());
  return TurnDirection::NoTurn;
}

TurnDirection InvertDirection(TurnDirection dir)
{
  switch (dir)
  {
    case TurnDirection::TurnSlightRight:
      return TurnDirection::TurnSlightLeft;
    case TurnDirection::TurnRight:
      return TurnDirection::TurnLeft;
    case TurnDirection::TurnSharpRight:
      return TurnDirection::TurnSharpLeft;
    case TurnDirection::TurnSlightLeft:
      return TurnDirection::TurnSlightRight;
    case TurnDirection::TurnLeft:
      return TurnDirection::TurnRight;
    case TurnDirection::TurnSharpLeft:
      return TurnDirection::TurnSharpRight;
    default:
      return dir;
  };
}

TurnDirection RightmostDirection(const double angle)
{
  static vector<pair<double, TurnDirection>> const kLowerBounds = {
      {157., TurnDirection::TurnSharpRight},
      {40., TurnDirection::TurnRight},
      {-10., TurnDirection::TurnSlightRight},
      {-20., TurnDirection::GoStraight},
      {-60., TurnDirection::TurnSlightLeft},
      {-157., TurnDirection::TurnLeft},
      {-180., TurnDirection::TurnSharpLeft}};

  return FindDirectionByAngle(kLowerBounds, angle);
}

TurnDirection LeftmostDirection(const double angle)
{
  return InvertDirection(RightmostDirection(-angle));
}

TurnDirection IntermediateDirection(const double angle)
{
  static vector<pair<double, TurnDirection>> const kLowerBounds = {
      {157., TurnDirection::TurnSharpRight},
      {50., TurnDirection::TurnRight},
      {10., TurnDirection::TurnSlightRight},
      {-10., TurnDirection::GoStraight},
      {-50., TurnDirection::TurnSlightLeft},
      {-157., TurnDirection::TurnLeft},
      {-180., TurnDirection::TurnSharpLeft}};

  return FindDirectionByAngle(kLowerBounds, angle);
}

void GetTurnDirection(Index const & index, TurnInfo & turnInfo, TurnItem & turn)
{
  if (!turnInfo.IsSegmentsValid())
    return;

  // ingoingFeature and outgoingFeature can be used only within the scope.
  FeatureType ingoingFeature, outgoingFeature;
  Index::FeaturesLoaderGuard ingoingLoader(index, turnInfo.m_routeMapping.GetMwmId());
  Index::FeaturesLoaderGuard outgoingLoader(index, turnInfo.m_routeMapping.GetMwmId());
  ingoingLoader.GetFeature(turnInfo.m_ingoingSegment.m_fid, ingoingFeature);
  outgoingLoader.GetFeature(turnInfo.m_outgoingSegment.m_fid, outgoingFeature);

  ingoingFeature.ParseGeometry(FeatureType::BEST_GEOMETRY);
  outgoingFeature.ParseGeometry(FeatureType::BEST_GEOMETRY);

  ASSERT_LESS(MercatorBounds::DistanceOnEarth(
                  ingoingFeature.GetPoint(turnInfo.m_ingoingSegment.m_pointEnd),
                  outgoingFeature.GetPoint(turnInfo.m_outgoingSegment.m_pointStart)),
              kFeaturesNearTurnMeters, ());

  m2::PointD const junctionPoint = ingoingFeature.GetPoint(turnInfo.m_ingoingSegment.m_pointEnd);
  m2::PointD const ingoingPoint =
      GetPointForTurn(turnInfo.m_ingoingSegment, ingoingFeature, junctionPoint,
                      [](const size_t start, const size_t end, const size_t i)
      {
        return end > start ? end - i : end + i;
      });
  m2::PointD const outgoingPoint =
      GetPointForTurn(turnInfo.m_outgoingSegment, outgoingFeature, junctionPoint,
                      [](const size_t start, const size_t end, const size_t i)
      {
        return end > start ? start + i : start - i;
      });
  double const a = my::RadToDeg(PiMinusTwoVectorsAngle(junctionPoint, ingoingPoint, outgoingPoint));
  TurnDirection const intermediateDirection = IntermediateDirection(a);

  // Getting all the information about ingoing and outgoing edges.
  turnInfo.m_isIngoingEdgeRoundabout = ftypes::IsRoundAboutChecker::Instance()(ingoingFeature);
  turnInfo.m_isOutgoingEdgeRoundabout = ftypes::IsRoundAboutChecker::Instance()(outgoingFeature);

  turn.m_keepAnyway = (!ftypes::IsLinkChecker::Instance()(ingoingFeature) &&
                       ftypes::IsLinkChecker::Instance()(outgoingFeature));

  turnInfo.m_ingoingHighwayClass = ftypes::GetHighwayClass(ingoingFeature);
  turnInfo.m_outgoingHighwayClass = ftypes::GetHighwayClass(outgoingFeature);

  ingoingFeature.GetName(FeatureType::DEFAULT_LANG, turn.m_sourceName);
  outgoingFeature.GetName(FeatureType::DEFAULT_LANG, turn.m_targetName);

  turn.m_turn = TurnDirection::NoTurn;
  // Early filtering based only on the information about ingoing and outgoing edges.
  if (DiscardTurnByIngoingAndOutgoingEdges(intermediateDirection, turnInfo, turn))
    return;

  m2::PointD const ingoingPointOneSegment = ingoingFeature.GetPoint(
      turnInfo.m_ingoingSegment.m_pointStart < turnInfo.m_ingoingSegment.m_pointEnd
          ? turnInfo.m_ingoingSegment.m_pointEnd - 1
          : turnInfo.m_ingoingSegment.m_pointEnd + 1);
  TTurnCandidates nodes;
  GetPossibleTurns(index, turnInfo.m_ingoingNodeID, ingoingPointOneSegment, junctionPoint,
                   turnInfo.m_routeMapping, nodes);

  size_t const nodesSize = nodes.size();
  bool const hasMultiTurns = (nodesSize >= 2);

  if (nodesSize == 0)
    return;

  if (!hasMultiTurns)
  {
    turn.m_turn = intermediateDirection;
  }
  else
  {
    if (nodes.front().node == turnInfo.m_outgoingNodeID)
      turn.m_turn = LeftmostDirection(a);
    else if (nodes.back().node == turnInfo.m_outgoingNodeID)
      turn.m_turn = RightmostDirection(a);
    else
      turn.m_turn = intermediateDirection;
  }

  bool const keepTurnByHighwayClass = KeepTurnByHighwayClass(turn.m_turn, nodes, turnInfo, index);
  if (turnInfo.m_isIngoingEdgeRoundabout || turnInfo.m_isOutgoingEdgeRoundabout)
  {
    turn.m_turn = GetRoundaboutDirection(turnInfo.m_isIngoingEdgeRoundabout,
                                         turnInfo.m_isOutgoingEdgeRoundabout, hasMultiTurns,
                                         keepTurnByHighwayClass);
    return;
  }

  if (!turn.m_keepAnyway && !keepTurnByHighwayClass)
  {
    turn.m_turn = TurnDirection::NoTurn;
    return;
  }

  if (!KeepTurnByIngoingEdges(junctionPoint, ingoingPointOneSegment, outgoingPoint, hasMultiTurns,
                              turnInfo.m_routeMapping, index))
  {
    turn.m_turn = TurnDirection::NoTurn;
    return;
  }

  if (turn.m_turn == TurnDirection::GoStraight)
  {
    if (!hasMultiTurns)
      turn.m_turn = TurnDirection::NoTurn;
    return;
  }
}
}  // namespace turns
}  // namespace routing