Welcome to mirror list, hosted at ThFree Co, Russian Federation.

turns_generator.cpp « routing - github.com/mapsme/omim.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: da90a6f11d9f7e3af977aa6ce2c159f00b92d881 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
#include "routing/turns_generator.hpp"

#include "routing/router.hpp"

#include "routing_common/car_model.hpp"

#include "indexer/ftypes_matcher.hpp"
#include "indexer/scales.hpp"

#include "geometry/angles.hpp"

#include "base/checked_cast.hpp"
#include "base/macros.hpp"
#include "base/stl_helpers.hpp"

#include <cmath>
#include <sstream>
#include <numeric>

using namespace routing;
using namespace routing::turns;
using namespace std;

namespace
{
// @TODO(bykoianko) For the time being |kMaxOutgoingPointsCount| and |kMinOutgoingDistMeters|
// have value for car navigation. On the other hand it's used for bicycle navigation.
// But for bicycle navigation the value should be smaller. They should be moved to
// RoutingSettings structure.
size_t constexpr kMaxOutgoingPointsCount = 9;
double constexpr kMinOutgoingDistMeters = 120.0;
size_t constexpr kMaxIngoingPointsCount = 2;
double constexpr kMinIngoingDistMeters = 100.0;
size_t constexpr kNotSoCloseMaxPointsCount = 3;
double constexpr kNotSoCloseMaxDistMeters = 30.0;

bool IsHighway(ftypes::HighwayClass hwClass, bool isLink)
{
  return (hwClass == ftypes::HighwayClass::Trunk || hwClass == ftypes::HighwayClass::Primary) &&
         !isLink;
}

bool IsSmallRoad(ftypes::HighwayClass hwClass)
{
  return hwClass == ftypes::HighwayClass::LivingStreet ||
         hwClass == ftypes::HighwayClass::Service || hwClass == ftypes::HighwayClass::Pedestrian;
}

/// \brief Fills |turn| with |CarDirection::ExitHighwayToRight| or |CarDirection::ExitHighwayToLeft|
/// and returns true. Or does not change |turn| and returns false.
/// \note The function makes a decision about |turn| based on geometry of the route and turn
/// candidates, so it works correctly for both left and right hand traffic.
bool IsExit(TurnCandidates const & possibleTurns, TurnInfo const & turnInfo,
            Segment const & firstOutgoingSeg, CarDirection intermediateDirection, CarDirection & turn)
{
  if (!possibleTurns.isCandidatesAngleValid)
    return false;

  if (!IsHighway(turnInfo.m_ingoing.m_highwayClass, turnInfo.m_ingoing.m_isLink) ||
      !(turnInfo.m_outgoing.m_isLink || (IsSmallRoad(turnInfo.m_outgoing.m_highwayClass) &&
                                            IsGoStraightOrSlightTurn(intermediateDirection))))
  {
    return false;
  }
  // At this point it is known that the route goes form a highway to a link road or to a small road
  // which has a slight angle with the highway.

  // Considering cases when the route goes from a highway to a link or a small road.
  // Checking all turn candidates (sorted by their angles) and looking for the road which is a
  // continuation of the ingoing segment. If the continuation is on the right hand of the route
  // it's an exit to the left. If the continuation is on the left hand of the route
  // it's an exit to the right.
  // Note. The angle which is used for sorting turn candidates in |possibleTurns.candidates|
  // is a counterclockwise angle between the ingoing route edge and corresponding candidate.
  // For left turns the angle is less than zero and for right ones it is more than zero.
  bool isCandidateBeforeOutgoing = true;
  bool isHighwayCandidateBeforeOutgoing = true;
  size_t highwayCandidateNumber = 0;

  for (auto const & c : possibleTurns.candidates)
  {
    if (c.m_segment == firstOutgoingSeg)
    {
      isCandidateBeforeOutgoing = false;
      continue;
    }

    if (IsHighway(c.m_highwayClass, c.m_isLink))
    {
      ++highwayCandidateNumber;
      if (highwayCandidateNumber >= 2)
        return false; // There are two or more highway candidates from the junction.
      isHighwayCandidateBeforeOutgoing = isCandidateBeforeOutgoing;
    }
  }
  if (highwayCandidateNumber == 1)
  {
    turn = isHighwayCandidateBeforeOutgoing ? CarDirection::ExitHighwayToRight
                                            : CarDirection::ExitHighwayToLeft;
    return true;
  }
  return false;
}

/*!
 * \brief Returns false when
 * - the route leads from one big road to another one;
 * - and the other possible turns lead to small roads;
 * Returns true otherwise.
 */
bool KeepTurnByHighwayClass(TurnCandidates const & possibleTurns, TurnInfo const & turnInfo,
                            NumMwmIds const & numMwmIds)
{
  // The turn should be kept if there's no any information about feature id of outgoing segment
  // just to be on the safe side. It may happen in case of outgoing segment is a finish segment.
  Segment firstOutgoingSegment;
  if (!turnInfo.m_outgoing.m_segmentRange.GetFirstSegment(numMwmIds, firstOutgoingSegment))
    return true;

  ftypes::HighwayClass maxClassForPossibleTurns = ftypes::HighwayClass::Error;
  for (auto const & t : possibleTurns.candidates)
  {
    if (t.m_segment == firstOutgoingSegment)
      continue;
    ftypes::HighwayClass const highwayClass = t.m_highwayClass;
    if (static_cast<int>(highwayClass) > static_cast<int>(maxClassForPossibleTurns))
      maxClassForPossibleTurns = highwayClass;
  }
  if (maxClassForPossibleTurns == ftypes::HighwayClass::Error)
  {
    ASSERT_GREATER(possibleTurns.candidates.size(), 1, ("No turn candidates or there's only one turn candidate."));
    ASSERT(false, ("One of possible turns follows along an undefined HighwayClass."));
    return true;
  }
  if (maxClassForPossibleTurns == ftypes::HighwayClass::Undefined)
    return false; // Fake edges have HighwayClass::Undefined.

  ftypes::HighwayClass const minClassForTheRoute =
      static_cast<ftypes::HighwayClass>(min(static_cast<int>(turnInfo.m_ingoing.m_highwayClass),
                                            static_cast<int>(turnInfo.m_outgoing.m_highwayClass)));

  if (minClassForTheRoute == ftypes::HighwayClass::Error)
  {
    ASSERT(false, ("The route contains undefined HighwayClass."));
    return false;
  }
  if (minClassForTheRoute == ftypes::HighwayClass::Undefined)
    return false; // Fake edges have HighwayClass::Undefined.

  // Maximum difference between HighwayClasses of route segments and possible way segments
  // to keep the bifurcation point as a turn.
  int constexpr kMaxHighwayClassDiff = 2;
  int constexpr kMaxHighwayClassDiffForService = 1;
  int const diff =
      static_cast<int>(maxClassForPossibleTurns) - static_cast<int>(minClassForTheRoute);
  if (diff >= kMaxHighwayClassDiff ||
      (maxClassForPossibleTurns == ftypes::HighwayClass::Service && diff >= kMaxHighwayClassDiffForService))
  {
    // The turn shall be removed if the route goes near small roads.
    return false;
  }
  return true;
}

/*!
 * \brief Returns false when other possible turns leads to service roads;
 */
bool KeepRoundaboutTurnByHighwayClass(CarDirection turn, TurnCandidates const & possibleTurns,
                                      TurnInfo const & turnInfo, NumMwmIds const & numMwmIds)
{
  Segment firstOutgoingSegment;
  bool const validFirstOutgoingSeg =
      turnInfo.m_outgoing.m_segmentRange.GetFirstSegment(numMwmIds, firstOutgoingSegment);

  for (auto const & t : possibleTurns.candidates)
  {
    if (!validFirstOutgoingSeg || t.m_segment == firstOutgoingSegment)
      continue;
    if (static_cast<int>(t.m_highwayClass) != static_cast<int>(ftypes::HighwayClass::Service))
      return true;
  }
  return false;
}

bool DoAllTurnCandidatesGoAlmostStraight(vector<TurnCandidate> const & candidates)
{
  return all_of(candidates.cbegin(), candidates.cend(), [](TurnCandidate const & c) {
    return IsGoStraightOrSlightTurn(IntermediateDirection(c.m_angle));
  });
}

/// \brief Analyzes its args and makes a decision if it's possible to have a turn at this junction
/// or not.
/// \returns true if based on this analysis there's no turn at this junction and
/// false if the junction should be considered as possible turn.
bool DiscardTurnByIngoingAndOutgoingEdges(CarDirection intermediateDirection, bool hasMultiTurns,
                                          TurnInfo const & turnInfo, TurnItem const & turn,
                                          TurnCandidates const & turnCandidates)
{
  if (turn.m_keepAnyway || turnInfo.m_ingoing.m_onRoundabout ||
      turnInfo.m_outgoing.m_onRoundabout ||
      turnInfo.m_ingoing.m_highwayClass != turnInfo.m_outgoing.m_highwayClass)
  {
    return false;
  }

  // @TODO(bykoianko) If all turn candidates go almost straight and there are several ways
  // from the junction (|hasMultiTurns| == true) the turn will be discarded.
  // If all turn candidates go almost straight and there is only one way
  // from the junction (|hasMultiTurns| == false) the turn will not be discarded in this method,
  // and then may be kept. It means that in some cases if there are two or more possible
  // ways from a junction the turn may be discarded and if there is only one way out
  // the turn may be kept. This code should be redesigned.
  if (turnCandidates.isCandidatesAngleValid &&
      DoAllTurnCandidatesGoAlmostStraight(turnCandidates.candidates))
  {
    return !hasMultiTurns;
  }

  return ((!hasMultiTurns && IsGoStraightOrSlightTurn(intermediateDirection)) ||
          (hasMultiTurns && intermediateDirection == CarDirection::GoStraight));
}

// turnEdgesCount calculates both ingoing ond outgoing edges without user's edge.
bool KeepTurnByIngoingEdges(m2::PointD const & junctionPoint,
                            m2::PointD const & ingoingPointOneSegment,
                            m2::PointD const & outgoingPoint, bool hasMultiTurns,
                            size_t const turnEdgesCount)
{
  double const turnAngle =
    my::RadToDeg(PiMinusTwoVectorsAngle(junctionPoint, ingoingPointOneSegment, outgoingPoint));
  bool const isGoStraightOrSlightTurn = IsGoStraightOrSlightTurn(IntermediateDirection(turnAngle));

  // The code below is responsible for cases when there is only one way to leave the junction.
  // Such junction has to be kept as a turn when it's not a slight turn and it has ingoing edges
  // (one or more);
  return hasMultiTurns || (!isGoStraightOrSlightTurn && turnEdgesCount > 1);
}

bool FixupLaneSet(CarDirection turn, vector<SingleLaneInfo> & lanes,
                  function<bool(LaneWay l, CarDirection t)> checker)
{
  bool isLaneConformed = false;
  // There are two nested loops below. (There is a for-loop in checker.)
  // But the number of calls of the body of inner one (in checker) is relatively small.
  // Less than 10 in most cases.
  for (auto & singleLane : lanes)
  {
    for (LaneWay laneWay : singleLane.m_lane)
    {
      if (checker(laneWay, turn))
      {
        singleLane.m_isRecommended = true;
        isLaneConformed = true;
        break;
      }
    }
  }
  return isLaneConformed;
}

/*!
 * \brief Converts a turn angle into a turn direction.
 * \note lowerBounds is a table of pairs: an angle and a direction.
 * lowerBounds shall be sorted by the first parameter (angle) from big angles to small angles.
 * These angles should be measured in degrees and should belong to the range [-180; 180].
 * The second paramer (angle) shall belong to the range [-180; 180] and is measured in degrees.
 */
CarDirection FindDirectionByAngle(vector<pair<double, CarDirection>> const & lowerBounds,
                                   double angle)
{
  ASSERT_GREATER_OR_EQUAL(angle, -180., (angle));
  ASSERT_LESS_OR_EQUAL(angle, 180., (angle));
  ASSERT(!lowerBounds.empty(), ());
  ASSERT(is_sorted(lowerBounds.cbegin(), lowerBounds.cend(),
             [](pair<double, CarDirection> const & p1, pair<double, CarDirection> const & p2)
         {
           return p1.first > p2.first;
         }), ());

  for (auto const & lower : lowerBounds)
  {
    if (angle >= lower.first)
      return lower.second;
  }

  ASSERT(false, ("The angle is not covered by the table. angle = ", angle));
  return CarDirection::None;
}

RoutePointIndex GetFirstOutgoingPointIndex(size_t outgoingSegmentIndex)
{
  return RoutePointIndex({outgoingSegmentIndex, 0 /* m_pathIndex */});
}

RoutePointIndex GetLastIngoingPointIndex(TUnpackedPathSegments const & segments,
                                         size_t outgoingSegmentIndex)
{
  ASSERT_GREATER(outgoingSegmentIndex, 0, ());
  ASSERT(segments[outgoingSegmentIndex - 1].IsValid(), ());
  return RoutePointIndex({outgoingSegmentIndex - 1,
                          segments[outgoingSegmentIndex - 1].m_path.size() - 1 /* m_pathIndex */});
}

m2::PointD GetPointByIndex(TUnpackedPathSegments const & segments, RoutePointIndex const & index)
{
  return segments[index.m_segmentIndex].m_path[index.m_pathIndex].GetPoint();
}

/*!
 * \brief GetPointForTurn returns ingoing point or outgoing point for turns.
 * These points belongs to the route but they often are not neighbor of junction point.
 * To calculate the resulting point the function implements the following steps:
 * - going from junction point along route path according to the direction which is set in GetPointIndex().
 * - until one of following conditions is fulfilled:
 *   - more than |maxPointsCount| points are passed (returns the maxPointsCount-th point);
 *   - the length of passed parts of segment exceeds maxDistMeters;
 *     (returns the next point after the event)
 *   - an important bifurcation point is reached in case of outgoing point is looked up (forward == true).
 * \param result information about the route. |result.GetSegments()| is composed of LoadedPathSegment.
 * Each LoadedPathSegment is composed of several Segments. The sequence of Segments belongs to
 * single feature and does not split by other features.
 * \param outgoingSegmentIndex index in |segments|. Junction point noticed above is the first point
 * of |outgoingSegmentIndex| segment in |result.GetSegments()|.
 * \param maxPointsCount maximum number between the returned point and junction point.
 * \param maxDistMeters maximum distance between the returned point and junction point.
 * \param forward is direction of moving along the route to calculate the returned point.
 * If forward == true the direction is to route finish. If forward == false the direction is to route start.
 * \return an ingoing or outgoing point for a turn calculation.
 */
m2::PointD GetPointForTurn(IRoutingResult const & result, size_t outgoingSegmentIndex,
                           NumMwmIds const & numMwmIds, size_t const maxPointsCount,
                           double const maxDistMeters, bool forward)
{
  auto const & segments = result.GetSegments();
  ASSERT_LESS(outgoingSegmentIndex, segments.size(), ());
  ASSERT_GREATER(outgoingSegmentIndex, 0, ());

  RoutePointIndex index = forward ? GetFirstOutgoingPointIndex(outgoingSegmentIndex)
                                  : GetLastIngoingPointIndex(segments, outgoingSegmentIndex);
  ASSERT_LESS(index.m_pathIndex, segments[index.m_segmentIndex].m_path.size(), ());
  ASSERT_GREATER_OR_EQUAL(index.m_segmentIndex, 0, ());
  ASSERT_LESS(index.m_segmentIndex, segments.size(), ());
  RoutePointIndex nextIndex;

  ASSERT(!segments[index.m_segmentIndex].m_path.empty(), ());
  m2::PointD point = GetPointByIndex(segments, index);
  m2::PointD nextPoint;
  size_t count = 0;
  double curDistanceMeters = 0.0;

  ASSERT(GetNextRoutePointIndex(result, index, numMwmIds, forward, nextIndex), ());
  while (GetNextRoutePointIndex(result, index, numMwmIds, forward, nextIndex))
  {
    nextPoint = GetPointByIndex(segments, nextIndex);

    // At start and finish there are two edges with zero length.
    // GetPointForTurn() should not be called for the start (|outgoingSegmentIndex| == 0).
    // So there is special processing for the finish below.
    if (point == nextPoint && outgoingSegmentIndex + 1 == segments.size())
      return nextPoint;

    curDistanceMeters += MercatorBounds::DistanceOnEarth(point, nextPoint);
    if (curDistanceMeters > maxDistMeters || ++count >= maxPointsCount)
      return nextPoint;

    point = nextPoint;
    index = nextIndex;
  }

  return nextPoint;
}

size_t GetLinkCount(vector<TurnCandidate> const & candidates)
{
  size_t numLinks = 0;
  for (auto const & c : candidates)
  {
    if (c.m_isLink)
      ++numLinks;
  }
  return numLinks;
}

/*!
 * \brief Calculates |nextIndex| which is an index of next route point at result.GetSegments()
 * in forward direction.
 * If
 *  - |index| points at the last point of the turn segment:
 *  - and the route at this point leads from one big road to another one
 *  - and the other possible turns lead to small roads or there's no them
 *  - and the turn is GoStraight or TurnSlight*
 *  method returns the second point of the next segment. First point of the next segment is skipped
 *  because it's almost the same with the last point of this segment.
 *  if |index| points at the first or intermediate point in turn segment returns the next one.
 * \returns true if |nextIndex| fills correctly and false otherwise.
 */
bool GetNextCrossSegmentRoutePoint(IRoutingResult const & result, RoutePointIndex const & index,
                                   NumMwmIds const & numMwmIds, RoutePointIndex & nextIndex)
{
  auto const & segments = result.GetSegments();
  ASSERT_LESS(index.m_segmentIndex, segments.size(), ());
  ASSERT_LESS(index.m_pathIndex, segments[index.m_segmentIndex].m_path.size(), ());

  if (index.m_pathIndex + 1 != segments[index.m_segmentIndex].m_path.size())
  {
    // In segment case.
    nextIndex = {index.m_segmentIndex, index.m_pathIndex + 1};
    return true;
  }

  // Case when the last point of the current segment is reached.
  // So probably it's necessary to cross a segment border.
  if (index.m_segmentIndex + 1 == segments.size())
    return false; // The end of the route is reached.

  TurnInfo const turnInfo(segments[index.m_segmentIndex], segments[index.m_segmentIndex + 1]);
  ASSERT_GREATER_OR_EQUAL(turnInfo.m_ingoing.m_path.size(), 2, ());
  ASSERT_GREATER_OR_EQUAL(turnInfo.m_outgoing.m_path.size(), 2, ());

  double const oneSegmentTurnAngle = my::RadToDeg(
      PiMinusTwoVectorsAngle(turnInfo.m_ingoing.m_path.back().GetPoint(),
                             turnInfo.m_ingoing.m_path[turnInfo.m_ingoing.m_path.size() - 2].GetPoint(),
                             turnInfo.m_outgoing.m_path[1].GetPoint()));
  CarDirection const oneSegmentDirection = IntermediateDirection(oneSegmentTurnAngle);
  if (!IsGoStraightOrSlightTurn(oneSegmentDirection))
    return false; // Too sharp turn angle.

  size_t ingoingCount = 0;
  TurnCandidates possibleTurns;
  result.GetPossibleTurns(turnInfo.m_ingoing.m_segmentRange, GetPointByIndex(segments, index),
                          ingoingCount, possibleTurns);

  if (possibleTurns.candidates.empty())
    return false;

  // |segments| is a vector of |LoadedPathSegment|. Every |LoadedPathSegment::m_path|
  // contains junctions of the segment. The first junction at a |LoadedPathSegment::m_path|
  // is the same (or almost the same) with the last junction at the next |LoadedPathSegment::m_path|.
  // To prevent using the same point twice it's necessary to take the first point only from the
  // first item of |loadedSegments|. The beginning should be ignored for the rest |m_path|.
  // Please see a comment in MakeTurnAnnotation() for more details.
  if (possibleTurns.candidates.size() == 1)
  {
    // Taking the next point of the next segment.
    nextIndex = {index.m_segmentIndex + 1, 1 /* m_pathIndex */};
    return true;
  }

  if (!KeepTurnByHighwayClass(possibleTurns, turnInfo, numMwmIds))
  {
    // Taking the next point of the next segment.
    nextIndex = {index.m_segmentIndex + 1, 1 /* m_pathIndex */};
    return true;
  }
  // Stopping getting next route points because an important bifurcation point is reached.
  return false;
}

bool GetPrevInSegmentRoutePoint(RoutePointIndex const & index, RoutePointIndex & nextIndex)
{
  if (index.m_pathIndex == 0)
    return false;

  nextIndex = {index.m_segmentIndex, index.m_pathIndex - 1};
  return true;
}
}  // namespace

namespace routing
{
namespace turns
{
// RoutePointIndex ---------------------------------------------------------------------------------
bool RoutePointIndex::operator==(RoutePointIndex const & index) const
{
  return m_segmentIndex == index.m_segmentIndex && m_pathIndex == index.m_pathIndex;
}

// TurnInfo ----------------------------------------------------------------------------------------
bool TurnInfo::IsSegmentsValid() const
{
  if (m_ingoing.m_path.empty() || m_outgoing.m_path.empty())
  {
    LOG(LWARNING, ("Some turns can't load the geometry."));
    return false;
  }
  return true;
}

bool GetNextRoutePointIndex(IRoutingResult const & result, RoutePointIndex const & index,
                            NumMwmIds const & numMwmIds, bool forward, RoutePointIndex & nextIndex)
{
  if (forward)
  {
    if (!GetNextCrossSegmentRoutePoint(result, index, numMwmIds, nextIndex))
      return false;
  }
  else
  {
    if (!GetPrevInSegmentRoutePoint(index, nextIndex))
      return false;
  }

  ASSERT_LESS(nextIndex.m_segmentIndex, result.GetSegments().size(), ());
  ASSERT_LESS(nextIndex.m_pathIndex, result.GetSegments()[nextIndex.m_segmentIndex].m_path.size(), ());
  return true;
}

RouterResultCode MakeTurnAnnotation(IRoutingResult const & result, NumMwmIds const & numMwmIds,
                                       RouterDelegate const & delegate,
                                       vector<Junction> & junctions, Route::TTurns & turnsDir,
                                       Route::TStreets & streets, vector<Segment> & segments)
{
  LOG(LDEBUG, ("Shortest th length:", result.GetPathLength()));

  if (delegate.IsCancelled())
    return RouterResultCode::Cancelled;
  // Annotate turns.
  size_t skipTurnSegments = 0;
  auto const & loadedSegments = result.GetSegments();
  segments.reserve(loadedSegments.size());
  for (auto loadedSegmentIt = loadedSegments.cbegin(); loadedSegmentIt != loadedSegments.cend();
       ++loadedSegmentIt)
  {
    CHECK(loadedSegmentIt->IsValid(), ());

    // Street names. I put empty names too, to avoid freezing old street name while riding on
    // unnamed street.
    streets.emplace_back(max(junctions.size(), static_cast<size_t>(1)) - 1, loadedSegmentIt->m_name);

    // Turns information.
    if (!junctions.empty() && skipTurnSegments == 0)
    {
      TurnItem turnItem;
      turnItem.m_index = static_cast<uint32_t>(junctions.size() - 1);

      auto const outgoingSegmentDist = distance(loadedSegments.begin(), loadedSegmentIt);
      CHECK_GREATER(outgoingSegmentDist, 0, ());
      auto const outgoingSegmentIndex = static_cast<size_t>(outgoingSegmentDist);

      skipTurnSegments = CheckUTurnOnRoute(result, outgoingSegmentIndex, numMwmIds, turnItem);

      if (turnItem.m_turn == CarDirection::None)
        GetTurnDirection(result, outgoingSegmentIndex, numMwmIds, turnItem);

      // Lane information.
      if (turnItem.m_turn != CarDirection::None)
      {
        auto const & ingoingSegment = loadedSegments[outgoingSegmentIndex - 1];
        turnItem.m_lanes = ingoingSegment.m_lanes;
        turnsDir.push_back(move(turnItem));
      }
    }

    if (skipTurnSegments > 0)
      --skipTurnSegments;

    // Path geometry.
    CHECK_GREATER_OR_EQUAL(loadedSegmentIt->m_path.size(), 2, ());
    // Note. Every LoadedPathSegment in TUnpackedPathSegments contains LoadedPathSegment::m_path
    // of several Junctions. Last Junction in a LoadedPathSegment::m_path is equal to first junction
    // in next LoadedPathSegment::m_path in vector TUnpackedPathSegments:
    // *---*---*---*---*       *---*           *---*---*---*
    //                 *---*---*   *---*---*---*
    // To prevent having repetitions in |junctions| list it's necessary to take the first point only from the
    // first item of |loadedSegments|. The beginning should be ignored for the rest |m_path|.
    junctions.insert(junctions.end(), loadedSegmentIt == loadedSegments.cbegin()
                                          ? loadedSegmentIt->m_path.cbegin()
                                          : loadedSegmentIt->m_path.cbegin() + 1,
                     loadedSegmentIt->m_path.cend());
    segments.insert(segments.end(), loadedSegmentIt->m_segments.cbegin(),
                    loadedSegmentIt->m_segments.cend());
  }

  // Path found. Points will be replaced by start and end edges junctions.
  if (junctions.size() == 1)
    junctions.push_back(junctions.front());

  if (junctions.size() < 2)
    return RouterResultCode::RouteNotFound;

  junctions.front() = result.GetStartPoint();
  junctions.back() = result.GetEndPoint();

  turnsDir.emplace_back(TurnItem(base::asserted_cast<uint32_t>(junctions.size()) - 1,
      CarDirection::ReachedYourDestination));
  FixupTurns(junctions, turnsDir);

#ifdef DEBUG
  for (auto t : turnsDir)
  {
    LOG(LDEBUG, (GetTurnString(t.m_turn), ":", t.m_index, t.m_sourceName, "-",
                 t.m_targetName, "exit:", t.m_exitNum));
  }
#endif
  return RouterResultCode::NoError;
}

double CalculateMercatorDistanceAlongPath(uint32_t startPointIndex, uint32_t endPointIndex,
                                          vector<m2::PointD> const & points)
{
  ASSERT_LESS(endPointIndex, points.size(), ());
  ASSERT_LESS_OR_EQUAL(startPointIndex, endPointIndex, ());

  double mercatorDistanceBetweenTurns = 0;
  for (uint32_t i = startPointIndex; i != endPointIndex; ++i)
    mercatorDistanceBetweenTurns += points[i].Length(points[i + 1]);

  return mercatorDistanceBetweenTurns;
}

void FixupTurns(vector<Junction> const & junctions, Route::TTurns & turnsDir)
{
  double const kMergeDistMeters = 30.0;
  // For turns that are not EnterRoundAbout exitNum is always equal to zero.
  // If a turn is EnterRoundAbout exitNum is a number of turns between two junctions:
  // (1) the route enters to the roundabout;
  // (2) the route leaves the roundabout;
  uint32_t exitNum = 0;
  // If a roundabout is worked up the roundabout value junctions to the turn
  // of the enter to the roundabout. If not, roundabout is equal to nullptr.
  TurnItem * roundabout = nullptr;

  auto routeDistanceMeters = [&junctions](uint32_t start, uint32_t end)
  {
    double res = 0.0;
    for (uint32_t i = start + 1; i < end; ++i)
      res += MercatorBounds::DistanceOnEarth(junctions[i - 1].GetPoint(), junctions[i].GetPoint());
    return res;
  };

  for (size_t idx = 0; idx < turnsDir.size(); )
  {
    TurnItem & t = turnsDir[idx];
    if (roundabout && t.m_turn != CarDirection::StayOnRoundAbout &&
        t.m_turn != CarDirection::LeaveRoundAbout)
    {
      exitNum = 0;
      roundabout = nullptr;
    }
    else if (t.m_turn == CarDirection::EnterRoundAbout)
    {
      ASSERT(!roundabout, ());
      roundabout = &t;
    }
    else if (t.m_turn == CarDirection::StayOnRoundAbout)
    {
      ++exitNum;
      turnsDir.erase(turnsDir.begin() + idx);
      continue;
    }
    else if (roundabout && t.m_turn == CarDirection::LeaveRoundAbout)
    {
      roundabout->m_exitNum = exitNum + 1; // For EnterRoundAbout turn.
      t.m_exitNum = roundabout->m_exitNum; // For LeaveRoundAbout turn.
      roundabout = nullptr;
      exitNum = 0;
    }

    // Merging turns which are closed to each other under some circumstance.
    // distance(turnsDir[idx - 1].m_index, turnsDir[idx].m_index) < kMergeDistMeters
    // means the distance in meters between the former turn (idx - 1)
    // and the current turn (idx).
    if (idx > 0 && IsStayOnRoad(turnsDir[idx - 1].m_turn) &&
        IsLeftOrRightTurn(turnsDir[idx].m_turn) &&
        routeDistanceMeters(turnsDir[idx - 1].m_index, turnsDir[idx].m_index) < kMergeDistMeters)
    {
      turnsDir.erase(turnsDir.begin() + idx - 1);
      continue;
    }

    ++idx;
  }
  SelectRecommendedLanes(turnsDir);
  return;
}

void SelectRecommendedLanes(Route::TTurns & turnsDir)
{
  for (auto & t : turnsDir)
  {
    vector<SingleLaneInfo> & lanes = t.m_lanes;
    if (lanes.empty())
      continue;
    CarDirection const turn = t.m_turn;
    // Checking if threre are elements in lanes which correspond with the turn exactly.
    // If so fixing up all the elements in lanes which correspond with the turn.
    if (FixupLaneSet(turn, lanes, &IsLaneWayConformedTurnDirection))
      continue;
    // If not checking if there are elements in lanes which corresponds with the turn
    // approximately. If so fixing up all these elements.
    FixupLaneSet(turn, lanes, &IsLaneWayConformedTurnDirectionApproximately);
  }
}

bool CheckRoundaboutEntrance(bool isIngoingEdgeRoundabout, bool isOutgoingEdgeRoundabout)
{
  return !isIngoingEdgeRoundabout && isOutgoingEdgeRoundabout;
}

bool CheckRoundaboutExit(bool isIngoingEdgeRoundabout, bool isOutgoingEdgeRoundabout)
{
  return isIngoingEdgeRoundabout && !isOutgoingEdgeRoundabout;
}

CarDirection GetRoundaboutDirection(bool isIngoingEdgeRoundabout, bool isOutgoingEdgeRoundabout,
                                     bool isMultiTurnJunction, bool keepTurnByHighwayClass)
{
  if (isIngoingEdgeRoundabout && isOutgoingEdgeRoundabout)
  {
    if (isMultiTurnJunction)
      return keepTurnByHighwayClass ? CarDirection::StayOnRoundAbout : CarDirection::None;
    return CarDirection::None;
  }

  if (CheckRoundaboutEntrance(isIngoingEdgeRoundabout, isOutgoingEdgeRoundabout))
    return CarDirection::EnterRoundAbout;

  if (CheckRoundaboutExit(isIngoingEdgeRoundabout, isOutgoingEdgeRoundabout))
    return CarDirection::LeaveRoundAbout;

  ASSERT(false, ());
  return CarDirection::None;
}

CarDirection InvertDirection(CarDirection dir)
{
  switch (dir)
  {
    case CarDirection::TurnSlightRight:
      return CarDirection::TurnSlightLeft;
    case CarDirection::TurnRight:
      return CarDirection::TurnLeft;
    case CarDirection::TurnSharpRight:
      return CarDirection::TurnSharpLeft;
    case CarDirection::TurnSlightLeft:
      return CarDirection::TurnSlightRight;
    case CarDirection::TurnLeft:
      return CarDirection::TurnRight;
    case CarDirection::TurnSharpLeft:
      return CarDirection::TurnSharpRight;
    default:
      return dir;
  };
}

CarDirection RightmostDirection(const double angle)
{
  static vector<pair<double, CarDirection>> const kLowerBounds = {
      {157., CarDirection::TurnSharpRight},
      {50., CarDirection::TurnRight},
      {2., CarDirection::TurnSlightRight},
      {-10., CarDirection::GoStraight},
      {-50., CarDirection::TurnSlightLeft},
      {-157., CarDirection::TurnLeft},
      {-180., CarDirection::TurnSharpLeft}};

  return FindDirectionByAngle(kLowerBounds, angle);
}

CarDirection LeftmostDirection(const double angle)
{
  return InvertDirection(RightmostDirection(-angle));
}

CarDirection IntermediateDirection(const double angle)
{
  static vector<pair<double, CarDirection>> const kLowerBounds = {
      {157., CarDirection::TurnSharpRight},
      {50., CarDirection::TurnRight},
      {10., CarDirection::TurnSlightRight},
      {-10., CarDirection::GoStraight},
      {-50., CarDirection::TurnSlightLeft},
      {-157., CarDirection::TurnLeft},
      {-180., CarDirection::TurnSharpLeft}};

  return FindDirectionByAngle(kLowerBounds, angle);
}

/// \returns true iff one of the turn candidates goes along the ingoing route segment.
bool OneOfTurnCandidatesGoesAlongIngoingSegment(NumMwmIds const & numMwmIds,
                                                TurnCandidates const & turnCandidates,
                                                TurnInfo const & turnInfo)
{
  Segment ingoingSegment;
  if (!turnInfo.m_ingoing.m_segmentRange.GetLastSegment(numMwmIds, ingoingSegment))
    return false;

  for (auto const & c : turnCandidates.candidates)
  {
    if (c.m_segment.IsInverse(ingoingSegment))
      return true;
  }
  return false;
}

/// \returns true if there are two or more possible ways which don't go along an ingoing segment
/// and false otherwise.
/// \example If a route goes along such graph edges:
/// ...-->*<------>*<--->*<---------------->*<---...
/// for each point which is drawn above HasMultiTurns() returns false
/// despite the fact that for each point it's possible to go to two directions.
bool HasMultiTurns(NumMwmIds const & numMwmIds, TurnCandidates const & turnCandidates,
                   TurnInfo const & turnInfo)
{
  size_t const numTurnCandidates = turnCandidates.candidates.size();
  if (numTurnCandidates <= 1)
    return false;
  if (numTurnCandidates > 2)
    return true;

  return !OneOfTurnCandidatesGoesAlongIngoingSegment(numMwmIds, turnCandidates, turnInfo);
}

void GetTurnDirection(IRoutingResult const & result, size_t outgoingSegmentIndex,
                      NumMwmIds const & numMwmIds, TurnItem & turn)
{
  auto const & segments = result.GetSegments();
  CHECK_LESS(outgoingSegmentIndex, segments.size(), ());
  CHECK_GREATER(outgoingSegmentIndex, 0, ());

  TurnInfo turnInfo(segments[outgoingSegmentIndex - 1], segments[outgoingSegmentIndex]);
  if (!turnInfo.IsSegmentsValid() || turnInfo.m_ingoing.m_segmentRange.IsEmpty())
    return;

  ASSERT(!turnInfo.m_ingoing.m_path.empty(), ());
  ASSERT(!turnInfo.m_outgoing.m_path.empty(), ());
  ASSERT_LESS(MercatorBounds::DistanceOnEarth(turnInfo.m_ingoing.m_path.back().GetPoint(),
                                              turnInfo.m_outgoing.m_path.front().GetPoint()),
              kFeaturesNearTurnMeters, ());

  m2::PointD const junctionPoint = turnInfo.m_ingoing.m_path.back().GetPoint();
  m2::PointD const ingoingPoint =
      GetPointForTurn(result, outgoingSegmentIndex, numMwmIds, kMaxIngoingPointsCount,
                      kMinIngoingDistMeters, false /* forward */);
  m2::PointD const outgoingPoint =
      GetPointForTurn(result, outgoingSegmentIndex, numMwmIds, kMaxOutgoingPointsCount,
                      kMinOutgoingDistMeters, true /* forward */);

  double const turnAngle = my::RadToDeg(PiMinusTwoVectorsAngle(junctionPoint, ingoingPoint, outgoingPoint));
  CarDirection const intermediateDirection = IntermediateDirection(turnAngle);

  turn.m_keepAnyway = (!turnInfo.m_ingoing.m_isLink && turnInfo.m_outgoing.m_isLink);
  turn.m_sourceName = turnInfo.m_ingoing.m_name;
  turn.m_targetName = turnInfo.m_outgoing.m_name;
  turn.m_turn = CarDirection::None;

  ASSERT_GREATER(turnInfo.m_ingoing.m_path.size(), 1, ());
  TurnCandidates nodes;
  size_t ingoingCount;
  result.GetPossibleTurns(turnInfo.m_ingoing.m_segmentRange, junctionPoint, ingoingCount, nodes);
  if (nodes.isCandidatesAngleValid)
  {
    ASSERT(is_sorted(nodes.candidates.begin(), nodes.candidates
        .end(), my::LessBy(&TurnCandidate::m_angle)),
           ("Turn candidates should be sorted by its angle field."));
  }

  if (nodes.candidates.size() == 0)
    return;

  bool const hasMultiTurns = HasMultiTurns(numMwmIds, nodes, turnInfo);

  // Checking for exits from highways.
  Segment firstOutgoingSeg;
  bool const isFirstOutgoingSegValid =
      turnInfo.m_outgoing.m_segmentRange.GetFirstSegment(numMwmIds, firstOutgoingSeg);
  if (!turnInfo.m_ingoing.m_onRoundabout && isFirstOutgoingSegValid &&
      IsExit(nodes, turnInfo, firstOutgoingSeg, intermediateDirection, turn.m_turn))
  {
    return;
  }

  if (DiscardTurnByIngoingAndOutgoingEdges(intermediateDirection, hasMultiTurns, turnInfo, turn, nodes))
    return;

  if (!hasMultiTurns || !nodes.isCandidatesAngleValid)
  {
    turn.m_turn = intermediateDirection;
  }
  else
  {
    if (isFirstOutgoingSegValid)
    {
      if (nodes.candidates.front().m_segment == firstOutgoingSeg)
        turn.m_turn = LeftmostDirection(turnAngle);
      else if (nodes.candidates.back().m_segment == firstOutgoingSeg)
        turn.m_turn = RightmostDirection(turnAngle);
      else
        turn.m_turn = intermediateDirection;
    }
    else
    {
      turn.m_turn = intermediateDirection;
    }
  }

  if (turnInfo.m_ingoing.m_onRoundabout || turnInfo.m_outgoing.m_onRoundabout)
  {
    bool const keepTurnByHighwayClass =
        KeepRoundaboutTurnByHighwayClass(turn.m_turn, nodes, turnInfo, numMwmIds);
    turn.m_turn = GetRoundaboutDirection(turnInfo.m_ingoing.m_onRoundabout,
                                         turnInfo.m_outgoing.m_onRoundabout, hasMultiTurns,
                                         keepTurnByHighwayClass);
    return;
  }

  // Note 1. If the road significantly changes its direction this turn shall be kept here.
  // Note 2. If there's only one exit from this junction (nodes.candidates.size() != 1)
  // this turn should be kept.
  // Note 3. Keeping a turn at this point means that the decision to keep this turn or not
  // will be made after.
  if (!turn.m_keepAnyway && IsGoStraightOrSlightTurn(turn.m_turn) && nodes.candidates.size() != 1 &&
      !KeepTurnByHighwayClass(nodes, turnInfo, numMwmIds))
  {
    turn.m_turn = CarDirection::None;
    return;
  }

  if (IsGoStraightOrSlightTurn(turn.m_turn))
  {
    auto const notSoCloseToTheTurnPoint =
        GetPointForTurn(result, outgoingSegmentIndex, numMwmIds, kNotSoCloseMaxPointsCount,
                        kNotSoCloseMaxDistMeters, false /* forward */);

    // Removing a slight turn if there's only one way to leave the turn and there's no ingoing edges.
    if (!KeepTurnByIngoingEdges(junctionPoint, notSoCloseToTheTurnPoint, outgoingPoint, hasMultiTurns,
                                nodes.candidates.size() + ingoingCount))
    {
      turn.m_turn = CarDirection::None;
      return;
    }

    // Removing a slight turn if ingoing and outgoing edges are not links and all other
    // possible ways out are links.
    if (!turnInfo.m_ingoing.m_isLink && !turnInfo.m_outgoing.m_isLink &&
        turnInfo.m_ingoing.m_highwayClass == turnInfo.m_outgoing.m_highwayClass &&
        GetLinkCount(nodes.candidates) + 1 == nodes.candidates.size())
    {
      turn.m_turn = CarDirection::None;
      return;
    }
  }

  if (turn.m_turn == CarDirection::GoStraight)
  {
    if (!hasMultiTurns)
      turn.m_turn = CarDirection::None;
    return;
  }
}

size_t CheckUTurnOnRoute(IRoutingResult const & result, size_t outgoingSegmentIndex,
                         NumMwmIds const & numMwmIds, TurnItem & turn)
{
  size_t constexpr kUTurnLookAhead = 3;
  double constexpr kUTurnHeadingSensitivity = math::pi / 10.0;
  auto const & segments = result.GetSegments();

  // In this function we process the turn between the previous and the current
  // segments. So we need a shift to get the previous segment.
  ASSERT_GREATER(segments.size(), 1, ());
  ASSERT_GREATER(outgoingSegmentIndex, 0, ());
  ASSERT_GREATER(segments.size(), outgoingSegmentIndex, ());
  auto const & masterSegment = segments[outgoingSegmentIndex - 1];
  if (masterSegment.m_path.size() < 2)
    return 0;

  // Roundabout is not the UTurn.
  if (masterSegment.m_onRoundabout)
    return 0;
  for (size_t i = 0; i < kUTurnLookAhead && i + outgoingSegmentIndex < segments.size(); ++i)
  {
    auto const & checkedSegment = segments[outgoingSegmentIndex + i];
    if (checkedSegment.m_path.size() < 2)
      return 0;

    if (checkedSegment.m_name == masterSegment.m_name &&
        checkedSegment.m_highwayClass == masterSegment.m_highwayClass &&
        checkedSegment.m_isLink == masterSegment.m_isLink && !checkedSegment.m_onRoundabout)
    {
      auto const & path = masterSegment.m_path;
      auto const & pointBeforeTurn = path[path.size() - 2];
      auto const & turnPoint = path[path.size() - 1];
      auto const & pointAfterTurn = checkedSegment.m_path[1];
      // Same segment UTurn case.
      if (i == 0)
      {
        // TODO Fix direction calculation.
        // Warning! We can not determine UTurn direction in single edge case. So we use UTurnLeft.
        // We decided to add driving rules (left-right sided driving) to mwm header.
        if (pointBeforeTurn == pointAfterTurn && turnPoint != pointBeforeTurn)
        {
          turn.m_turn = CarDirection::UTurnLeft;
          return 1;
        }
        // Wide UTurn must have link in it's middle.
        return 0;
      }

      // Avoid the UTurn on unnamed roads inside the rectangle based distinct.
      if (checkedSegment.m_name.empty())
        return 0;

      // Avoid returning to the same edge after uturn somewere else.
      if (pointBeforeTurn == pointAfterTurn)
        return 0;

      m2::PointD const v1 = turnPoint.GetPoint() - pointBeforeTurn.GetPoint();
      m2::PointD const v2 = pointAfterTurn.GetPoint() - checkedSegment.m_path[0].GetPoint();

      auto angle = ang::TwoVectorsAngle(m2::PointD::Zero(), v1, v2);

      if (!my::AlmostEqualAbs(angle, math::pi, kUTurnHeadingSensitivity))
        return 0;

      // Determine turn direction.
      m2::PointD const junctionPoint = masterSegment.m_path.back().GetPoint();

      m2::PointD const ingoingPoint =
          GetPointForTurn(result, outgoingSegmentIndex, numMwmIds, kMaxIngoingPointsCount,
                          kMinIngoingDistMeters, false /* forward */);
      m2::PointD const outgoingPoint =
          GetPointForTurn(result, outgoingSegmentIndex, numMwmIds, kMaxOutgoingPointsCount,
                          kMinOutgoingDistMeters, true /* forward */);

      if (PiMinusTwoVectorsAngle(junctionPoint, ingoingPoint, outgoingPoint) < 0)
        turn.m_turn = CarDirection::UTurnLeft;
      else
        turn.m_turn = CarDirection::UTurnRight;
      return i + 1;
    }
  }

  return 0;
}

string DebugPrint(RoutePointIndex const & index)
{
  stringstream out;
  out << "RoutePointIndex [ m_segmentIndex == " << index.m_segmentIndex
      << ", m_pathIndex == " << index.m_pathIndex << " ]" << endl;
  return out.str();
}
}  // namespace turns
}  // namespace routing