Welcome to mirror list, hosted at ThFree Co, Russian Federation.

avx2_gemm.h « intgemm - github.com/marian-nmt/intgemm.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: d93ac8ecdbb817fb3bde1a3bfdde74ce3db64a44 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#pragma once

#include "intgemm/intgemm_config.h"

#ifdef INTGEMM_COMPILER_SUPPORTS_AVX2

#include "interleave.h"
#include "kernels.h"
#include "multiply.h"
#include "types.h"

#include <cstdint>
#include <cstring>

namespace intgemm {
namespace AVX2 {

INTGEMM_AVX2 inline Register QuantizerGrab(const float *input, const __m256 quant_mult_reg) {
  return kernels::quantize(loadu_ps<FRegister>(input), quant_mult_reg);
}

INTGEMM_SELECT_COL_B(INTGEMM_AVX2, __m256i)

class QuantizeTile16 {
  public:
    INTGEMM_AVX2 static inline Register Consecutive(FRegister mult_reg, const float *input) {
      return Tile(mult_reg, input, input + 8);
    }

    INTGEMM_AVX2 static inline Register ConsecutiveWithWrapping(FRegister mult_reg, const float *input, Index cols_left, Index cols, Index row_step) {
      return Tile(mult_reg,
        input,
        input + 8 + (cols_left <= 8 ? cols * (row_step - 1) : 0));
    }

    INTGEMM_AVX2 static inline Register ForReshape(FRegister mult_reg, const float *input, Index cols) {
      // 8 rows in the first 128-bit register, 8 in the second register.
      return Tile(mult_reg, input, input + 8 * cols);
    }

  private:
    INTGEMM_AVX2 static inline Register Tile(FRegister mult_reg, const float *input0, const float *input1) {
      Register g0 = QuantizerGrab(input0, mult_reg);
      Register g1 = QuantizerGrab(input1, mult_reg);
      Register packed = _mm256_packs_epi32(g0, g1);
      // Reorder the packed values because Intel does 0 1 2 3 8 9 10 11 4 5 6 7 12 13 14 15.
      // Technically this could be removed if the PrepareB did the same reordering internally.
      return _mm256_permute4x64_epi64(packed, 0xd8 /* 0, 2, 1, 3 */);
    }
};

struct Kernels16 {
  typedef int16_t Integer;

  // Currently A is prepared by quantization but this could theoretically change.
  INTGEMM_AVX2 static inline void PrepareA(const float *input, int16_t *output, float quant_mult, Index rows, Index cols) {
    Quantize(input, output, quant_mult, rows * cols);
  }

  // Just quantize everything in order.
  INTGEMM_AVX2 static void Quantize(const float *input, int16_t *output, float quant_mult, Index size) {
    assert(size % 16 == 0);
    assert(reinterpret_cast<uintptr_t>(input) % 32 == 0);
    FRegister q = set1_ps<FRegister>(quant_mult);
    const float *end = input + size;
    for (; input != end; input += 16, output += 16) {
      *reinterpret_cast<__m256i*>(output) = QuantizeTile16::Consecutive(q, input);
    }
  }

  // Tile size for B; B must be a multiple of this block size.
  static const Index kBTileRow = 16;
  static const Index kBTileCol = 8;
/*
  INTGEMM_AVX2 static void PrepareB(const float *input, int16_t *output, float quant_mult, Index rows, Index cols) {
    PrepareBFor16(input, output, AVX2::QuantizeTile16(quant_mult), rows, cols);
  }*/
  INTGEMM_PREPARE_B_16(INTGEMM_AVX2, AVX2::QuantizeTile16)
  INTGEMM_PREPARE_B_QUANTIZED_TRANSPOSED(INTGEMM_AVX2, int16_t)
  INTGEMM_PREPARE_B_TRANSPOSED(INTGEMM_AVX2, AVX2::QuantizeTile16, int16_t)

  INTGEMM_AVX2 static void SelectColumnsB(const int16_t *input, int16_t *output, Index rows, const Index *cols_begin, const Index *cols_end) {
    AVX2::SelectColumnsOfB((const __m256i*)input, (__m256i*)output, rows * 2, cols_begin, cols_end);
  }

  INTGEMM_MULTIPLY16(__m256i, INTGEMM_AVX2, CPUType::AVX2)

  constexpr static const char *const kName = "16-bit AVX2";

  static const CPUType kUses = CPUType::AVX2;
};

/* Read 8 floats at a time from input0, input1, input2, and input3.  Quantize
 * them to 8-bit by multiplying with quant_mult_reg then rounding. Concatenate
 * the result into one register and return it.
 */
class QuantizeTile8 {
  public:
    INTGEMM_AVX2 static inline Register Consecutive(FRegister quant_mult, const float *input) {
      return Tile(quant_mult, input, input + 8, input + 16, input + 24);
    }

    INTGEMM_AVX2 static inline Register ConsecutiveU(FRegister quant_mult, const float *input) {
      return TileU(quant_mult, input, input + 8, input + 16, input + 24);
    }

    INTGEMM_AVX2 static inline Register ConsecutiveWithWrapping(FRegister quant_mult, const float *input, Index cols_left, Index cols, Index row_step) {
      const float* inputs[4];
      for (Index i = 0; i < sizeof(inputs) / sizeof(inputs[0]); ++i) {
        while (cols_left < sizeof(Register) / sizeof(float)) {
          input += cols * (row_step - 1);
          cols_left += cols;
        }
        inputs[i] = input;
        input += sizeof(Register) / sizeof(float);
        cols_left -= sizeof(Register) / sizeof(float);
      }
      return Tile(quant_mult, inputs[0], inputs[1], inputs[2], inputs[3]);
    }

    INTGEMM_AVX2 static inline Register ForReshape(FRegister quant_mult, const float *input, Index cols) {
      // Put higher rows in the second half of the register.  These will jumble
      // around in the same way then conveniently land in the right place.
      return Tile(quant_mult, input, input + 2 * cols, input + 16 * cols, input + 18 * cols);
    }

    INTGEMM_AVX2 static inline __m256i Tile(FRegister quant_mult, const float *input0, const float *input1, const float *input2, const float *input3) {
      // Looking at the assembly, gcc has pulled this outside the loops calling this.
      const __m256i neg127 = _mm256_set1_epi8(-127);
      const __m256i shuffle_param = _mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0);
      // Grab 4 registers at a time in 32-bit format.
      __m256i g0 = AVX2::QuantizerGrab(input0, quant_mult);
      __m256i g1 = AVX2::QuantizerGrab(input1, quant_mult);
      __m256i g2 = AVX2::QuantizerGrab(input2, quant_mult);
      __m256i g3 = AVX2::QuantizerGrab(input3, quant_mult);
      // Pack 32-bit to 16-bit.
      __m256i packed0 = _mm256_packs_epi32(g0, g1);
      __m256i packed1 = _mm256_packs_epi32(g2, g3);
      // Pack 16-bit to 8-bit.
      __m256i packed = _mm256_packs_epi16(packed0, packed1);
      // Ban -128.
      packed = _mm256_max_epi8(packed, neg127);
      // Currently in 0 1 2 3 8 9 10 11 16 17 18 19 24 25 26 27 4 5 6 7 12 13 14 15 20 21 22 23 28 29 30 31
      // Or as 32-bit integers 0 2 4 6 1 3 5 7
      // Technically this could be removed so long as the rows are bigger than 16
      // and the values are only used for GEMM.
      return _mm256_permutevar8x32_epi32(packed, shuffle_param);
    }

  private:
    //A version that produces uint8_ts
    INTGEMM_AVX2 static inline Register TileU(FRegister quant_mult, const float *input0, const float *input1, const float *input2, const float *input3) {
      // Looking at the assembly, gcc has pulled this outside the loops calling this.
      const __m256i neg127 = _mm256_set1_epi8(-127);
      const __m256i pos127 = _mm256_set1_epi8(127);
      const __m256i shuffle_param = _mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0);
      // Grab 4 registers at a time in 32-bit format.
      __m256i g0 = AVX2::QuantizerGrab(input0, quant_mult);
      __m256i g1 = AVX2::QuantizerGrab(input1, quant_mult);
      __m256i g2 = AVX2::QuantizerGrab(input2, quant_mult);
      __m256i g3 = AVX2::QuantizerGrab(input3, quant_mult);
      // Pack 32-bit to 16-bit.
      __m256i packed0 = _mm256_packs_epi32(g0, g1);
      __m256i packed1 = _mm256_packs_epi32(g2, g3);
      // Pack 16-bit to 8-bit.
      __m256i packed = _mm256_packs_epi16(packed0, packed1);
      // Ban -128.
      packed = _mm256_max_epi8(packed, neg127); //Could be removed  if we use +128
      packed = _mm256_add_epi8(packed, pos127);
      // Currently in 0 1 2 3 8 9 10 11 16 17 18 19 24 25 26 27 4 5 6 7 12 13 14 15 20 21 22 23 28 29 30 31
      // Or as 32-bit integers 0 2 4 6 1 3 5 7
      // Technically this could be removed so long as the rows are bigger than 16
      // and the values are only used for GEMM.
      return _mm256_permutevar8x32_epi32(packed, shuffle_param);
    }
};

struct Kernels8 {
  typedef int8_t Integer;

  // Currently A is prepared by quantization but this could theoretically change.
  INTGEMM_AVX2 static inline void PrepareA(const float *input, int8_t *output, float quant_mult, Index rows, Index cols) {
    Quantize(input, output, quant_mult, rows * cols);
  }
 private:
  INTGEMM_QUANTIZE_THREAD(INTGEMM_AVX2)
 public:
  INTGEMM_QUANTIZE(INTGEMM_AVX2)

  // Currently A is prepared by quantization but this could theoretically change.
  INTGEMM_AVX2 static inline void PrepareA(const float *input, uint8_t *output, float quant_mult, Index rows, Index cols) {
    QuantizeU(input, output, quant_mult, rows * cols);
  }

  // Just quantize everything in order.
  INTGEMM_AVX2 static void QuantizeU(const float *input, uint8_t *output, float quant_mult, Index size) {
    assert(size % 32 == 0);
    assert(reinterpret_cast<uintptr_t>(input) % 32 == 0);
    FRegister q = set1_ps<FRegister>(quant_mult);
    const float *end = input + size;
    for (; input != end; input += 32, output += 32) {
      *reinterpret_cast<__m256i*>(output) = QuantizeTile8::ConsecutiveU(q, input);
    }
  }

  // Tile size for B; B must be a multiple of this block size.
  static const Index kBTileRow = 32;
  static const Index kBTileCol = 8;

  INTGEMM_PREPARE_B_8(INTGEMM_AVX2, AVX2::QuantizeTile8)
  INTGEMM_PREPARE_B_QUANTIZED_TRANSPOSED(INTGEMM_AVX2, int8_t)
  INTGEMM_PREPARE_B_TRANSPOSED(INTGEMM_AVX2, AVX2::QuantizeTile8, int8_t)

  INTGEMM_AVX2 static void SelectColumnsB(const int8_t *input, int8_t *output, Index rows, const Index *cols_begin, const Index *cols_end) {
    AVX2::SelectColumnsOfB((const __m256i*)input, (__m256i*)output, rows, cols_begin, cols_end);
  }

  INTGEMM_MULTIPLY8(__m256i, INTGEMM_AVX2, CPUType::AVX2)

  INTGEMM_MULTIPLY8SHIFT(__m256i, INTGEMM_AVX2, CPUType::AVX2)

  INTGEMM_PREPAREBIASFOR8(__m256i, INTGEMM_AVX2, CPUType::AVX2)
  
  constexpr static const char *const kName = "8-bit AVX2";

  static const CPUType kUses = CPUType::AVX2;
};

} // namespace AVX2
} // namespace intgemm

#endif