Welcome to mirror list, hosted at ThFree Co, Russian Federation.

search.cc « graph « src - github.com/marian-nmt/nccl.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 3a8b4e7a9d4cb6116be4e61db073327661090aa4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
/*************************************************************************
 * Copyright (c) 2016-2019, NVIDIA CORPORATION. All rights reserved.
 *
 * See LICENSE.txt for license information
 ************************************************************************/

#include "core.h"
#include "graph.h"
#include "topo.h"

static ncclResult_t ncclTopoFollowPath(struct ncclTopoGraph* graph, struct ncclTopoLinkList* path, struct ncclTopoNode** node, int width, int typeSave) {
  if (path->count == 0) return ncclSuccess;

  *node = NULL;
  if (width > 0) {
    if (path->type > graph->type) return ncclSuccess;
    graph->type = std::max(graph->type, path->type);
    graph->nHops += path->count;
  } else {
    graph->type = typeSave;
    graph->nHops -= path->count;
  }

  for (int i=0; i<path->count; i++) {
    if (path->list[i]->width < width) {
      // Can't follow this path, rewind and exit
      for (int j=0; j<i; j++) path->list[j]->width += width;
      return ncclSuccess;
    }
    path->list[i]->width -= width;
  }
  *node = path->list[path->count-1]->remNode;
  return ncclSuccess;
}

static int gpuPciWidth(struct ncclTopoNode* gpu) {
  for (int l=0; l<gpu->nlinks; l++) {
    struct ncclTopoLink* gpuLink = gpu->links+l;
    if (gpuLink->type != LINK_PCI) continue;
    struct ncclTopoNode* pci = gpuLink->remNode;
    for (int l=0; l<pci->nlinks; l++) {
      struct ncclTopoLink* pciLink = pci->links+l;
      if (pciLink->remNode != gpu) continue;
      return std::min(gpuLink->width, pciLink->width);
    }
  }
  return -1;
}

/* Choose the order in which we try next GPUs. This is critical for the search
   to quickly converge to the best solution even if it eventually times out. */
struct ncclGpuScore {
  int g;             // Retain the index
  int startIndex;    // Least important
  int intraNhops;
  int intraWidth;
  int interNhops;
  int interPciWidth;
  int interWidth;    // Most important
};

static int cmpScore(const void * g1, const void * g2) {
   struct ncclGpuScore *s1 = (struct ncclGpuScore*)g1;
   struct ncclGpuScore *s2 = (struct ncclGpuScore*)g2;
   int d;
   if ((d = (s2->interWidth - s1->interWidth))) return d;
   if ((d = (s2->interPciWidth - s1->interPciWidth))) return d;
   if ((d = (s1->interNhops - s2->interNhops))) return d;
   if ((d = (s2->intraWidth - s1->intraWidth))) return d;
   if ((d = (s1->intraNhops - s2->intraNhops))) return d;
   return s1->startIndex - s2->startIndex;
}

static int cmpIntraScores(struct ncclGpuScore* scores, int count) {
  int intraWidth = scores[0].intraWidth;
  int intraNhops = scores[0].intraNhops;
  for (int i=1; i<count; i++) {
    if (scores[i].intraWidth != intraWidth || scores[i].intraNhops != intraNhops) return 1;
  }
  return 0;
}

static ncclResult_t getNetPaths(struct ncclTopoSystem* system, const uint64_t flag, struct ncclTopoLinkList** netPaths) {
  for (int n=0; n<system->nodes[NET].count; n++) {
    if (system->nodes[NET].nodes[n].used & flag) {
      *netPaths=system->nodes[NET].nodes[n].paths[GPU];
      return ncclSuccess;
    }
  }
  return ncclInternalError;
}

ncclResult_t ncclTopoSearchNextGpuSort(struct ncclTopoSystem* system, struct ncclTopoGraph* graph, struct ncclTopoNode* gpu, int* next, int* countPtr, int sortNet) {
  const uint64_t flag = 1ULL<<(graph->nChannels);
  int ngpus = system->nodes[GPU].count;
  struct ncclTopoLinkList* paths = gpu->paths[GPU];
  struct ncclTopoLinkList* netPaths = NULL;
  if (sortNet) NCCLCHECK(getNetPaths(system, flag, &netPaths));

  struct ncclGpuScore scores[NCCL_TOPO_MAX_NODES];
  memset(scores, 0, ngpus*sizeof(struct ncclGpuScore));
  int start = gpu-system->nodes[GPU].nodes;
  int count = 0;
  for (int i=1; i<ngpus; i++) {
    int g = (start+i)%ngpus;
    if (paths[g].count == 0) continue; // There is no path to that GPU
    if (system->nodes[GPU].nodes[g].used & flag) continue;
    scores[count].g = g;
    scores[count].startIndex = i;
    scores[count].intraNhops = paths[g].count;
    scores[count].intraWidth = paths[g].width;
    if (netPaths) {
      scores[count].interNhops = netPaths[g].count;
      scores[count].interPciWidth = gpuPciWidth(system->nodes[GPU].nodes+g);
      scores[count].interWidth = netPaths[g].width;
    }
    count++;
  }

  // Sort GPUs
  qsort(scores, count, sizeof(struct ncclGpuScore), cmpScore);

  // Check if all have the same intra-node score in which case we go reverse for sortNet = -1
  if (sortNet == -1 && cmpIntraScores(scores, count) == 0) {
    for (int i=0; i<count; i++) next[i] = scores[count-1-i].g;
  } else {
    for (int i=0; i<count; i++) next[i] = scores[i].g;
  }
  *countPtr = count;
  return ncclSuccess;
}

ncclResult_t ncclTopoSearchRec(struct ncclTopoSystem* system, struct ncclTopoGraph* graph, struct ncclTopoGraph* saveGraph, int maxSpeed, int* time);

#define NCCL_SEARCH_TIMEOUT (1ULL<<20) // This should get contain all search within a second or so.

#define FORCED_ORDER_PCI 1
#define FORCED_ORDER_REPLAY 2

ncclResult_t ncclTopoReplayGetGpu(struct ncclTopoSystem* system, struct ncclTopoGraph* graph, int step, int* g) {
  *g = -1;
  if (graph->nChannels == 0) return ncclInternalError;
  int ngpus = system->nodes[GPU].count;
  int nextRank = graph->intra[(graph->nChannels-1)*ngpus+step+1];
  for (int i=0; i<ngpus; i++) if (system->nodes[GPU].nodes[i].rank == nextRank) {
    *g = i;
    return ncclSuccess;
  }
  if (*g == -1) return ncclInternalError;
  return ncclSuccess;
}

ncclResult_t ncclTopoSearchRecGpu(struct ncclTopoSystem* system, struct ncclTopoGraph* graph, struct ncclTopoGraph* saveGraph, struct ncclTopoNode* gpu, int step, int backToNet, int backToFirstRank, int forcedOrder, int maxSpeed, int *time);

ncclResult_t ncclTopoSearchTryGpu(struct ncclTopoSystem* system, struct ncclTopoGraph* graph, struct ncclTopoGraph* saveGraph, struct ncclTopoLinkList* paths, int step, int backToNet, int backToFirstRank, int forcedOrder, int maxSpeed, int *time, int g, int speed) {
  int typeSave = graph->type;
  const uint64_t flag = 1ULL<<(graph->nChannels);
  struct ncclTopoNode* gpu = system->nodes[GPU].nodes+g;
  if (paths) NCCLCHECK(ncclTopoFollowPath(graph, paths+g, &gpu, speed, typeSave));
  if (gpu) {
    gpu->used ^= flag;
    NCCLCHECK(ncclTopoSearchRecGpu(system, graph, saveGraph, gpu, step, backToNet, backToFirstRank, forcedOrder, maxSpeed, time));
    gpu->used ^= flag;
    if (paths) NCCLCHECK(ncclTopoFollowPath(graph, paths+g, &gpu, -speed, typeSave));
  }
  return ncclSuccess;
}

ncclResult_t ncclTopoCompareGraphs(struct ncclTopoGraph* graph, struct ncclTopoGraph* refGraph, int* copy) {
  // 0. When we are trying to increase speedIntra, do not copy if the solution has less channels
  // since it would likely impact the rings algorithms too.
  if (graph->speedIntra > graph->speedInter && graph->nChannels < refGraph->nChannels) return ncclSuccess;

  // 1. Try to get better bandwidth
  if (graph->nChannels*graph->speedIntra < refGraph->nChannels*refGraph->speedIntra) return ncclSuccess;
  if (graph->nChannels*graph->speedIntra > refGraph->nChannels*refGraph->speedIntra) {
    *copy = 1;
    return ncclSuccess;
  }
  // 2. Give an advantage when all channels are the same
  if (graph->nChannels > 1 && graph->sameChannels && refGraph->sameChannels == 0) {
    *copy = 1;
    return ncclSuccess;
  }
  // 3. Less hops
  if (graph->nHops < refGraph->nHops) *copy = 1;
  return ncclSuccess;
}

ncclResult_t ncclTopoSearchRecGpu(struct ncclTopoSystem* system, struct ncclTopoGraph* graph, struct ncclTopoGraph* saveGraph, struct ncclTopoNode* gpu, int step, int backToNet, int backToFirstRank, int forcedOrder, int maxSpeed, int *time) {
  if ((*time) <= 0) return ncclSuccess;
  (*time)--;

  int ngpus = system->nodes[GPU].count;
  if (step == ngpus) {
    // Determine whether we found a better solution or not
    int copy = 0;
    int sameChannels = graph->sameChannels;
    if (graph->nChannels > 0) {
      int* intra = graph->intra+graph->nChannels*ngpus;
      for (int g=0; g<ngpus; g++) if (intra[g] != intra[g-ngpus]) graph->sameChannels = 0;
    }
    graph->nChannels++;
    NCCLCHECK(ncclTopoCompareGraphs(graph, saveGraph, &copy));
    if (copy) {
      memcpy(saveGraph, graph, sizeof(struct ncclTopoGraph));
      if (graph->nChannels*graph->speedIntra == maxSpeed) *time = -1;
    }
    if (graph->nChannels < MAXCHANNELS/2) {
      NCCLCHECK(ncclTopoSearchRec(system, graph, saveGraph, maxSpeed, time));
    }
    graph->nChannels--;
    graph->sameChannels = sameChannels;
    return ncclSuccess;
  }
  graph->intra[graph->nChannels*ngpus+step] = gpu->rank;
  if (step == backToNet) {
    // first get back to NIC
    if (system->nodes[NET].count) {
      int maxWidth = 0;
      struct ncclTopoLinkList* paths = gpu->paths[NET];
      for (int n=0; n<system->nodes[NET].count; n++) {
        if (graph->crossNic != 1 && (system->nodes[NET].nodes[n].id != graph->inter[graph->nChannels*2])) continue;
        maxWidth = std::max(paths[n].width, maxWidth);
      }
      for (int n=0; n<system->nodes[NET].count; n++) {
        if (graph->crossNic != 1 && (system->nodes[NET].nodes[n].id != graph->inter[graph->nChannels*2])) continue;
        if (paths[n].width == maxWidth) {
          struct ncclTopoNode* net = system->nodes[NET].nodes+n;
          int typeSave = graph->type;
          NCCLCHECK(ncclTopoFollowPath(graph, paths+n, &net, graph->speedInter, typeSave));
          if (net) {
            graph->inter[graph->nChannels*2+1] = net->id;
            NCCLCHECK(ncclTopoSearchRecGpu(system, graph, saveGraph, gpu, step, -1, backToFirstRank, forcedOrder, maxSpeed, time));
            NCCLCHECK(ncclTopoFollowPath(graph, paths+n, &net, -graph->speedInter, typeSave));
          }
        }
      }
    }
  } else if (step < system->nodes[GPU].count-1) {
    // Go to next GPU
    struct ncclTopoLinkList* paths = gpu->paths[GPU];
    int next[NCCL_TOPO_MAX_NODES];
    int count;
    if (forcedOrder == FORCED_ORDER_PCI) { // Try the PCI order
      next[0] = step+1;
      count = 1;
    } else if (forcedOrder == FORCED_ORDER_REPLAY) { // Try last channel order
      NCCLCHECK(ncclTopoReplayGetGpu(system, graph, step, next));
      count = 1;
    } else { // Normal search
      NCCLCHECK(ncclTopoSearchNextGpuSort(system, graph, gpu, next, &count, backToNet == -1 ? 0 : backToNet == step+1 ? 1 : -1 ));
    }
    for (int i=0; i<count; i++) {
      int g = next[i];
      int nvlink = graph->nvlink;
      graph->nvlink &= paths[g].type <= LINK_NVL ? 1 : 0;
      int speed = graph->speedIntra;
      if (paths[g].type == LINK_QPI) speed = INTEL_P2P_OVERHEAD(speed);
      NCCLCHECK(ncclTopoSearchTryGpu(system, graph, saveGraph, paths, step+1, backToNet, backToFirstRank, forcedOrder, maxSpeed, time, g, speed));
      graph->nvlink = nvlink;
    }
  } else if (step == backToFirstRank) {
    // Find first GPU and loop back to it
    int g;
    int rank = graph->intra[graph->nChannels*ngpus];
    for (g=0; g<ngpus; g++) {
      if (system->nodes[GPU].nodes[g].rank == rank) break;
    }
    if (g == ngpus) {
      WARN("Could not find GPU with rank %d\n", rank);
      return ncclInternalError;
    }
    struct ncclTopoLinkList* paths = gpu->paths[GPU];
    struct ncclTopoNode* firstGpu = system->nodes[GPU].nodes+g;
    int typeSave = graph->type;
    NCCLCHECK(ncclTopoFollowPath(graph, paths+g, &firstGpu, graph->speedIntra, typeSave));
    if (firstGpu) {
      NCCLCHECK(ncclTopoSearchRecGpu(system, graph, saveGraph, firstGpu, step+1, backToNet, -1, forcedOrder, maxSpeed, time));
      NCCLCHECK(ncclTopoFollowPath(graph, paths+g, &firstGpu, -graph->speedIntra, typeSave));
    }
  } else {
    // Next path
    NCCLCHECK(ncclTopoSearchRecGpu(system, graph, saveGraph, gpu, ngpus, -1, -1, forcedOrder, maxSpeed, time));
  }
  return ncclSuccess;
}

ncclResult_t ncclTopoSearchRecNet(struct ncclTopoSystem* system, struct ncclTopoGraph* graph, struct ncclTopoGraph* saveGraph, int backToNet, int backToFirstRank, int maxSpeed, int* time) {
  const uint64_t flag = 1ULL<<(graph->nChannels);
  const int speed = graph->speedInter;
  for (int n=0; n<system->nodes[NET].count; n++) {
    struct ncclTopoNode* net = system->nodes[NET].nodes+n;
    struct ncclTopoNode* gpu;
    if (net->used == 0) {
      graph->inter[graph->nChannels*2] = net->id;
      for (int i=0; i<system->nodes[NET].count; i++) {
        if (system->nodes[NET].nodes[i].rank == net->rank) system->nodes[NET].nodes[i].used ^= flag;
      }
      struct ncclTopoLinkList* paths = net->paths[GPU];

      // First try the PCI order to set a reference
      NCCLCHECK(ncclTopoSearchTryGpu(system, graph, saveGraph, paths, 0, backToNet, backToFirstRank, FORCED_ORDER_PCI, maxSpeed, time, 0, speed));
      // Then try to replay the last channel
      if (graph->nChannels > 0) {
        int g;
        NCCLCHECK(ncclTopoReplayGetGpu(system, graph, -1, &g));
        NCCLCHECK(ncclTopoSearchTryGpu(system, graph, saveGraph, paths, 0, backToNet, backToFirstRank, FORCED_ORDER_REPLAY, maxSpeed, time, g, speed));
      }

      // Then try the most local GPUs
      int maxWidth = 0, minHops = 0xfffffff;
      for (int g=0; g<system->nodes[GPU].count; g++) {
        if (paths[g].width > maxWidth) {
          maxWidth = paths[g].width;
          minHops = paths[g].count;
        } else if (paths[g].width == maxWidth && paths[g].count < minHops) {
          minHops = paths[g].count;
        }
      }
      if (maxWidth >= speed) {
        // In the first loop, avoid using GPUs in both directions between channels (one channel
        // sending from that GPU and one channel receiving to that GPU), since that usually leads
        // to lower BW.
        for (int tryGpuBidir=0; tryGpuBidir<2; tryGpuBidir++) {
          for (int g=0; g<system->nodes[GPU].count; g++) {
            if (paths[g].width == maxWidth && paths[g].count == minHops) {
              gpu = system->nodes[GPU].nodes+g;
              int gpuUsed = gpuPciWidth(gpu) > 0 ? 0 : 1;
              if (tryGpuBidir == gpuUsed) {
                NCCLCHECK(ncclTopoSearchTryGpu(system, graph, saveGraph, paths, 0, backToNet, backToFirstRank, 0, maxSpeed, time, g, speed));
              }
            }
          }
        }
      }
      for (int i=0; i<system->nodes[NET].count; i++) {
        if (system->nodes[NET].nodes[i].rank == net->rank) system->nodes[NET].nodes[i].used ^= flag;
      }
    }
  }
  return ncclSuccess;
}

/* Search Patterns
 *
 *     Intra-node
 * Ring            : GPU a -> GPU b -> .. -> GPU x -> GPU a
 * (=Split Tree Loop)
 * Tree            : GPU a -> GPU b -> .. -> GPU x
 * (=Split Tree)
 *
 *     Inter-node
 * Ring            : NET n -> GPU a -> GPU b -> .. -> GPU x -> NET n (or m if crossNic)
 * Tree            : NET n -> GPU a -> GPU b -> .. -> GPU x
 *                              `--> NET n (or m if crossNic)
 * Split Tree      : NET n -> GPU a -> GPU b -> .. -> GPU x
 *                                       `--> NET n (or m if crossNic)
 * Split Tree Loop : NET n -> GPU a -> GPU b -> .. -> GPU x -> GPU a
 *                                       `--> NET n (or m if crossNic)
 */
ncclResult_t ncclTopoSearchParams(struct ncclTopoSystem* system, int pattern, int* backToNet, int* backToFirstRank) {
  if (system->nodes[NET].count) {
    if (pattern == NCCL_TOPO_PATTERN_RING) *backToNet = system->nodes[GPU].count-1;
    else if (pattern == NCCL_TOPO_PATTERN_TREE) *backToNet = 0;
    else *backToNet = 1;
    if (pattern == NCCL_TOPO_PATTERN_SPLIT_TREE_LOOP) *backToFirstRank = system->nodes[GPU].count-1;
    else *backToFirstRank = -1;
  } else {
    *backToNet = -1;
    if (pattern == NCCL_TOPO_PATTERN_RING || pattern == NCCL_TOPO_PATTERN_SPLIT_TREE_LOOP) *backToFirstRank = system->nodes[GPU].count-1;
    else *backToFirstRank = -1;
  }
  return ncclSuccess;
}

ncclResult_t ncclTopoSearchRec(struct ncclTopoSystem* system, struct ncclTopoGraph* graph, struct ncclTopoGraph* saveGraph, int maxSpeed, int* time) {
  int backToNet, backToFirstRank;
  NCCLCHECK(ncclTopoSearchParams(system, graph->pattern, &backToNet, &backToFirstRank));
  if (system->nodes[NET].count) {
    // Start from NET
    ncclTopoSearchRecNet(system, graph, saveGraph, backToNet, backToFirstRank, maxSpeed, time);
  } else {
    // Start from GPU 0
    NCCLCHECK(ncclTopoSearchTryGpu(system, graph, saveGraph, NULL, 0, backToNet, backToFirstRank, FORCED_ORDER_PCI, maxSpeed, time, 0, graph->speedIntra));
    if (graph->nChannels > 0) NCCLCHECK(ncclTopoSearchTryGpu(system, graph, saveGraph, NULL, 0, backToNet, backToFirstRank, FORCED_ORDER_REPLAY, maxSpeed, time, 0, graph->speedIntra));
    NCCLCHECK(ncclTopoSearchTryGpu(system, graph, saveGraph, NULL, 0, backToNet, backToFirstRank, 0, maxSpeed, time, 0, graph->speedIntra));
  }
  return ncclSuccess;
}

/* Parse user defined rings. Format is like :
 * "0 1|1 0|0 1 2 3|3 2 1 0|0 2 3 1|1 3 2 0|0 1 2 3 4 5 6 7|7 6 5 4 3 2 1 0"
 * Rings with a non-matching number of ranks are ignored so we can provide
 * rings for multiple cases.
 */
#define MAX_ENV_RANKS 512
static ncclResult_t parseGraph(const char* str, int* nChannelsRet, int ngpus, int* channels) {
  int ranks[MAX_ENV_RANKS];
  int nChannels = 0;
  int rank = 0;
  int offset = 0;
  int status = 0; // 0 : between numbers, 1 : inside number
  do {
    int digit = str[offset] - '0';
    if (digit >= 0 && digit <= 9) {
      if (status == 0) {
        ranks[rank] = digit;
        status = 1;
      } else {
        ranks[rank] = ranks[rank]*10+digit;
      }
    } else {
      if (status == 1) {
        rank++;
        if (rank == MAX_ENV_RANKS) goto end;
      }
      status = 0;
      if (str[offset] == '|' || str[offset] == '\0') {
        // Ignore if ngpus doesn't match
        if (rank != ngpus) goto newchannel;

        for (int r=0; r<ngpus; r++) {
          int rank = ranks[r];
          // Ignore if ranks are out of bounds
          if (rank < 0 || rank >= ngpus) goto newchannel;
          // Ignore if ranks are duplicate
          for (int i=0; i<r; i++)
            if (ranks[i] == rank) goto newchannel;

          channels[nChannels*ngpus+r] = rank;
        }
        nChannels++;
newchannel:
        rank = 0;
      }
    }
  } while (str[offset++] != 0);
end:
  *nChannelsRet = nChannels;
  return ncclSuccess;
}

ncclResult_t ncclTopoCompute(ncclTopoSystem* system, struct ncclTopoGraph* graph) {
  int ngpus = system->nodes[GPU].count;
  int crossNic = (system->nodes[NET].count > 1) && graph->crossNic ? 1 : 0;
  graph->speedIntra = graph->speedInter = 0;
  if (graph->crossNic == 2) graph->crossNic = 0;
  graph->nvlink = 0;
  graph->type = LINK_LOC;
  graph->nChannels = 0;
  graph->sameChannels = 1;

  char* str = getenv("NCCL_GRAPH");
  if (str) {
    NCCLCHECK(parseGraph(str, &graph->nChannels, ngpus, graph->intra));
    for (int i=0; i<graph->nChannels*ngpus; i++) {
      // Translate gpu numbers into ranks
      graph->intra[i] = system->nodes[GPU].nodes[graph->intra[i]].rank;
    }
    // TODO : let user specify NICs
    graph->inter[0] = graph->inter[1] = 0;
    graph->speedIntra = graph->speedInter = PCI_WIDTH+2;
    graph->nvlink = 0;
    if (graph->pattern == NCCL_TOPO_PATTERN_RING) {
      // Reverse the loop
      for (int c=0; c<graph->nChannels; c++) {
        for (int i=0; i<=ngpus/2; i++) {
          int tmp = graph->intra[ngpus*c+i];
          graph->intra[ngpus*c+i] = graph->intra[ngpus*c+(ngpus-i)%ngpus];
          graph->intra[ngpus*c+ngpus-i] = tmp;
        }
      }
    }
    if (graph->nChannels) return ncclSuccess;
  }

  if (ngpus == 1) if (graph->pattern != NCCL_TOPO_PATTERN_RING) graph->pattern = NCCL_TOPO_PATTERN_TREE;

  struct ncclTopoGraph tmpGraph;
  memcpy(&tmpGraph, graph, sizeof(struct ncclTopoGraph));
  int bestSpeed = 0;

  // First try crossnic, then decrease speed and finally increase speedIntra.
  tmpGraph.speedIntra = tmpGraph.speedInter = system->maxWidth;
  int maxSpeed = system->maxSpeed;
  tmpGraph.pattern = graph->pattern;

search:
  int time = NCCL_SEARCH_TIMEOUT;
  tmpGraph.nvlink = 1;
  tmpGraph.nChannels = 0;
  tmpGraph.sameChannels = 1;
  NCCLCHECK(ncclTopoSearchRec(system, &tmpGraph, graph, maxSpeed, &time));
#if 0
  printf("Pattern %d, crossNic %d, Speed %d/%d, type %d -> nChannels %dx%d/%d %s\n", tmpGraph.pattern, tmpGraph.crossNic, tmpGraph.speedInter, tmpGraph.speedIntra, tmpGraph.type, graph->nChannels, graph->speedInter, graph->speedIntra, time == 0 ? "TIMEOUT" : "");
  for (int c=0; c<graph->nChannels; c++) {
    printf("%2d : ", c);
    for (int g=0; g<ngpus; g++) {
      printf("%d ", graph->intra[c*ngpus+g]);
    }
    printf("\n");
  }
#endif
  if (time == -1) goto done;
  // We already have a solution and we timed out so lower speed will just timeout as well
  if (time == 0 && graph->nChannels > 0) goto done;
  if ((graph->nChannels > 0) && (bestSpeed == 0)) bestSpeed = graph->speedIntra;

  if (tmpGraph.speedIntra == tmpGraph.speedInter) {
    // First pass, we don't have a solution yet ; try to go slower.

    // Try a simpler tree
    if (tmpGraph.pattern == NCCL_TOPO_PATTERN_SPLIT_TREE_LOOP) {
      tmpGraph.pattern = NCCL_TOPO_PATTERN_SPLIT_TREE;
      goto search;
    }
    if (tmpGraph.pattern == NCCL_TOPO_PATTERN_SPLIT_TREE) {
      tmpGraph.pattern = NCCL_TOPO_PATTERN_TREE;
      goto search;
    }
    tmpGraph.pattern = graph->pattern;

    if (tmpGraph.type < LINK_QPI) {
      tmpGraph.type += 1;
      goto search;
    }
    tmpGraph.type = graph->type;

    if (crossNic && tmpGraph.crossNic == 0) {
      // Try again with crossNic if permitted
      tmpGraph.crossNic = crossNic;
      goto search;
    }
    tmpGraph.crossNic = graph->crossNic;

    // Try to reduce speed per channel
    tmpGraph.speedIntra = tmpGraph.speedInter -= 3;
    if (tmpGraph.speedIntra >= bestSpeed/2 && tmpGraph.speedIntra >= 3) goto search;
  }

done:
  // We have a solution now. See if we can increase speedIntra
  if (tmpGraph.speedIntra == tmpGraph.speedInter) {
    time = -1;
    memcpy(&tmpGraph, graph, sizeof(tmpGraph));
  }
  if (time != 0 && tmpGraph.pattern != NCCL_TOPO_PATTERN_RING && tmpGraph.speedIntra == graph->speedIntra) {
    // Try to increase the intra speed only but keeping nChannels the same
    tmpGraph.speedIntra += 3;
    maxSpeed = tmpGraph.speedIntra * graph->nChannels;
    if (tmpGraph.speedIntra <= tmpGraph.speedInter*2) goto search;
  }

  if (graph->nChannels == 0) {
    WARN("Could not find a path for pattern %d, falling back to simple order\n", graph->pattern);
    for (int i=0; i<ngpus; i++) graph->intra[i] = system->nodes[GPU].nodes[i].rank;
    graph->inter[0] = graph->inter[1] = 0;
    graph->speedIntra = graph->speedInter = 3;
    graph->nvlink = 0;
    graph->nChannels = 1;
  }
  return ncclSuccess;
}

ncclResult_t ncclTopoPrintGraph(struct ncclTopoSystem* system, struct ncclTopoGraph* graph) {
  INFO(NCCL_GRAPH, "Pattern %d, crossNic %d, nChannels %d, speed %d/%d, nvlink %d, type %d, sameChannels %d", graph->pattern, graph->crossNic, graph->nChannels, graph->speedIntra, graph->speedInter, graph->nvlink, graph->type, graph->sameChannels);
  int ngpus = system->nodes[GPU].count;

  char line[1024];
  for (int c=0; c<graph->nChannels; c++) {
    sprintf(line, "%2d :", c);
    int offset = strlen(line);
    if (system->nodes[NET].count > 0) {
      sprintf(line+offset, " %s/%d", topoNodeTypeStr[NET], graph->inter[2*c]);
      offset = strlen(line);
    }
    for (int i=0; i<ngpus; i++) {
      sprintf(line+offset, " %s/%d", topoNodeTypeStr[GPU], graph->intra[ngpus*c+i]);
      offset = strlen(line);
    }
    if (system->nodes[NET].count > 0) {
      sprintf(line+offset, " %s/%d", topoNodeTypeStr[NET], graph->inter[2*c+1]);
      offset = strlen(line);
    }
    INFO(NCCL_GRAPH, "%s", line);
  }
  return ncclSuccess;
}

ncclResult_t ncclTopoGetNetDev(struct ncclTopoGraph* graph, int dir, int channelId, int* dev) {
  *dev = graph->inter[(channelId%graph->nChannels)*2+dir];
  return ncclSuccess;
}