Welcome to mirror list, hosted at ThFree Co, Russian Federation.

search.cc « graph « src - github.com/marian-nmt/nccl.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: b4c3e3510da8932a0e63f485d8ee443b94c96191 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
/*************************************************************************
 * Copyright (c) 2016-2020, NVIDIA CORPORATION. All rights reserved.
 *
 * See LICENSE.txt for license information
 ************************************************************************/

#include "core.h"
#include "graph.h"
#include "topo.h"
#include "xml.h"
#include <math.h>

// Initialize system->maxWidth. This is the per-channel (i.e. per-SM)
// max speed.
static float getMaxWidth(struct ncclTopoSystem* system, struct ncclTopoNode* gpu, int type) {
  float nvLinkWidth = gpu->gpu.cudaCompCap > 60 ? VOLTA_NVLINK_WIDTH : PASCAL_NVLINK_WIDTH;
  float maxWidth = 0.0;
  for (int i=0; i<system->nodes[type].count; i++) {
    struct ncclTopoLinkList* path = gpu->paths[type]+i;
    float width = path->width;
    if (path->count == 0) continue;
    if (path->type == PATH_NVL) width = std::min(nvLinkWidth, width);
    maxWidth = std::max(maxWidth, width);
  }
  return maxWidth;
}
ncclResult_t ncclTopoSearchInit(struct ncclTopoSystem* system) {
  system->maxWidth = 0.0;
  int inter = system->nodes[NET].count;
  if (inter == 0 && system->nodes[GPU].count == 1) {
    system->maxWidth = LOC_WIDTH;
    return ncclSuccess;
  }
  for (int g=0; g<system->nodes[GPU].count; g++) {
    struct ncclTopoNode* gpu = system->nodes[GPU].nodes+g;
    system->maxWidth = std::max(system->maxWidth, getMaxWidth(system, gpu, inter ? NET : GPU));
  }
  return ncclSuccess;
}

static ncclResult_t findRevLink(struct ncclTopoNode* node1, struct ncclTopoNode* node2, struct ncclTopoLink** revLink) {
  for (int l=0; l<node2->nlinks; l++) {
    struct ncclTopoLink* link = node2->links+l;
    if (link->remNode == node1) {
      *revLink = link;
      return ncclSuccess;
    }
  }
  WARN("Could not find rev link for %d/%d -> %d/%d\n", node1->type, node1->id, node2->type, node2->id);
  return ncclInternalError;
}

// This is unfortunately needed since manipulating floats often results in rounding errors.
#define SUB_ROUND(a, b) (a = roundf((a-b)*1000)/1000)

static ncclResult_t followPath(struct ncclTopoLinkList* path, struct ncclTopoNode* start, int maxSteps, float speed, int* steps) {
  float pciSpeed = speed;
  for (int step=0; step<path->count; step++) {
    struct ncclTopoNode* node = path->list[step]->remNode;
    if (node->type == CPU) {
      // Account for P2P inefficiency through Intel CPU RC
      if (path->type == PATH_PHB && start->type == GPU &&
          node->cpu.arch == NCCL_TOPO_CPU_ARCH_X86 &&
          node->cpu.vendor == NCCL_TOPO_CPU_VENDOR_INTEL) {
        pciSpeed = INTEL_P2P_OVERHEAD(speed);
      }
    }
  }

  struct ncclTopoNode* node = start;
  for (int step=0; step<maxSteps; step++) {
    struct ncclTopoLink* link = path->list[step];
    struct ncclTopoLink* revLink = NULL;
    float fwSpeed = link->type == LINK_PCI ? pciSpeed : speed;
    float revSpeed = 0;
    if (link->remNode->type == GPU && start->type != GPU) {
      if (revLink == NULL) NCCLCHECK(findRevLink(node, link->remNode, &revLink));
      revSpeed += fwSpeed/8;
    }
    if (link->remNode->type == CPU && link->type == LINK_NVL) {
      if (revLink == NULL) NCCLCHECK(findRevLink(node, link->remNode, &revLink));
      revSpeed += fwSpeed;
    }
    if (link->width < fwSpeed || (revSpeed && revLink->width < revSpeed)) { *steps = step; return ncclSuccess; }
    SUB_ROUND(link->width, fwSpeed);
    if (revSpeed) SUB_ROUND(revLink->width, revSpeed);
    node = link->remNode;
  }
  *steps = maxSteps;
  return ncclSuccess;
}

// Try to go from node type1/index1 to no type2/index2. mult indicates whether we are counting the bandwidth (1) or undoing (-1).
static ncclResult_t ncclTopoFollowPath(struct ncclTopoSystem* system, struct ncclTopoGraph* graph, int type1, int index1, int type2, int index2, int mult, struct ncclTopoNode** node) {
  // First handle easy cases
  *node = system->nodes[type2].nodes+index2;
  if (type1 == -1) return ncclSuccess;
  struct ncclTopoNode* node1 = system->nodes[type1].nodes+index1;
  struct ncclTopoLinkList* path = node1->paths[type2]+index2;
  if (path->count == 0 ) return ncclSuccess;

  // Now check link type
  *node = NULL;
  int intra = type1 == GPU && type2 == GPU;
  float speed = intra ? graph->speedIntra : graph->speedInter;
  int type = intra ? graph->typeIntra : graph->typeInter;

  if (mult == 1 && (path->type > type)) return ncclSuccess;

  speed *= mult;

  // Check there is enough bandwidth on paths.
  int step = 0;
  NCCLCHECK(followPath(path, node1, path->count, speed, &step));
  if (step < path->count) goto rewind;

  // Enough bandwidth : return destination node.
  graph->nHops += mult*path->count;
  *node = system->nodes[type2].nodes+index2;
  return ncclSuccess;

rewind:
  // Not enough bandwidth : rewind and exit.
  NCCLCHECK(followPath(path, node1, step, -speed, &step));
  return ncclSuccess;
}

static int gpuPciWidth(struct ncclTopoNode* gpu) {
  for (int l=0; l<gpu->nlinks; l++) {
    struct ncclTopoLink* gpuLink = gpu->links+l;
    if (gpuLink->type != LINK_PCI) continue;
    struct ncclTopoNode* pci = gpuLink->remNode;
    for (int l=0; l<pci->nlinks; l++) {
      struct ncclTopoLink* pciLink = pci->links+l;
      if (pciLink->remNode != gpu) continue;
      return std::min(gpuLink->width, pciLink->width);
    }
  }
  return -1;
}

/* Choose the order in which we try next GPUs. This is critical for the search
   to quickly converge to the best solution even if it eventually times out. */
struct ncclGpuScore {
  int g;             // Retain the index
  int startIndex;    // Least important
  int intraNhops;
  int intraWidth;
  int interNhops;
  int interPciWidth;
  int interWidth;    // Most important
};

static int cmpScore(const void * g1, const void * g2) {
   struct ncclGpuScore *s1 = (struct ncclGpuScore*)g1;
   struct ncclGpuScore *s2 = (struct ncclGpuScore*)g2;
   int d;
   if ((d = (s2->interWidth - s1->interWidth))) return d;
   if ((d = (s2->interPciWidth - s1->interPciWidth))) return d;
   if ((d = (s1->interNhops - s2->interNhops))) return d;
   if ((d = (s2->intraWidth - s1->intraWidth))) return d;
   if ((d = (s1->intraNhops - s2->intraNhops))) return d;
   return s1->startIndex - s2->startIndex;
}

static int cmpIntraScores(struct ncclGpuScore* scores, int count) {
  int intraWidth = scores[0].intraWidth;
  int intraNhops = scores[0].intraNhops;
  for (int i=1; i<count; i++) {
    if (scores[i].intraWidth != intraWidth || scores[i].intraNhops != intraNhops) return 1;
  }
  return 0;
}

static ncclResult_t getGpuIndex(struct ncclTopoSystem* system, int rank, int* index) {
  for (int g=0; g<system->nodes[GPU].count; g++) {
    if (system->nodes[GPU].nodes[g].gpu.rank == rank) {
      *index = g;
      return ncclSuccess;
    }
  }
  WARN("Could not find gpu rank %d\n", rank);
  return ncclInternalError;
}

static ncclResult_t getNetIndex(struct ncclTopoSystem* system, int64_t id, int* index) {
  for (int n=0; n<system->nodes[NET].count; n++) {
    if (system->nodes[NET].nodes[n].id == id) {
      *index = n;
      return ncclSuccess;
    }
  }
  WARN("Could not find net id %lx\n", id);
  return ncclInternalError;
}

static ncclResult_t getNetPaths(struct ncclTopoSystem* system, struct ncclTopoGraph* graph, struct ncclTopoLinkList** netPaths) {
  int netId = graph->inter[graph->nChannels*2];
  int n;
  NCCLCHECK(getNetIndex(system, netId, &n));
  *netPaths=system->nodes[NET].nodes[n].paths[GPU];
  return ncclSuccess;
}

ncclResult_t ncclTopoSearchNextGpuSort(struct ncclTopoSystem* system, struct ncclTopoGraph* graph, struct ncclTopoNode* gpu, int* next, int* countPtr, int sortNet) {
  const uint64_t flag = 1ULL<<(graph->nChannels);
  int ngpus = system->nodes[GPU].count;
  struct ncclTopoLinkList* paths = gpu->paths[GPU];
  struct ncclTopoLinkList* netPaths = NULL;
  if (sortNet) NCCLCHECK(getNetPaths(system, graph, &netPaths));

  struct ncclGpuScore scores[NCCL_TOPO_MAX_NODES];
  memset(scores, 0, ngpus*sizeof(struct ncclGpuScore));
  int start = gpu-system->nodes[GPU].nodes;
  int count = 0;
  for (int i=1; i<ngpus; i++) {
    int g = (start+i)%ngpus;
    if (paths[g].count == 0) continue; // There is no path to that GPU
    if (system->nodes[GPU].nodes[g].used & flag) continue;
    scores[count].g = g;
    scores[count].startIndex = i;
    scores[count].intraNhops = paths[g].count;
    scores[count].intraWidth = paths[g].width;
    if (netPaths) {
      scores[count].interNhops = netPaths[g].count;
      scores[count].interPciWidth = gpuPciWidth(system->nodes[GPU].nodes+g);
      scores[count].interWidth = netPaths[g].width;
    }
    count++;
  }

  // Sort GPUs
  qsort(scores, count, sizeof(struct ncclGpuScore), cmpScore);

  // Check if all have the same intra-node score in which case we go reverse for sortNet = -1
  if (sortNet == -1 && cmpIntraScores(scores, count) == 0) {
    for (int i=0; i<count; i++) next[i] = scores[count-1-i].g;
  } else {
    for (int i=0; i<count; i++) next[i] = scores[i].g;
  }
  *countPtr = count;
  return ncclSuccess;
}

ncclResult_t ncclTopoSearchRec(struct ncclTopoSystem* system, struct ncclTopoGraph* graph, struct ncclTopoGraph* saveGraph, int* time);

// Try to keep all searchs within one second
#define NCCL_SEARCH_GLOBAL_TIMEOUT (3ULL<<19)
#define NCCL_SEARCH_TIMEOUT (1<<18)
#define NCCL_SEARCH_TIMEOUT_TREE (1<<17)
#define NCCL_SEARCH_TIMEOUT_SAMECHANNELS (1<<10)

#define FORCED_ORDER_PCI 1
#define FORCED_ORDER_REPLAY 2

ncclResult_t ncclTopoReplayGetGpu(struct ncclTopoSystem* system, struct ncclTopoGraph* graph, int step, int* g) {
  *g = -1;
  if (graph->nChannels == 0) return ncclInternalError;
  int ngpus = system->nodes[GPU].count;
  int nextRank = graph->intra[(graph->nChannels-1)*ngpus+step+1];
  for (int i=0; i<ngpus; i++) if (system->nodes[GPU].nodes[i].gpu.rank == nextRank) {
    *g = i;
    return ncclSuccess;
  }
  if (*g == -1) return ncclInternalError;
  return ncclSuccess;
}

ncclResult_t ncclTopoSearchRecGpu(struct ncclTopoSystem* system, struct ncclTopoGraph* graph, struct ncclTopoGraph* saveGraph, struct ncclTopoNode* gpu, int step, int backToNet, int backToFirstRank, int forcedOrder, int *time);

ncclResult_t ncclTopoSearchTryGpu(struct ncclTopoSystem* system, struct ncclTopoGraph* graph, struct ncclTopoGraph* saveGraph, int step, int backToNet, int backToFirstRank, int forcedOrder, int *time, int type, int index, int g) {
  const uint64_t flag = 1ULL<<(graph->nChannels);
  struct ncclTopoNode* gpu;
  NCCLCHECK(ncclTopoFollowPath(system, graph, type, index, GPU, g, 1, &gpu));
  if (gpu) {
    gpu->used ^= flag;
    NCCLCHECK(ncclTopoSearchRecGpu(system, graph, saveGraph, gpu, step, backToNet, backToFirstRank, forcedOrder, time));
    gpu->used ^= flag;
    NCCLCHECK(ncclTopoFollowPath(system, graph, type, index, GPU, g, -1, &gpu));
  }
  return ncclSuccess;
}

ncclResult_t ncclTopoCompareGraphs(struct ncclTopoGraph* graph, struct ncclTopoGraph* refGraph, int* copy) {
  // 1. Constraint to get the same nChannels between Rings and Trees
  if (graph->nChannels < graph->minChannels) return ncclSuccess;

  // 2. Try to get better bandwidth
  if (graph->nChannels*graph->speedIntra < refGraph->nChannels*refGraph->speedIntra) return ncclSuccess;
  if (graph->nChannels*graph->speedIntra > refGraph->nChannels*refGraph->speedIntra) {
    *copy = 1;
    return ncclSuccess;
  }
  // 3. Less hops (but not at the price of going cross NICs)
  if (graph->crossNic == refGraph->crossNic && graph->nHops < refGraph->nHops) *copy = 1;
  return ncclSuccess;
}

ncclResult_t ncclTopoSearchRecGpu(struct ncclTopoSystem* system, struct ncclTopoGraph* graph, struct ncclTopoGraph* saveGraph, struct ncclTopoNode* gpu, int step, int backToNet, int backToFirstRank, int forcedOrder, int *time) {
  if ((*time) <= 0) return ncclSuccess;
  (*time)--;

  int ngpus = system->nodes[GPU].count;
  if (step == ngpus) {
    // Determine whether we found a better solution or not
    int copy = 0;
    graph->nChannels++;
    NCCLCHECK(ncclTopoCompareGraphs(graph, saveGraph, &copy));
    if (copy) {
      memcpy(saveGraph, graph, sizeof(struct ncclTopoGraph));
      if (graph->nChannels == graph->maxChannels) *time = -1;
    }
    if (graph->nChannels < graph->maxChannels) {
      NCCLCHECK(ncclTopoSearchRec(system, graph, saveGraph, time));
    }
    graph->nChannels--;
    return ncclSuccess;
  }
  graph->intra[graph->nChannels*ngpus+step] = gpu->gpu.rank;
  int g = gpu - system->nodes[GPU].nodes;
  if (step == backToNet) {
    // first get back to NIC
    if (system->nodes[NET].count) {
      int startNetIndex;
      NCCLCHECK(getNetIndex(system, graph->inter[graph->nChannels*2], &startNetIndex));
      struct ncclTopoNode* startNet = system->nodes[NET].nodes+startNetIndex;
      for (int n=0; n<system->nodes[NET].count; n++) {
        struct ncclTopoNode* net = system->nodes[NET].nodes+n;
        if (graph->crossNic != 1 && (net->net.asic != startNet->net.asic || net->net.port != startNet->net.port)) continue;
        NCCLCHECK(ncclTopoFollowPath(system, graph, GPU, g, NET, n, 1, &net));
        if (net) {
          graph->inter[graph->nChannels*2+1] = net->id;
          NCCLCHECK(ncclTopoSearchRecGpu(system, graph, saveGraph, gpu, step, -1, backToFirstRank, forcedOrder, time));
          NCCLCHECK(ncclTopoFollowPath(system, graph, GPU, g, NET, n, -1, &net));
        }
      }
    }
  } else if (step < system->nodes[GPU].count-1) {
    // Go to next GPU
    int next[NCCL_TOPO_MAX_NODES];
    int count;
    if (forcedOrder == FORCED_ORDER_PCI) { // Try the PCI order
      next[0] = step+1;
      count = 1;
    } else if (forcedOrder == FORCED_ORDER_REPLAY) { // Try last channel order
      NCCLCHECK(ncclTopoReplayGetGpu(system, graph, step, next));
      count = 1;
    } else { // Normal search
      NCCLCHECK(ncclTopoSearchNextGpuSort(system, graph, gpu, next, &count, backToNet == -1 ? 0 : backToNet == step+1 ? 1 : -1 ));
    }
    for (int i=0; i<count; i++) {
      NCCLCHECK(ncclTopoSearchTryGpu(system, graph, saveGraph, step+1, backToNet, backToFirstRank, forcedOrder, time, GPU, g, next[i]));
    }
  } else if (step == backToFirstRank) {
    // Find first GPU and loop back to it
    int p;
    NCCLCHECK(getGpuIndex(system, graph->intra[graph->nChannels*ngpus], &p));
    struct ncclTopoNode* firstGpu;
    NCCLCHECK(ncclTopoFollowPath(system, graph, GPU, g, GPU, p, 1, &firstGpu));
    if (firstGpu) {
      NCCLCHECK(ncclTopoSearchRecGpu(system, graph, saveGraph, firstGpu, step+1, backToNet, -1, forcedOrder, time));
      NCCLCHECK(ncclTopoFollowPath(system, graph, GPU, g, GPU, p, -1, &firstGpu));
    }
  } else {
    // Next path
    NCCLCHECK(ncclTopoSearchRecGpu(system, graph, saveGraph, gpu, ngpus, -1, -1, forcedOrder, time));
  }
  return ncclSuccess;
}

ncclResult_t ncclTopoSearchRecNet(struct ncclTopoSystem* system, struct ncclTopoGraph* graph, struct ncclTopoGraph* saveGraph, int backToNet, int backToFirstRank, int* time) {
  const int speed = graph->speedInter;
  for (int n=0; n<system->nodes[NET].count; n++) {
    struct ncclTopoNode* net = system->nodes[NET].nodes+n;
    struct ncclTopoNode* gpu;
    if (graph->collNet && net->net.collSupport == 0) continue;
    if (net->net.width < speed) continue;
    if (net->net.maxChannels == 0) continue;

    graph->inter[graph->nChannels*2] = net->id;
    for (int i=0; i<system->nodes[NET].count; i++) {
      if ((system->nodes[NET].nodes[i].net.asic == net->net.asic) &&
          (system->nodes[NET].nodes[i].net.port == net->net.port)) {
        system->nodes[NET].nodes[i].net.width -= speed;
      }
    }
    net->net.maxChannels--;

    // First try to replay the last channel
    if (graph->nChannels > 0) {
      int g;
      NCCLCHECK(ncclTopoReplayGetGpu(system, graph, -1, &g));
      NCCLCHECK(ncclTopoSearchTryGpu(system, graph, saveGraph, 0, backToNet, backToFirstRank, FORCED_ORDER_REPLAY, time, NET, n, g));
    }
    if (graph->nChannels == 0 || graph->sameChannels == 0) {
      if (graph->nChannels == 0) {
        // Always try the PCI order first to set a reference
        NCCLCHECK(ncclTopoSearchTryGpu(system, graph, saveGraph, 0, backToNet, backToFirstRank, FORCED_ORDER_PCI, time, NET, n, 0));
      }

      // Then try the most local GPUs
      float maxWidth = 0;
      int minHops = 0xfffffff;
      struct ncclTopoLinkList* paths = net->paths[GPU];
      for (int g=0; g<system->nodes[GPU].count; g++) {
        if (paths[g].width > maxWidth) {
          maxWidth = paths[g].width;
          minHops = paths[g].count;
        } else if (paths[g].width == maxWidth && paths[g].count < minHops) {
          minHops = paths[g].count;
        }
      }
      if (maxWidth >= speed) {
        // In the first loop, avoid using GPUs in both directions between channels (one channel
        // sending from that GPU and one channel receiving to that GPU), since that usually leads
        // to lower BW.
        for (int tryGpuBidir=0; tryGpuBidir<2; tryGpuBidir++) {
          for (int g=0; g<system->nodes[GPU].count; g++) {
            if (paths[g].width == maxWidth && paths[g].count == minHops) {
              gpu = system->nodes[GPU].nodes+g;
              int gpuUsed = gpuPciWidth(gpu) > 0 ? 0 : 1;
              if (tryGpuBidir == gpuUsed) {
                NCCLCHECK(ncclTopoSearchTryGpu(system, graph, saveGraph, 0, backToNet, backToFirstRank, 0, time, NET, n, g));
              }
            }
          }
        }
      }
    }

    net->net.maxChannels++;
    for (int i=0; i<system->nodes[NET].count; i++) {
      if ((system->nodes[NET].nodes[i].net.asic == net->net.asic) &&
          (system->nodes[NET].nodes[i].net.port == net->net.port)) {
        system->nodes[NET].nodes[i].net.width += speed;
      }
    }
  }
  return ncclSuccess;
}

/* Search Patterns
 *
 *     Intra-node
 * Ring            : GPU a -> GPU b -> .. -> GPU x -> GPU a
 * (=Split Tree Loop)
 * Tree            : GPU a -> GPU b -> .. -> GPU x
 * (=Split Tree)
 *
 *     Inter-node
 * Ring            : NET n -> GPU a -> GPU b -> .. -> GPU x -> NET n (or m if crossNic)
 * Tree            : NET n -> GPU a -> GPU b -> .. -> GPU x
 *                              `--> NET n (or m if crossNic)
 * Split Tree      : NET n -> GPU a -> GPU b -> .. -> GPU x
 *                                       `--> NET n (or m if crossNic)
 * Split Tree Loop : NET n -> GPU a -> GPU b -> .. -> GPU x -> GPU a
 *                                       `--> NET n (or m if crossNic)
 */
ncclResult_t ncclTopoSearchParams(struct ncclTopoSystem* system, int pattern, int* backToNet, int* backToFirstRank) {
  if (system->nodes[NET].count) {
    if (pattern == NCCL_TOPO_PATTERN_RING) *backToNet = system->nodes[GPU].count-1;
    else if (pattern == NCCL_TOPO_PATTERN_TREE) *backToNet = 0;
    else *backToNet = 1;
    if (pattern == NCCL_TOPO_PATTERN_SPLIT_TREE_LOOP) *backToFirstRank = system->nodes[GPU].count-1;
    else *backToFirstRank = -1;
  } else {
    *backToNet = -1;
    if (pattern == NCCL_TOPO_PATTERN_RING || pattern == NCCL_TOPO_PATTERN_SPLIT_TREE_LOOP) *backToFirstRank = system->nodes[GPU].count-1;
    else *backToFirstRank = -1;
  }
  return ncclSuccess;
}

ncclResult_t ncclTopoSearchRec(struct ncclTopoSystem* system, struct ncclTopoGraph* graph, struct ncclTopoGraph* saveGraph, int* time) {
  int backToNet, backToFirstRank;
  NCCLCHECK(ncclTopoSearchParams(system, graph->pattern, &backToNet, &backToFirstRank));
  if (system->nodes[NET].count) {
    // Start from NET
    ncclTopoSearchRecNet(system, graph, saveGraph, backToNet, backToFirstRank, time);
  } else {
    // Intra-node only.
    if (graph->nChannels == 0) {
      // Try PCI order first
      NCCLCHECK(ncclTopoSearchTryGpu(system, graph, saveGraph, 0, backToNet, backToFirstRank, FORCED_ORDER_PCI, time, -1, -1, 0));
    } else {
      // Also try to replay previous channel
      int g;
      NCCLCHECK(ncclTopoReplayGetGpu(system, graph, -1, &g));
      NCCLCHECK(ncclTopoSearchTryGpu(system, graph, saveGraph, 0, backToNet, backToFirstRank, FORCED_ORDER_REPLAY, time, -1, -1, g));
    }
    if (graph->sameChannels == 0 || graph->nChannels == 0) {
      // Finally, try all other possibilities unless we are forced to use the same channels
      for (int g=0; g<system->nodes[GPU].count; g++) {
        NCCLCHECK(ncclTopoSearchTryGpu(system, graph, saveGraph, 0, backToNet, backToFirstRank, 0, time, -1, -1, g));
      }
    }
  }
  return ncclSuccess;
}

/************************************/
/* User defined graph from XML file */
/************************************/

struct kvDict kvDictLinkType[] = { { "SYS", PATH_SYS }, { "PHB", PATH_PHB }, { "PIX", PATH_PIX }, { "PXB", PATH_PXB }, { "NVL", PATH_NVL }, { "LOC", PATH_LOC }, { NULL, 0 } };
ncclResult_t ncclTopoGetChannelFromXml(struct ncclXmlNode *xmlChannel, int c, struct ncclTopoSystem* system, struct ncclTopoGraph* graph) {
  int ngpus = system->nodes[GPU].count;
  int* inter = graph->inter+2*c;
  int* intra = graph->intra+ngpus*c;
  int n=0, g=0;
  for (int s=0; s<xmlChannel->nSubs; s++) {
    struct ncclXmlNode* sub = xmlChannel->subs[s];
    int dev;
    NCCLCHECK(xmlGetAttrInt(sub, "dev", &dev));
    if (strcmp(sub->name, "net") == 0) {
      inter[n++] = dev;
    } else if (strcmp(sub->name, "gpu") == 0) {
      int rank = -1;
      for (int g=0; g<ngpus; g++) {
        if (system->nodes[GPU].nodes[g].gpu.dev == dev) rank = system->nodes[GPU].nodes[g].gpu.rank;
      }
      if (rank == -1) {
        WARN("XML Import Channel : dev %d not found.", dev);
        return ncclSystemError;
      }
      intra[g++] = rank;
    }
  }
  return ncclSuccess;
}
ncclResult_t ncclTopoGetGraphFromXmlSub(struct ncclXmlNode *xmlGraph, struct ncclTopoSystem* system, struct ncclTopoGraph* graph) {
  int id;
  NCCLCHECK(xmlGetAttrInt(xmlGraph, "id", &id));
  if (graph->id != id) return ncclSuccess;

  int crossNic;
  NCCLCHECK(xmlGetAttrInt(xmlGraph, "crossnic", &crossNic));
  if (graph->crossNic == 0 && crossNic == 1) return ncclSuccess;
  graph->crossNic = crossNic;

  NCCLCHECK(xmlGetAttrInt(xmlGraph, "pattern", &graph->pattern));
  NCCLCHECK(xmlGetAttrInt(xmlGraph, "nchannels", &graph->nChannels));
  NCCLCHECK(xmlGetAttrFloat(xmlGraph, "speedintra", &graph->speedIntra));
  NCCLCHECK(xmlGetAttrFloat(xmlGraph, "speedinter", &graph->speedInter));
  const char* str;
  NCCLCHECK(xmlGetAttr(xmlGraph, "typeintra", &str));
  NCCLCHECK(kvConvertToInt(str, &graph->typeIntra, kvDictLinkType));
  NCCLCHECK(xmlGetAttr(xmlGraph, "typeinter", &str));
  NCCLCHECK(kvConvertToInt(str, &graph->typeInter, kvDictLinkType));
  NCCLCHECK(xmlGetAttrInt(xmlGraph, "samechannels", &graph->sameChannels));
  for (int s=0; s<xmlGraph->nSubs; s++) {
    NCCLCHECK(ncclTopoGetChannelFromXml(xmlGraph->subs[s], s, system, graph));
  }
  return ncclSuccess;
}
ncclResult_t ncclTopoGetGraphFromXml(struct ncclXmlNode *xmlGraphs, struct ncclTopoSystem* system, struct ncclTopoGraph* graph) {
  for (int s=0; s<xmlGraphs->nSubs; s++) {
    NCCLCHECK(ncclTopoGetGraphFromXmlSub(xmlGraphs->subs[s], system, graph));
  }
  return ncclSuccess;
}

/* And the reverse : graph->xml */
ncclResult_t ncclTopoGetXmlFromChannel(struct ncclTopoGraph* graph, int c, struct ncclTopoSystem* system, struct ncclXml *xml, struct ncclXmlNode* parent) {
  struct ncclXmlNode* xmlChannel;
  int ngpus = system->nodes[GPU].count;
  int* inter = graph->inter+2*c;
  int* intra = graph->intra+ngpus*c;
  NCCLCHECK(xmlAddNode(xml, parent, "channel", &xmlChannel));
  struct ncclXmlNode* node;
  if (system->nodes[NET].count) {
    NCCLCHECK(xmlAddNode(xml, xmlChannel, "net", &node));
    NCCLCHECK(xmlSetAttrInt(node, "dev", inter[0]));
  }
  for (int g=0; g<ngpus; g++) {
    NCCLCHECK(xmlAddNode(xml, xmlChannel, "gpu", &node));
    int dev = -1;
    for (int i=0; i<ngpus; i++) {
      if (system->nodes[GPU].nodes[i].gpu.rank == intra[g]) dev = system->nodes[GPU].nodes[i].gpu.dev;
    }
    if (dev == -1) {
      WARN("XML Export Channel : rank %d not found.", intra[g]);
      return ncclInternalError;
    }
    NCCLCHECK(xmlSetAttrInt(node, "dev", dev));
  }
  if (system->nodes[NET].count) {
    NCCLCHECK(xmlAddNode(xml, xmlChannel, "net", &node));
    NCCLCHECK(xmlSetAttrInt(node, "dev", inter[1]));
  }
  return ncclSuccess;
}
ncclResult_t ncclTopoGetXmlFromGraph(struct ncclTopoGraph* graph, struct ncclTopoSystem* system, struct ncclXml *xml, struct ncclXmlNode* parent) {
  struct ncclXmlNode* xmlGraph;
  NCCLCHECK(xmlAddNode(xml, parent, "graph", &xmlGraph));
  NCCLCHECK(xmlSetAttrInt(xmlGraph, "id", graph->id));
  NCCLCHECK(xmlSetAttrInt(xmlGraph, "pattern", graph->pattern));
  NCCLCHECK(xmlSetAttrInt(xmlGraph, "crossnic", graph->crossNic));
  NCCLCHECK(xmlSetAttrInt(xmlGraph, "nchannels", graph->nChannels));
  NCCLCHECK(xmlSetAttrFloat(xmlGraph, "speedintra", graph->speedIntra));
  NCCLCHECK(xmlSetAttrFloat(xmlGraph, "speedinter", graph->speedInter));
  const char* str;
  NCCLCHECK(kvConvertToStr(graph->typeIntra, &str, kvDictLinkType));
  NCCLCHECK(xmlSetAttr(xmlGraph, "typeintra", str));
  NCCLCHECK(kvConvertToStr(graph->typeInter, &str, kvDictLinkType));
  NCCLCHECK(xmlSetAttr(xmlGraph, "typeinter", str));
  NCCLCHECK(xmlSetAttrInt(xmlGraph, "samechannels", graph->sameChannels));
  for (int c=0; c<graph->nChannels; c++) {
    NCCLCHECK(ncclTopoGetXmlFromChannel(graph, c, system, xml, xmlGraph));
  }
  return ncclSuccess;
}
ncclResult_t ncclTopoGetXmlFromGraphs(int ngraphs, struct ncclTopoGraph** graphs, struct ncclTopoSystem* system, struct ncclXml *xml) {
  xml->maxIndex = 0;
  struct ncclXmlNode* xmlGraphs;
  NCCLCHECK(xmlAddNode(xml, NULL, "graphs", &xmlGraphs));
  NCCLCHECK(xmlSetAttrInt(xmlGraphs, "version", NCCL_GRAPH_XML_VERSION));
  for (int g=0; g<ngraphs; g++) {
    NCCLCHECK(ncclTopoGetXmlFromGraph(graphs[g], system, xml, xmlGraphs));
  }
  return ncclSuccess;
}

float speedArray[] = { 24.0, 21.0, 18.0, 15.0, 12.0, 10.0, 9.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.4, 1.2, 0.24, 0.12 };
#define NSPEEDS (sizeof(speedArray)/sizeof(float))

ncclResult_t ncclTopoCompute(ncclTopoSystem* system, struct ncclTopoGraph* graph) {
  int ngpus = system->nodes[GPU].count;
  int crossNic = (system->nodes[NET].count > 1) && graph->crossNic ? 1 : 0;
  graph->speedIntra = graph->speedInter = 0;
  if (graph->crossNic == 2) graph->crossNic = 0;
  graph->typeIntra = ngpus == 1 ? PATH_LOC : PATH_NVL;
  graph->typeInter = PATH_PIX;
  graph->nChannels = 0;
  graph->sameChannels = 1;

  char* str = getenv("NCCL_GRAPH_FILE");
  if (str) {
    struct ncclXml* xml;
    NCCLCHECK(ncclCalloc(&xml, 1));
    NCCLCHECK(ncclTopoGetXmlGraphFromFile(str, xml));
    NCCLCHECK(ncclTopoGetGraphFromXml(xml->nodes, system, graph));
    free(xml);
    if (graph->nChannels > 0) return ncclSuccess;
  }

  if (ngpus == 1) if (graph->pattern != NCCL_TOPO_PATTERN_RING) graph->pattern = NCCL_TOPO_PATTERN_TREE;

  struct ncclTopoGraph tmpGraph;
  memcpy(&tmpGraph, graph, sizeof(struct ncclTopoGraph));

  // First try crossnic, then decrease speed and finally increase speedIntra.
  tmpGraph.pattern = graph->pattern;
  int pass = 1;
  int speedIndex = 0;
  while (speedArray[speedIndex] > system->maxWidth && speedIndex < NSPEEDS-1) speedIndex++;
  tmpGraph.speedIntra = tmpGraph.speedInter = speedArray[speedIndex];
  int64_t globalTimeout = NCCL_SEARCH_GLOBAL_TIMEOUT;

search:
  int time = tmpGraph.sameChannels ? NCCL_SEARCH_TIMEOUT_SAMECHANNELS :
    tmpGraph.pattern == NCCL_TOPO_PATTERN_TREE ? NCCL_SEARCH_TIMEOUT_TREE : NCCL_SEARCH_TIMEOUT;
  tmpGraph.nChannels = 0;
  globalTimeout -= time;

  NCCLCHECK(ncclTopoSearchRec(system, &tmpGraph, graph, &time));
#if 0
  printf("Pattern %d, crossNic %d, Speed %g/%g, type %d/%d, channels %d-%d sameChannels %d -> nChannels %dx%g/%g %s\n", tmpGraph.pattern, tmpGraph.crossNic, tmpGraph.speedInter, tmpGraph.speedIntra, tmpGraph.typeInter, tmpGraph.typeIntra, tmpGraph.minChannels, tmpGraph.maxChannels, tmpGraph.sameChannels, graph->nChannels, graph->speedInter, graph->speedIntra, time == 0 ? "TIMEOUT" : "");
  for (int c=0; c<graph->nChannels; c++) {
    printf("%2d : ", c);
    for (int g=0; g<ngpus; g++) {
      printf("%d ", graph->intra[c*ngpus+g]);
    }
    printf("\n");
  }
#endif
  // Optimal solution, stop here
  if (graph->nChannels == graph->maxChannels && graph->speedInter == system->maxWidth) goto done;

  if (pass == 1) {
    // First pass, we don't have a solution yet ; try other options

    // Try having different channels
    if (tmpGraph.sameChannels == 1) {
      tmpGraph.sameChannels = 0;
      goto search;
    }
    tmpGraph.sameChannels = 1;

    if (time != -1) globalTimeout += time;
    else globalTimeout = NCCL_SEARCH_GLOBAL_TIMEOUT;
    if (globalTimeout < 0) goto done;

    int maxTypeIntra = system->nodes[NET].count > 0 ? tmpGraph.typeInter : PATH_SYS;
    if (tmpGraph.typeIntra < maxTypeIntra && (graph->nChannels == 0 || tmpGraph.typeIntra < graph->typeIntra)) {
      tmpGraph.typeIntra += 1;
      goto search;
    }
    tmpGraph.typeIntra = ngpus == 1 ? PATH_LOC : PATH_NVL;
    if (system->nodes[NET].count > 0 && tmpGraph.typeInter < PATH_SYS && (graph->nChannels == 0 || tmpGraph.typeInter < graph->typeInter || tmpGraph.typeInter < PATH_PXB)) {
      tmpGraph.typeInter += 1;
      goto search;
    }
    tmpGraph.typeInter = PATH_PIX;

    // Try a simpler tree
    if (tmpGraph.pattern == NCCL_TOPO_PATTERN_SPLIT_TREE_LOOP) {
      tmpGraph.pattern = NCCL_TOPO_PATTERN_SPLIT_TREE;
      goto search;
    }
    if (tmpGraph.pattern == NCCL_TOPO_PATTERN_SPLIT_TREE) {
      tmpGraph.pattern = NCCL_TOPO_PATTERN_TREE;
      goto search;
    }
    tmpGraph.pattern = graph->pattern;

    if (crossNic && tmpGraph.crossNic == 0) {
      // Try again with crossNic if permitted
      tmpGraph.crossNic = crossNic;
      goto search;
    }
    tmpGraph.crossNic = 0;

    // Decrease speed until we find a solution
    if ((speedIndex < NSPEEDS-1) && (graph->nChannels == 0 || (speedArray[speedIndex+1]/graph->speedInter > .49))) {
      tmpGraph.speedInter = tmpGraph.speedIntra = speedArray[++speedIndex];
      goto search;
    }
    speedIndex = 0;
    while (speedArray[speedIndex] > system->maxWidth && speedIndex < NSPEEDS-1) speedIndex++;
    tmpGraph.speedIntra = tmpGraph.speedInter = speedArray[speedIndex];

  }

done:
  // We have a solution. Start from that solution and move to pass 2.
  if (pass == 1) {
    time = -1;
    memcpy(&tmpGraph, graph, sizeof(tmpGraph));
    speedIndex = 0;
    while (speedArray[speedIndex] > graph->speedInter && speedIndex < NSPEEDS-1) speedIndex++;
    tmpGraph.speedIntra = tmpGraph.speedInter = speedArray[speedIndex];
    tmpGraph.minChannels = graph->nChannels;
    pass = 2;
  }

  // 3. See if we can increase speedIntra for trees (2 nodes or collnet)
  if (pass == 2) {
    if (time != 0 && graph->pattern != NCCL_TOPO_PATTERN_RING &&
        tmpGraph.speedIntra == graph->speedIntra && tmpGraph.speedIntra < tmpGraph.speedInter*2 &&
        speedIndex > 0) {
      tmpGraph.speedIntra = speedArray[--speedIndex];
      goto search;
    }
    time = -1;
    memcpy(&tmpGraph, graph, sizeof(tmpGraph));
  }

  if (graph->nChannels == 0 && graph->collNet == 0) {
    WARN("Could not find a path for pattern %d, falling back to simple order\n", graph->pattern);
    for (int i=0; i<ngpus; i++) graph->intra[i] = system->nodes[GPU].nodes[i].gpu.rank;
    graph->inter[0] = graph->inter[1] = 0;
    graph->speedIntra = graph->speedInter = 0.1;
    graph->typeIntra = graph->typeInter = PATH_SYS;
    graph->nChannels = 1;
  }
  return ncclSuccess;
}

ncclResult_t ncclTopoPrintGraph(struct ncclTopoSystem* system, struct ncclTopoGraph* graph) {
  INFO(NCCL_GRAPH, "Pattern %d, crossNic %d, nChannels %d, speed %f/%f, type %s/%s, sameChannels %d", graph->pattern, graph->crossNic, graph->nChannels, graph->speedIntra, graph->speedInter, topoPathTypeStr[graph->typeIntra], topoPathTypeStr[graph->typeInter], graph->sameChannels);
  int ngpus = system->nodes[GPU].count;

  char line[1024];
  for (int c=0; c<graph->nChannels; c++) {
    sprintf(line, "%2d :", c);
    int offset = strlen(line);
    if (system->nodes[NET].count > 0) {
      sprintf(line+offset, " %s/%d", topoNodeTypeStr[NET], graph->inter[2*c]);
      offset = strlen(line);
    }
    for (int i=0; i<ngpus; i++) {
      sprintf(line+offset, " %s/%d", topoNodeTypeStr[GPU], graph->intra[ngpus*c+i]);
      offset = strlen(line);
    }
    if (system->nodes[NET].count > 0) {
      sprintf(line+offset, " %s/%d", topoNodeTypeStr[NET], graph->inter[2*c+1]);
      offset = strlen(line);
    }
    INFO(NCCL_GRAPH, "%s", line);
  }
  return ncclSuccess;
}

ncclResult_t ncclTopoDumpGraphs(struct ncclTopoSystem* system, int ngraphs, struct ncclTopoGraph** graphs) {
  char* str = getenv("NCCL_GRAPH_DUMP_FILE");
  if (str) {
    struct ncclXml* xml;
    NCCLCHECK(ncclCalloc(&xml, 1));
    NCCLCHECK(ncclTopoGetXmlFromGraphs(ngraphs, graphs, system, xml));
    NCCLCHECK(ncclTopoDumpXmlToFile(str, xml));
    free(xml);
  }
  return ncclSuccess;
}

ncclResult_t ncclTopoGetNetDev(struct ncclTopoGraph* graph, int dir, int channelId, int* dev) {
  *dev = graph->inter[(channelId%graph->nChannels)*2+dir];
  return ncclSuccess;
}