Welcome to mirror list, hosted at ThFree Co, Russian Federation.

tuning.cc « graph « src - github.com/marian-nmt/nccl.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 29424b0d1872bb41b073772b4812a70b7e3b94b5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
/*************************************************************************
 * Copyright (c) 2016-2020, NVIDIA CORPORATION. All rights reserved.
 *
 * See LICENSE.txt for license information
 ************************************************************************/

#include "core.h"
#include "devcomm.h"
#include "comm.h"
#include "topo.h"

NCCL_PARAM(Nthreads, "NTHREADS", -2);
NCCL_PARAM(Ll128Nthreads, "LL128_NTHREADS", -2);

static int getNthreads(const char* name, int env, int min, int max, int def) {
  int nt = env;
  if (nt > 0) {
    if (nt % WARP_SIZE != 0) {
      WARN("Invalid %s %d (must be a multiple of %d)", name, nt, WARP_SIZE);
      nt = max;
    } else if (nt > max) {
      WARN("Invalid %s %d (maximum %d).", name, nt, max);
      nt = max;
    } else if (nt < min) {
      WARN("Invalid %s %d (minimum %d).", name, nt, min);
      nt = min;
     }
  } else {
    nt = def;
  }
  return nt;
}

ncclResult_t parseList(const char* str, const char* elems[], int nelems, int* list) {
  int def, set;
  if (str[0] == '^') {
    def = 1; set = 0; str++;
  } else {
    def = 0; set = 1;
  }
  for (int i=0; i<nelems; i++) list[i] = def;
  char* tokStr = strdup(str);
  char* tmpStr;
  char* token = strtok_r(tokStr, ",", &tmpStr);
  while (token) {
    for (int i=0; i<nelems; i++)
      if (strcasecmp(token, elems[i]) == 0) list[i] = set;
    token = strtok_r(NULL, ",", &tmpStr);
  }
  free(tokStr);
  return ncclSuccess;
}

// Latencies in us, Bandwidths in GB/s
// Tree { LL, LL128, Simple } , Ring { LL, LL128, Simple }
static const float baseLat  [NCCL_NUM_ALGORITHMS][NCCL_NUM_PROTOCOLS] = { { 4.4, 4.4,  0 }, { 3.6, 10.0, 8.4 }, { 4.4, 4.4,  0 } };

// NVLink, PCI, Network
#define NCCL_HW_NVLINK 0
#define NCCL_HW_PCI 1
#define NCCL_HW_NET 2
// Tree/Simple is the latency a 256kB chunk, which is ~ base lat + 256k/12GB/s (+ 256k/12GB/s for the network).
static const float hwLat [3][NCCL_NUM_ALGORITHMS][NCCL_NUM_PROTOCOLS] =
{ /* NVLINK */
  { /* Tree (LL/LL128/Simple)*/ { .52, 1.2, 28 }, /* Ring (LL/LL128/Simple)*/ { .47, 1.9, 3.4 }, /* CollNet (LL/LL128/Simple)*/ {  .5, 1.2, 4.0 } },
  /* PCI */
  { /* Tree (LL/LL128/Simple)*/ { 1.0, 1.9, 28 }, /* Ring (LL/LL128/Simple)*/ { 1.0, 2.5, 5.7 }, /* CollNet (LL/LL128/Simple)*/ { 1.0, 1.9, 5.5 } },
  /* NET */
  { /* Tree (LL/LL128/Simple)*/ { 5.0, 8.5, 50 }, /* Ring (LL/LL128/Simple)*/ { 2.7, 4.0, 9.6 }, /* CollNet (LL/LL128/Simple)*/ { 5.0, 5.0, 10.7 } }
};

// LL128 max BW (per channel) for the different collectives
// ncclCollBroadcast, ncclCollReduce, ncclCollAllGather, ncclCollReduceScatter, ncclCollAllReduce
static const double ll128MaxBwPerCh[NCCL_NUM_FUNCTIONS] = { 18.8, 12.0, 18.3, 15.2, 16.7 };

ncclResult_t ncclTopoTuneModel(struct ncclComm* comm, int minCompCap, int maxCompCap, struct ncclTopoGraph* treeGraph, struct ncclTopoGraph* ringGraph, struct ncclTopoGraph* collNetGraph) {
  int simpleDefaultThreads = (ringGraph->speedIntra*ringGraph->nChannels <= PCI_WIDTH) ? 256 : NCCL_MAX_NTHREADS;
  comm->maxThreads[NCCL_ALGO_RING][NCCL_PROTO_SIMPLE] =
    getNthreads("NCCL_NTHREADS", ncclParamNthreads(), 2*WARP_SIZE, NCCL_MAX_NTHREADS, simpleDefaultThreads);
  comm->maxThreads[NCCL_ALGO_TREE][NCCL_PROTO_SIMPLE] = comm->maxThreads[NCCL_ALGO_COLLNET][NCCL_PROTO_SIMPLE] =
    getNthreads("NCCL_NTHREADS", ncclParamNthreads(), 2*WARP_SIZE, NCCL_MAX_NTHREADS, NCCL_MAX_NTHREADS);
  comm->maxThreads[NCCL_ALGO_RING][NCCL_PROTO_LL] = comm->maxThreads[NCCL_ALGO_TREE][NCCL_PROTO_LL] = comm->maxThreads[NCCL_ALGO_COLLNET][NCCL_PROTO_LL] =
    getNthreads("NCCL_NTHREADS", ncclParamNthreads(), 2*WARP_SIZE, NCCL_MAX_NTHREADS, NCCL_MAX_NTHREADS);
  comm->maxThreads[NCCL_ALGO_RING][NCCL_PROTO_LL128] = comm->maxThreads[NCCL_ALGO_TREE][NCCL_PROTO_LL128] = comm->maxThreads[NCCL_ALGO_COLLNET][NCCL_PROTO_LL128] =
    getNthreads("NCCL_LL128_NTHREADS", ncclParamLl128Nthreads(), NCCL_LL128_MAX_NTHREADS/4, NCCL_LL128_MAX_NTHREADS, NCCL_LL128_MAX_NTHREADS);

  if (comm->nRanks <= 1) return ncclSuccess;

  int compCap80 = minCompCap == 80 && maxCompCap == 80 ? 1 : 0;
  float ppn = (float)comm->nRanks / comm->nNodes; // if ppn < 2, then we are sending/receiving at the same GPU through the NIC, apply some bw discount
  struct ncclTopoGraph* graphs[NCCL_NUM_ALGORITHMS] = { treeGraph, ringGraph, collNetGraph };
  int intraHw[NCCL_NUM_ALGORITHMS], hw[NCCL_NUM_ALGORITHMS];
  for (int a=0; a<NCCL_NUM_ALGORITHMS; a++) intraHw[a] = graphs[a]->typeIntra == LINK_NVL ? NCCL_HW_NVLINK : NCCL_HW_PCI;
  for (int a=0; a<NCCL_NUM_ALGORITHMS; a++) hw[a] = comm->nNodes == 1 ? intraHw[a] : NCCL_HW_NET;

  for (int coll=0; coll<NCCL_NUM_FUNCTIONS; coll++) {
    int nsteps = coll == ncclCollAllReduce ? 2*(comm->nRanks-1) :
      coll == ncclCollReduceScatter || coll == ncclCollAllGather ? comm->nRanks-1 :
      comm->nRanks;
    int nInterSteps = coll == ncclCollAllReduce ? 2*(comm->nNodes-1) :
      coll == ncclCollReduceScatter || coll == ncclCollAllGather ? comm->nNodes-1 :
      comm->nNodes;

    for (int a=0; a<NCCL_NUM_ALGORITHMS; a++) {
      if (coll != ncclCollAllReduce && a != NCCL_ALGO_RING) continue;

      for (int p=0; p<NCCL_NUM_PROTOCOLS; p++) {
        float speed = comm->nNodes <= 2 || a == NCCL_ALGO_COLLNET ? graphs[a]->speedIntra : graphs[a]->speedInter;
        float busBw = graphs[a]->nChannels * speed;
        if (compCap80) busBw *= 0.92;

        // Various model refinements
        if (a == NCCL_ALGO_RING && p == NCCL_PROTO_LL)    busBw *= (comm->nNodes > 1 || coll == ncclCollAllReduce || coll == ncclCollReduce) ? 1.0/4.0 : 1.0/3.0;
        if (a == NCCL_ALGO_RING && p == NCCL_PROTO_LL128) busBw = std::min(busBw * (ppn < 2 ? 0.7 : 0.92 /*120.0/128.0*/), ll128MaxBwPerCh[coll]*graphs[a]->nChannels);
        double maxTreeBw = comm->nNodes > 2 ?
          compCap80 && p == NCCL_PROTO_LL128 ? 105.0 : 80.0 :
          compCap80 && p == NCCL_PROTO_LL128 ? 130.0 : 110.0;
        if (a == NCCL_ALGO_TREE) busBw = std::min(busBw*.9, maxTreeBw);
        if (a == NCCL_ALGO_TREE && p == NCCL_PROTO_LL) busBw *= 1.0/3.8;
        if (a == NCCL_ALGO_TREE && p == NCCL_PROTO_LL128) busBw = std::min(busBw * (comm->nNodes == 1 ? 7.0/9.0 : 0.915 /*120.0/128.0*/), ll128MaxBwPerCh[coll]*graphs[a]->nChannels*7.0/9.0);
        if (a == NCCL_ALGO_COLLNET) busBw *= .9;
        if (a == NCCL_ALGO_COLLNET && p == NCCL_PROTO_LL) busBw *= 1.0/6.0; // Take into account that GDR read is disabled on both sides
        if (a == NCCL_ALGO_COLLNET && p == NCCL_PROTO_LL128) busBw = 0;  // CollNet does not support LL128

        // Convert bus BW to algorithm BW
        float ratio = (a != NCCL_ALGO_RING) ? .5 : (1.0 * comm->nRanks) / nsteps;
        comm->bandwidths[coll][a][p] = busBw * ratio;

        comm->latencies[coll][a][p] = baseLat[a][p];
        float intraLat = hwLat[intraHw[a]][a][p];
        float interLat = hwLat[NCCL_HW_NET][a][p];
        if (comm->nNodes > 1 && p == NCCL_PROTO_LL) intraLat *= 1.8;
        if (a == NCCL_ALGO_RING) {
          float lat = hwLat[hw[a]][a][p];
          if ((coll == ncclCollReduce || coll == ncclCollBroadcast)) {
            if (ringGraph->sameChannels) {
              comm->latencies[coll][a][p] += lat;
            } else {
              if (p == NCCL_PROTO_SIMPLE) lat = hwLat[hw[a]][NCCL_ALGO_TREE][p]; // Add some chunk latency, waiting for proper chunk modeling
              comm->latencies[coll][a][p] += nsteps*lat;
            }
          } else {
            comm->latencies[coll][a][p] += (nsteps-nInterSteps)*intraLat + nInterSteps*interLat;
          }
        } else if (a == NCCL_ALGO_TREE) {
          comm->latencies[coll][a][p] +=
            2 * ((comm->nRanks/comm->nNodes-1) * intraLat + log2i(comm->nNodes) * interLat);
        } else {
          comm->latencies[coll][a][p] +=
            2 * (comm->nRanks/comm->nNodes-1) * intraLat + interLat;
        }
      }
    }
  }

  // Protocols/Algorithms enable/disable, and user overrides.
  // All are enabled except ll128 which is enabled by default only in certain cases.
  int protoEnable[NCCL_NUM_PROTOCOLS] = { 1, 2, 1 };
  int algoEnable[NCCL_NUM_ALGORITHMS] = { 1, 1, 1 };

  const char *protoStr = getenv("NCCL_PROTO");
  if (protoStr) {
    INFO(NCCL_ENV, "NCCL_PROTO set by environment to %s", protoStr);
    NCCLCHECK(parseList(protoStr, ncclProtoStr, NCCL_NUM_PROTOCOLS, protoEnable));
  }
  const char *algoStr = getenv("NCCL_ALGO");
  if (algoStr) {
    INFO(NCCL_ENV, "NCCL_ALGO set by environment to %s", algoStr);
    NCCLCHECK(parseList(algoStr, ncclAlgoStr, NCCL_NUM_ALGORITHMS, algoEnable));
  }

  for (int c=0; c<NCCL_NUM_FUNCTIONS; c++) for (int a=0; a<NCCL_NUM_ALGORITHMS; a++) for (int p=0; p<NCCL_NUM_PROTOCOLS; p++) {
    int pEnable = protoEnable[p];
    if (pEnable == 2 && p == NCCL_PROTO_LL128) {
      // Enable LL128 by default only on Volta/Ampere+NVLink. Other cases are not tested and may cause silent data corruption.
      pEnable = (graphs[a]->typeInter <= PATH_PXB) && graphs[a]->typeIntra <= PATH_NVL &&
        ((minCompCap == 70 && maxCompCap == 70) || (minCompCap == 80 && maxCompCap == 80)) ? 1 : 0;
    }
    if (pEnable == 0) comm->bandwidths[c][a][p] = 0;
    // Only disable algo for Allreduce since others only have one
    if (c == ncclCollAllReduce && algoEnable[a] == 0) comm->bandwidths[c][a][p] = 0;
  }

  if (comm->rank == 0) {
    char line[1024];
    sprintf(line, "Latency/AlgBw |");
    for (int a=0; a<NCCL_NUM_ALGORITHMS; a++) {
      for (int p=0; p<NCCL_NUM_PROTOCOLS; p++) {
        sprintf(line+strlen(line), " %7s/%6s |", ncclAlgoStr[a], ncclProtoStr[p]);
      }
    }
    INFO(NCCL_TUNING, "%s", line);
    sprintf(line, " Max NThreads |");
    for (int a=0; a<NCCL_NUM_ALGORITHMS; a++) {
      for (int p=0; p<NCCL_NUM_PROTOCOLS; p++) {
        sprintf(line+strlen(line), " %14d |", comm->maxThreads[a][p]);
      }
    }
    INFO(NCCL_TUNING, "%s", line);
    for (int c=0; c<NCCL_NUM_FUNCTIONS; c++) {
      sprintf(line, "%13s |", ncclFuncStr[c]);
      for (int a=0; a<NCCL_NUM_ALGORITHMS; a++) {
        for (int p=0; p<NCCL_NUM_PROTOCOLS; p++) {
          sprintf(line+strlen(line), "%8.1f/%6.1f |", comm->latencies[c][a][p], comm->bandwidths[c][a][p]);
        }
      }
      INFO(NCCL_TUNING, "%s", line);
    }
  }

  // Set per-thread amount of work before we increase nThreads and nChannels
  for (int a=0; a<NCCL_NUM_ALGORITHMS; a++) {
    comm->threadThresholds[a][NCCL_PROTO_LL] = NCCL_LL_THREAD_THRESHOLD;
    comm->threadThresholds[a][NCCL_PROTO_LL128] = NCCL_LL128_THREAD_THRESHOLD;
    comm->threadThresholds[a][NCCL_PROTO_SIMPLE] = NCCL_SIMPLE_THREAD_THRESHOLD;
  }
  comm->threadThresholds[NCCL_ALGO_RING][NCCL_PROTO_LL] *= comm->nRanks;

  // Override defaults with user env
  char* str = getenv("NCCL_THREAD_THRESHOLDS");
  if (str) {
    INFO(NCCL_ENV, "NCCL_THREAD_THRESHOLDS set by environment to %s", str);
    ssize_t t[NCCL_NUM_ALGORITHMS][NCCL_NUM_PROTOCOLS] = {{ -2, -2, -2 }, { -2, -2, -2}};
    sscanf(str, "%ld %ld %ld %ld %ld %ld", t[0], t[0]+1, t[0]+2, t[1], t[1]+1, t[1]+2);
    for (int a=0; a<NCCL_NUM_ALGORITHMS; a++) {
      for (int p=0; p<NCCL_NUM_PROTOCOLS; p++) {
        if (t[a][p] >= 0) comm->threadThresholds[a][p] = t[a][p];
      }
    }
  }

  INFO(NCCL_INIT, "threadThresholds %ld/%ld/%ld | %ld/%ld/%ld | %ld/%ld/%ld",
      comm->threadThresholds[NCCL_ALGO_TREE][NCCL_PROTO_LL],
      comm->threadThresholds[NCCL_ALGO_TREE][NCCL_PROTO_LL128],
      comm->threadThresholds[NCCL_ALGO_TREE][NCCL_PROTO_SIMPLE],
      comm->threadThresholds[NCCL_ALGO_RING][NCCL_PROTO_LL],
      comm->threadThresholds[NCCL_ALGO_RING][NCCL_PROTO_LL128],
      comm->threadThresholds[NCCL_ALGO_RING][NCCL_PROTO_SIMPLE],
      comm->threadThresholds[NCCL_ALGO_COLLNET][NCCL_PROTO_LL],
      comm->threadThresholds[NCCL_ALGO_COLLNET][NCCL_PROTO_LL128],
      comm->threadThresholds[NCCL_ALGO_COLLNET][NCCL_PROTO_SIMPLE]);
  return ncclSuccess;
}

// Trees are not perfectly sticking to the model for medium sizes. Applying a static correction
// factor is not ideal but works quite well. Powers of two, 64 B to 128MB.
static float treeCorrectionFactor[NCCL_NUM_PROTOCOLS][22] = {
  { 1.0, 1.0, 1.0, 1.0,  .9,  .8,  .7,  .7,  .7,  .7,  .6,  .5,  .4,  .4,  .5,  .6,  .7,  .8,  .9, 1.0, 1.0, 1.0 },
  { 1.0, 1.0, 1.0, 1.0, 1.0,  .9,  .8,  .8,  .8,  .7,  .6,  .6,  .6,  .5,  .6,  .6,  .7,  .7,  .8,  .9,  .9, 1.0 },
  {  .9,  .9,  .9,  .9,  .9,  .9,  .9,  .8,  .7,  .6,  .6,  .5,  .5,  .5,  .5,  .5,  .5,  .6,  .6,  .7,  .8,  .9 }
};

ncclResult_t ncclTopoGetAlgoTime(struct ncclInfo* info, int algorithm, int protocol, float* time) {
  float bw = info->comm->bandwidths[info->coll][algorithm][protocol];
  float lat = info->comm->latencies[info->coll][algorithm][protocol];
  if (bw == 0) {
    *time = -1.0; return ncclSuccess;
  }
  int logSize = log2i(info->nBytes>>6);
  if (algorithm == NCCL_ALGO_TREE && logSize < 22) bw *= treeCorrectionFactor[protocol][logSize];
  if (algorithm == NCCL_ALGO_RING && protocol == NCCL_PROTO_SIMPLE && info->comm->nNodes > 1
      && info->coll == ncclCollAllReduce && info->nBytes >= info->comm->nRanks/16.0*65536) lat *= 1.9; // Plateau effect of ring
  *time = lat + (info->nBytes) / (1000 * bw);
  return ncclSuccess;
}