Welcome to mirror list, hosted at ThFree Co, Russian Federation.

String.Comparison.cs « System « shared « System.Private.CoreLib « src - github.com/mono/corert.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 267bfe1fd40da7017fbf4ed5b9936f9b4a2922ea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.

using System.Diagnostics;
using System.Globalization;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;

using Internal.Runtime.CompilerServices;

#if BIT64
using nuint = System.UInt64;
#else
using nuint = System.UInt32;
#endif

namespace System
{
    public partial class String
    {
        //
        // Search/Query methods
        //

        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        private static bool EqualsHelper(string strA, string strB)
        {
            Debug.Assert(strA != null);
            Debug.Assert(strB != null);
            Debug.Assert(strA.Length == strB.Length);

            return SpanHelpers.SequenceEqual(
                    ref Unsafe.As<char, byte>(ref strA.GetRawStringData()),
                    ref Unsafe.As<char, byte>(ref strB.GetRawStringData()),
                    ((nuint)strA.Length) * 2);
        }

        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        private static int CompareOrdinalHelper(string strA, int indexA, int countA, string strB, int indexB, int countB)
        {
            Debug.Assert(strA != null);
            Debug.Assert(strB != null);
            Debug.Assert(indexA >= 0 && indexB >= 0);
            Debug.Assert(countA >= 0 && countB >= 0);
            Debug.Assert(indexA + countA <= strA.Length && indexB + countB <= strB.Length);

            return SpanHelpers.SequenceCompareTo(ref Unsafe.Add(ref strA.GetRawStringData(), indexA), countA, ref Unsafe.Add(ref strB.GetRawStringData(), indexB), countB);
        }

        private static bool EqualsOrdinalIgnoreCase(string strA, string strB)
        {
            Debug.Assert(strA.Length == strB.Length);

            return CompareInfo.EqualsOrdinalIgnoreCase(ref strA.GetRawStringData(), ref strB.GetRawStringData(), strB.Length);
        }
        private static unsafe int CompareOrdinalHelper(string strA, string strB)
        {
            Debug.Assert(strA != null);
            Debug.Assert(strB != null);

            // NOTE: This may be subject to change if eliminating the check
            // in the callers makes them small enough to be inlined
            Debug.Assert(strA._firstChar == strB._firstChar,
                "For performance reasons, callers of this method should " +
                "check/short-circuit beforehand if the first char is the same.");

            int length = Math.Min(strA.Length, strB.Length);

            fixed (char* ap = &strA._firstChar) fixed (char* bp = &strB._firstChar)
            {
                char* a = ap;
                char* b = bp;

                // Check if the second chars are different here
                // The reason we check if _firstChar is different is because
                // it's the most common case and allows us to avoid a method call
                // to here.
                // The reason we check if the second char is different is because
                // if the first two chars the same we can increment by 4 bytes,
                // leaving us word-aligned on both 32-bit (12 bytes into the string)
                // and 64-bit (16 bytes) platforms.

                // For empty strings, the second char will be null due to padding.
                // The start of the string is the type pointer + string length, which
                // takes up 8 bytes on 32-bit, 12 on x64. For empty strings the null
                // terminator immediately follows, leaving us with an object
                // 10/14 bytes in size. Since everything needs to be a multiple
                // of 4/8, this will get padded and zeroed out.

                // For one-char strings the second char will be the null terminator.

                // NOTE: If in the future there is a way to read the second char
                // without pinning the string (e.g. System.Runtime.CompilerServices.Unsafe
                // is exposed to mscorlib, or a future version of C# allows inline IL),
                // then do that and short-circuit before the fixed.

                if (*(a + 1) != *(b + 1)) goto DiffOffset1;

                // Since we know that the first two chars are the same,
                // we can increment by 2 here and skip 4 bytes.
                // This leaves us 8-byte aligned, which results
                // on better perf for 64-bit platforms.
                length -= 2; a += 2; b += 2;

                // unroll the loop
#if BIT64
                while (length >= 12)
                {
                    if (*(long*)a != *(long*)b) goto DiffOffset0;
                    if (*(long*)(a + 4) != *(long*)(b + 4)) goto DiffOffset4;
                    if (*(long*)(a + 8) != *(long*)(b + 8)) goto DiffOffset8;
                    length -= 12; a += 12; b += 12;
                }
#else // BIT64
                while (length >= 10)
                {
                    if (*(int*)a != *(int*)b) goto DiffOffset0;
                    if (*(int*)(a + 2) != *(int*)(b + 2)) goto DiffOffset2;
                    if (*(int*)(a + 4) != *(int*)(b + 4)) goto DiffOffset4;
                    if (*(int*)(a + 6) != *(int*)(b + 6)) goto DiffOffset6;
                    if (*(int*)(a + 8) != *(int*)(b + 8)) goto DiffOffset8;
                    length -= 10; a += 10; b += 10; 
                }
#endif // BIT64

                // Fallback loop:
                // go back to slower code path and do comparison on 4 bytes at a time.
                // This depends on the fact that the String objects are
                // always zero terminated and that the terminating zero is not included
                // in the length. For odd string sizes, the last compare will include
                // the zero terminator.
                while (length > 0)
                {
                    if (*(int*)a != *(int*)b) goto DiffNextInt;
                    length -= 2;
                    a += 2;
                    b += 2;
                }

                // At this point, we have compared all the characters in at least one string.
                // The longer string will be larger.
                return strA.Length - strB.Length;

#if BIT64
            DiffOffset8: a += 4; b += 4;
            DiffOffset4: a += 4; b += 4;
#else // BIT64
                // Use jumps instead of falling through, since
                // otherwise going to DiffOffset8 will involve
                // 8 add instructions before getting to DiffNextInt
                DiffOffset8: a += 8; b += 8; goto DiffOffset0;
                DiffOffset6: a += 6; b += 6; goto DiffOffset0;
                DiffOffset4: a += 2; b += 2;
                DiffOffset2: a += 2; b += 2;
#endif // BIT64

            DiffOffset0:
                // If we reached here, we already see a difference in the unrolled loop above
#if BIT64
                if (*(int*)a == *(int*)b)
                {
                    a += 2; b += 2;
                }
#endif // BIT64

            DiffNextInt:
                if (*a != *b) return *a - *b;

                DiffOffset1:
                Debug.Assert(*(a + 1) != *(b + 1), "This char must be different if we reach here!");
                return *(a + 1) - *(b + 1);
            }
        }

        // Provides a culture-correct string comparison. StrA is compared to StrB
        // to determine whether it is lexicographically less, equal, or greater, and then returns
        // either a negative integer, 0, or a positive integer; respectively.
        //
        public static int Compare(string strA, string strB)
        {
            return Compare(strA, strB, StringComparison.CurrentCulture);
        }


        // Provides a culture-correct string comparison. strA is compared to strB
        // to determine whether it is lexicographically less, equal, or greater, and then a
        // negative integer, 0, or a positive integer is returned; respectively.
        // The case-sensitive option is set by ignoreCase
        //
        public static int Compare(string strA, string strB, bool ignoreCase)
        {
            var comparisonType = ignoreCase ? StringComparison.CurrentCultureIgnoreCase : StringComparison.CurrentCulture;
            return Compare(strA, strB, comparisonType);
        }


        // Provides a more flexible function for string comparison. See StringComparison 
        // for meaning of different comparisonType.
        public static int Compare(string strA, string strB, StringComparison comparisonType)
        {
            if (object.ReferenceEquals(strA, strB))
            {
                CheckStringComparison(comparisonType);
                return 0;
            }

            // They can't both be null at this point.
            if (strA == null)
            {
                CheckStringComparison(comparisonType);
                return -1;
            }
            if (strB == null)
            {
                CheckStringComparison(comparisonType);
                return 1;
            }

            switch (comparisonType)
            {
                case StringComparison.CurrentCulture:
                case StringComparison.CurrentCultureIgnoreCase:
                    return CultureInfo.CurrentCulture.CompareInfo.Compare(strA, strB, GetCaseCompareOfComparisonCulture(comparisonType));

                case StringComparison.InvariantCulture:
                case StringComparison.InvariantCultureIgnoreCase:
                    return CompareInfo.Invariant.Compare(strA, strB, GetCaseCompareOfComparisonCulture(comparisonType));

                case StringComparison.Ordinal:
                    // Most common case: first character is different.
                    // Returns false for empty strings.
                    if (strA._firstChar != strB._firstChar)
                    {
                        return strA._firstChar - strB._firstChar;
                    }

                    return CompareOrdinalHelper(strA, strB);

                case StringComparison.OrdinalIgnoreCase:
                    return CompareInfo.CompareOrdinalIgnoreCase(strA, strB);

                default:
                    throw new ArgumentException(SR.NotSupported_StringComparison, nameof(comparisonType));
            }
        }


        // Provides a culture-correct string comparison. strA is compared to strB
        // to determine whether it is lexicographically less, equal, or greater, and then a
        // negative integer, 0, or a positive integer is returned; respectively.
        //
        public static int Compare(string strA, string strB, CultureInfo culture, CompareOptions options)
        {
            if (culture == null)
            {
                throw new ArgumentNullException(nameof(culture));
            }

            return culture.CompareInfo.Compare(strA, strB, options);
        }



        // Provides a culture-correct string comparison. strA is compared to strB
        // to determine whether it is lexicographically less, equal, or greater, and then a
        // negative integer, 0, or a positive integer is returned; respectively.
        // The case-sensitive option is set by ignoreCase, and the culture is set
        // by culture
        //
        public static int Compare(string strA, string strB, bool ignoreCase, CultureInfo culture)
        {
            var options = ignoreCase ? CompareOptions.IgnoreCase : CompareOptions.None;
            return Compare(strA, strB, culture, options);
        }

        // Determines whether two string regions match.  The substring of strA beginning
        // at indexA of given length is compared with the substring of strB
        // beginning at indexB of the same length.
        //
        public static int Compare(string strA, int indexA, string strB, int indexB, int length)
        {
            // NOTE: It's important we call the boolean overload, and not the StringComparison
            // one. The two have some subtly different behavior (see notes in the former).
            return Compare(strA, indexA, strB, indexB, length, ignoreCase: false);
        }

        // Determines whether two string regions match.  The substring of strA beginning
        // at indexA of given length is compared with the substring of strB
        // beginning at indexB of the same length.  Case sensitivity is determined by the ignoreCase boolean.
        //
        public static int Compare(string strA, int indexA, string strB, int indexB, int length, bool ignoreCase)
        {
            // Ideally we would just forward to the string.Compare overload that takes
            // a StringComparison parameter, and just pass in CurrentCulture/CurrentCultureIgnoreCase.
            // That function will return early if an optimization can be applied, e.g. if
            // (object)strA == strB && indexA == indexB then it will return 0 straightaway.
            // There are a couple of subtle behavior differences that prevent us from doing so
            // however:
            // - string.Compare(null, -1, null, -1, -1, StringComparison.CurrentCulture) works
            //   since that method also returns early for nulls before validation. It shouldn't
            //   for this overload.
            // - Since we originally forwarded to CompareInfo.Compare for all of the argument
            //   validation logic, the ArgumentOutOfRangeExceptions thrown will contain different
            //   parameter names.
            // Therefore, we have to duplicate some of the logic here.

            int lengthA = length;
            int lengthB = length;

            if (strA != null)
            {
                lengthA = Math.Min(lengthA, strA.Length - indexA);
            }

            if (strB != null)
            {
                lengthB = Math.Min(lengthB, strB.Length - indexB);
            }

            var options = ignoreCase ? CompareOptions.IgnoreCase : CompareOptions.None;
            return CultureInfo.CurrentCulture.CompareInfo.Compare(strA, indexA, lengthA, strB, indexB, lengthB, options);
        }

        // Determines whether two string regions match.  The substring of strA beginning
        // at indexA of length length is compared with the substring of strB
        // beginning at indexB of the same length.  Case sensitivity is determined by the ignoreCase boolean,
        // and the culture is set by culture.
        //
        public static int Compare(string strA, int indexA, string strB, int indexB, int length, bool ignoreCase, CultureInfo culture)
        {
            var options = ignoreCase ? CompareOptions.IgnoreCase : CompareOptions.None;
            return Compare(strA, indexA, strB, indexB, length, culture, options);
        }


        // Determines whether two string regions match.  The substring of strA beginning
        // at indexA of length length is compared with the substring of strB
        // beginning at indexB of the same length.
        //
        public static int Compare(string strA, int indexA, string strB, int indexB, int length, CultureInfo culture, CompareOptions options)
        {
            if (culture == null)
            {
                throw new ArgumentNullException(nameof(culture));
            }

            int lengthA = length;
            int lengthB = length;

            if (strA != null)
            {
                lengthA = Math.Min(lengthA, strA.Length - indexA);
            }

            if (strB != null)
            {
                lengthB = Math.Min(lengthB, strB.Length - indexB);
            }

            return culture.CompareInfo.Compare(strA, indexA, lengthA, strB, indexB, lengthB, options);
        }

        public static int Compare(string strA, int indexA, string strB, int indexB, int length, StringComparison comparisonType)
        {
            CheckStringComparison(comparisonType);

            if (strA == null || strB == null)
            {

                if (object.ReferenceEquals(strA, strB))
                {
                    // They're both null
                    return 0;
                }

                return strA == null ? -1 : 1;
            }

            if (length < 0)
            {
                throw new ArgumentOutOfRangeException(nameof(length), SR.ArgumentOutOfRange_NegativeLength);
            }

            if (indexA < 0 || indexB < 0)
            {
                string paramName = indexA < 0 ? nameof(indexA) : nameof(indexB);
                throw new ArgumentOutOfRangeException(paramName, SR.ArgumentOutOfRange_Index);
            }

            if (strA.Length - indexA < 0 || strB.Length - indexB < 0)
            {
                string paramName = strA.Length - indexA < 0 ? nameof(indexA) : nameof(indexB);
                throw new ArgumentOutOfRangeException(paramName, SR.ArgumentOutOfRange_Index);
            }

            if (length == 0 || (object.ReferenceEquals(strA, strB) && indexA == indexB))
            {
                return 0;
            }

            int lengthA = Math.Min(length, strA.Length - indexA);
            int lengthB = Math.Min(length, strB.Length - indexB);

            switch (comparisonType)
            {
                case StringComparison.CurrentCulture:
                case StringComparison.CurrentCultureIgnoreCase:
                    return CultureInfo.CurrentCulture.CompareInfo.Compare(strA, indexA, lengthA, strB, indexB, lengthB, GetCaseCompareOfComparisonCulture(comparisonType));

                case StringComparison.InvariantCulture:
                case StringComparison.InvariantCultureIgnoreCase:
                    return CompareInfo.Invariant.Compare(strA, indexA, lengthA, strB, indexB, lengthB, GetCaseCompareOfComparisonCulture(comparisonType));

                case StringComparison.Ordinal:
                    return CompareOrdinalHelper(strA, indexA, lengthA, strB, indexB, lengthB);

                default:
                    Debug.Assert(comparisonType == StringComparison.OrdinalIgnoreCase); // CheckStringComparison validated these earlier
                    return CompareInfo.CompareOrdinalIgnoreCase(strA, indexA, lengthA, strB, indexB, lengthB);
            }
        }

        // Compares strA and strB using an ordinal (code-point) comparison.
        //
        public static int CompareOrdinal(string strA, string strB)
        {
            if (object.ReferenceEquals(strA, strB))
            {
                return 0;
            }

            // They can't both be null at this point.
            if (strA == null)
            {
                return -1;
            }
            if (strB == null)
            {
                return 1;
            }

            // Most common case, first character is different.
            // This will return false for empty strings.
            if (strA._firstChar != strB._firstChar)
            {
                return strA._firstChar - strB._firstChar;
            }

            return CompareOrdinalHelper(strA, strB);
        }

        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        internal static int CompareOrdinal(ReadOnlySpan<char> strA, ReadOnlySpan<char> strB)
            => SpanHelpers.SequenceCompareTo(ref MemoryMarshal.GetReference(strA), strA.Length, ref MemoryMarshal.GetReference(strB), strB.Length);

        // Compares strA and strB using an ordinal (code-point) comparison.
        //
        public static int CompareOrdinal(string strA, int indexA, string strB, int indexB, int length)
        {
            if (strA == null || strB == null)
            {
                if (object.ReferenceEquals(strA, strB))
                {
                    // They're both null
                    return 0;
                }

                return strA == null ? -1 : 1;
            }

            // COMPAT: Checking for nulls should become before the arguments are validated,
            // but other optimizations which allow us to return early should come after.

            if (length < 0)
            {
                throw new ArgumentOutOfRangeException(nameof(length), SR.ArgumentOutOfRange_NegativeCount);
            }

            if (indexA < 0 || indexB < 0)
            {
                string paramName = indexA < 0 ? nameof(indexA) : nameof(indexB);
                throw new ArgumentOutOfRangeException(paramName, SR.ArgumentOutOfRange_Index);
            }

            int lengthA = Math.Min(length, strA.Length - indexA);
            int lengthB = Math.Min(length, strB.Length - indexB);

            if (lengthA < 0 || lengthB < 0)
            {
                string paramName = lengthA < 0 ? nameof(indexA) : nameof(indexB);
                throw new ArgumentOutOfRangeException(paramName, SR.ArgumentOutOfRange_Index);
            }

            if (length == 0 || (object.ReferenceEquals(strA, strB) && indexA == indexB))
            {
                return 0;
            }

            return CompareOrdinalHelper(strA, indexA, lengthA, strB, indexB, lengthB);
        }

        // Compares this String to another String (cast as object), returning an integer that
        // indicates the relationship. This method returns a value less than 0 if this is less than value, 0
        // if this is equal to value, or a value greater than 0 if this is greater than value.
        //
        public int CompareTo(object value)
        {
            if (value == null)
            {
                return 1;
            }

            string other = value as string;

            if (other == null)
            {
                throw new ArgumentException(SR.Arg_MustBeString);
            }

            return CompareTo(other); // will call the string-based overload
        }

        // Determines the sorting relation of StrB to the current instance.
        //
        public int CompareTo(string strB)
        {
            return string.Compare(this, strB, StringComparison.CurrentCulture);
        }

        // Determines whether a specified string is a suffix of the current instance.
        //
        // The case-sensitive and culture-sensitive option is set by options,
        // and the default culture is used.
        //        
        public bool EndsWith(string value)
        {
            return EndsWith(value, StringComparison.CurrentCulture);
        }

        public bool EndsWith(string value, StringComparison comparisonType)
        {
            if ((object)value == null)
            {
                throw new ArgumentNullException(nameof(value));
            }
            
            if ((object)this == (object)value)
            {
                CheckStringComparison(comparisonType);
                return true;
            }

            if (value.Length == 0)
            {
                CheckStringComparison(comparisonType);
                return true;
            }

            switch (comparisonType)
            {
                case StringComparison.CurrentCulture:
                case StringComparison.CurrentCultureIgnoreCase:
                    return CultureInfo.CurrentCulture.CompareInfo.IsSuffix(this, value, GetCaseCompareOfComparisonCulture(comparisonType));

                case StringComparison.InvariantCulture:
                case StringComparison.InvariantCultureIgnoreCase:
                    return CompareInfo.Invariant.IsSuffix(this, value, GetCaseCompareOfComparisonCulture(comparisonType));

                case StringComparison.Ordinal:
                    return this.Length < value.Length ? false : (CompareOrdinalHelper(this, this.Length - value.Length, value.Length, value, 0, value.Length) == 0);

                case StringComparison.OrdinalIgnoreCase:
                    return this.Length < value.Length ? false : (CompareInfo.CompareOrdinalIgnoreCase(this, this.Length - value.Length, value.Length, value, 0, value.Length) == 0);

                default:
                    throw new ArgumentException(SR.NotSupported_StringComparison, nameof(comparisonType));
            }
        }

        public bool EndsWith(string value, bool ignoreCase, CultureInfo culture)
        {
            if (null == value)
            {
                throw new ArgumentNullException(nameof(value));
            }

            if ((object)this == (object)value)
            {
                return true;
            }

            CultureInfo referenceCulture = culture ?? CultureInfo.CurrentCulture;
            return referenceCulture.CompareInfo.IsSuffix(this, value, ignoreCase ? CompareOptions.IgnoreCase : CompareOptions.None);
        }

        public bool EndsWith(char value)
        {
            int thisLen = Length;
            return thisLen != 0 && this[thisLen - 1] == value;
        }

        // Determines whether two strings match.
        public override bool Equals(object obj)
        {
            if (object.ReferenceEquals(this, obj))
                return true;

            string str = obj as string;
            if (str == null)
                return false;

            if (this.Length != str.Length)
                return false;

            return EqualsHelper(this, str);
        }

        // Determines whether two strings match.
        public bool Equals(string value)
        {
            if (object.ReferenceEquals(this, value))
                return true;

            // NOTE: No need to worry about casting to object here.
            // If either side of an == comparison between strings
            // is null, Roslyn generates a simple ceq instruction
            // instead of calling string.op_Equality.
            if (value == null)
                return false;

            if (this.Length != value.Length)
                return false;

            return EqualsHelper(this, value);
        }

        public bool Equals(string value, StringComparison comparisonType)
        {
            if ((object)this == (object)value)
            {
                CheckStringComparison(comparisonType);
                return true;
            }

            if ((object)value == null)
            {
                CheckStringComparison(comparisonType);
                return false;
            }

            switch (comparisonType)
            {
                case StringComparison.CurrentCulture:
                case StringComparison.CurrentCultureIgnoreCase:
                    return (CultureInfo.CurrentCulture.CompareInfo.Compare(this, value, GetCaseCompareOfComparisonCulture(comparisonType)) == 0);

                case StringComparison.InvariantCulture:
                case StringComparison.InvariantCultureIgnoreCase:
                    return (CompareInfo.Invariant.Compare(this, value, GetCaseCompareOfComparisonCulture(comparisonType)) == 0);

                case StringComparison.Ordinal:
                    if (this.Length != value.Length)
                        return false;
                    return EqualsHelper(this, value);

                case StringComparison.OrdinalIgnoreCase:
                    if (this.Length != value.Length)
                        return false;

                    return EqualsOrdinalIgnoreCase(this, value);

                default:
                    throw new ArgumentException(SR.NotSupported_StringComparison, nameof(comparisonType));
            }
        }


        // Determines whether two Strings match.
        public static bool Equals(string a, string b)
        {
            if ((object)a == (object)b)
            {
                return true;
            }

            if ((object)a == null || (object)b == null || a.Length != b.Length)
            {
                return false;
            }

            return EqualsHelper(a, b);
        }

        public static bool Equals(string a, string b, StringComparison comparisonType)
        {
            if ((object)a == (object)b)
            {
                CheckStringComparison(comparisonType);
                return true;
            }

            if ((object)a == null || (object)b == null)
            {
                CheckStringComparison(comparisonType);
                return false;
            }

            switch (comparisonType)
            {
                case StringComparison.CurrentCulture:
                case StringComparison.CurrentCultureIgnoreCase:
                    return (CultureInfo.CurrentCulture.CompareInfo.Compare(a, b, GetCaseCompareOfComparisonCulture(comparisonType)) == 0);

                case StringComparison.InvariantCulture:
                case StringComparison.InvariantCultureIgnoreCase:
                    return (CompareInfo.Invariant.Compare(a, b, GetCaseCompareOfComparisonCulture(comparisonType)) == 0);

                case StringComparison.Ordinal:
                    if (a.Length != b.Length)
                        return false;
                    return EqualsHelper(a, b);

                case StringComparison.OrdinalIgnoreCase:
                    if (a.Length != b.Length)
                        return false;

                    return EqualsOrdinalIgnoreCase(a, b);

                default:
                    throw new ArgumentException(SR.NotSupported_StringComparison, nameof(comparisonType));
            }
        }

        public static bool operator ==(string a, string b)
        {
            return string.Equals(a, b);
        }

        public static bool operator !=(string a, string b)
        {
            return !string.Equals(a, b);
        }

        // Gets a hash code for this string.  If strings A and B are such that A.Equals(B), then
        // they will return the same hash code.
        public override int GetHashCode()
        {
#if MONO
            return LegacyStringGetHashCode();
#else
            return Marvin.ComputeHash32(ref Unsafe.As<char, byte>(ref _firstChar), _stringLength * 2, Marvin.DefaultSeed);
#endif
        }

        // Gets a hash code for this string and this comparison. If strings A and B and comparison C are such
        // that string.Equals(A, B, C), then they will return the same hash code with this comparison C.
        public int GetHashCode(StringComparison comparisonType) => StringComparer.FromComparison(comparisonType).GetHashCode(this);

        // Use this if and only if 'Denial of Service' attacks are not a concern (i.e. never used for free-form user input),
        // or are otherwise mitigated
        internal unsafe int GetNonRandomizedHashCode()
        {
            fixed (char* src = &_firstChar)
            {
                Debug.Assert(src[this.Length] == '\0', "src[this.Length] == '\\0'");
                Debug.Assert(((int)src) % 4 == 0, "Managed string should start at 4 bytes boundary");

                uint hash1 = (5381 << 16) + 5381;
                uint hash2 = hash1;

                uint* ptr = (uint*)src;
                int length = this.Length;

                while (length > 2)
                {
                    length -= 4;
                    // Where length is 4n-1 (e.g. 3,7,11,15,19) this additionally consumes the null terminator
                    hash1 = (((hash1 << 5) | (hash1 >> 27)) + hash1) ^ ptr[0];
                    hash2 = (((hash2 << 5) | (hash2 >> 27)) + hash2) ^ ptr[1];
                    ptr += 2;
                }

                if (length > 0)
                {
                    // Where length is 4n-3 (e.g. 1,5,9,13,17) this additionally consumes the null terminator
                    hash2 = (((hash2 << 5) | (hash2 >> 27)) + hash2) ^ ptr[0];
                }

                return (int)(hash1 + (hash2 * 1566083941));
            }
        }

        // Determines whether a specified string is a prefix of the current instance
        //
        public bool StartsWith(string value)
        {
            if ((object)value == null)
            {
                throw new ArgumentNullException(nameof(value));
            }
            return StartsWith(value, StringComparison.CurrentCulture);
        }

        public bool StartsWith(string value, StringComparison comparisonType)
        {
            if ((object)value == null)
            {
                throw new ArgumentNullException(nameof(value));
            }

            if ((object)this == (object)value)
            {
                CheckStringComparison(comparisonType);
                return true;
            }

            if (value.Length == 0)
            {
                CheckStringComparison(comparisonType);
                return true;
            }

            switch (comparisonType)
            {
                case StringComparison.CurrentCulture:
                case StringComparison.CurrentCultureIgnoreCase:
                    return CultureInfo.CurrentCulture.CompareInfo.IsPrefix(this, value, GetCaseCompareOfComparisonCulture(comparisonType));

                case StringComparison.InvariantCulture:
                case StringComparison.InvariantCultureIgnoreCase:
                    return CompareInfo.Invariant.IsPrefix(this, value, GetCaseCompareOfComparisonCulture(comparisonType));

                case StringComparison.Ordinal:
                    if (this.Length < value.Length || _firstChar != value._firstChar)
                    {
                        return false;
                    }
                    return (value.Length == 1) ?
                            true :                 // First char is the same and thats all there is to compare
                            SpanHelpers.SequenceEqual(
                                ref Unsafe.As<char, byte>(ref this.GetRawStringData()),
                                ref Unsafe.As<char, byte>(ref value.GetRawStringData()),
                                ((nuint)value.Length) * 2);

                case StringComparison.OrdinalIgnoreCase:
                    if (this.Length < value.Length)
                    {
                        return false;
                    }
                    return CompareInfo.EqualsOrdinalIgnoreCase(ref this.GetRawStringData(), ref value.GetRawStringData(), value.Length);

                default:
                    throw new ArgumentException(SR.NotSupported_StringComparison, nameof(comparisonType));
            }
        }

        public bool StartsWith(string value, bool ignoreCase, CultureInfo culture)
        {
            if (null == value)
            {
                throw new ArgumentNullException(nameof(value));
            }

            if ((object)this == (object)value)
            {
                return true;
            }

            CultureInfo referenceCulture = culture ?? CultureInfo.CurrentCulture;
            return referenceCulture.CompareInfo.IsPrefix(this, value, ignoreCase ? CompareOptions.IgnoreCase : CompareOptions.None);
        }

        public bool StartsWith(char value) => Length != 0 && _firstChar == value;

        internal static void CheckStringComparison(StringComparison comparisonType)
        {
            // Single comparison to check if comparisonType is within [CurrentCulture .. OrdinalIgnoreCase]
            if ((uint)comparisonType > (uint)StringComparison.OrdinalIgnoreCase)
            {
                ThrowHelper.ThrowArgumentException(ExceptionResource.NotSupported_StringComparison, ExceptionArgument.comparisonType);
            }
        }

        internal static CompareOptions GetCaseCompareOfComparisonCulture(StringComparison comparisonType)
        {
            Debug.Assert((uint)comparisonType <= (uint)StringComparison.OrdinalIgnoreCase);

            // Culture enums can be & with CompareOptions.IgnoreCase 0x01 to extract if IgnoreCase or CompareOptions.None 0x00
            //
            // CompareOptions.None                          0x00
            // CompareOptions.IgnoreCase                    0x01
            //
            // StringComparison.CurrentCulture:             0x00
            // StringComparison.InvariantCulture:           0x02
            // StringComparison.Ordinal                     0x04
            //
            // StringComparison.CurrentCultureIgnoreCase:   0x01
            // StringComparison.InvariantCultureIgnoreCase: 0x03
            // StringComparison.OrdinalIgnoreCase           0x05

            return (CompareOptions)((int)comparisonType & (int)CompareOptions.IgnoreCase);
        }
    }
}