Welcome to mirror list, hosted at ThFree Co, Russian Federation.

ReaderWriterLockSlim.cs « Threading « System « shared « System.Private.CoreLib « src - github.com/mono/corert.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 45175488e7e308cdb2a10be3778e5272de556d9e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.

using Internal.Runtime.Augments;
using System.Diagnostics; // for TraceInformation
using System.Runtime.CompilerServices;

namespace System.Threading
{
    public enum LockRecursionPolicy
    {
        NoRecursion = 0,
        SupportsRecursion = 1,
    }

    //
    // ReaderWriterCount tracks how many of each kind of lock is held by each thread.
    // We keep a linked list for each thread, attached to a ThreadStatic field.
    // These are reused wherever possible, so that a given thread will only
    // allocate N of these, where N is the maximum number of locks held simultaneously
    // by that thread.
    // 
    internal class ReaderWriterCount
    {
        // Which lock does this object belong to?  This is a numeric ID for two reasons:
        // 1) We don't want this field to keep the lock object alive, and a WeakReference would
        //    be too expensive.
        // 2) Setting the value of a long is faster than setting the value of a reference.
        //    The "hot" paths in ReaderWriterLockSlim are short enough that this actually
        //    matters.
        public long lockID;

        // How many reader locks does this thread hold on this ReaderWriterLockSlim instance?
        public int readercount;

        // Ditto for writer/upgrader counts.  These are only used if the lock allows recursion.
        // But we have to have the fields on every ReaderWriterCount instance, because 
        // we reuse it for different locks.
        public int writercount;
        public int upgradecount;

        // Next RWC in this thread's list.
        public ReaderWriterCount next;
    }

    /// <summary>
    /// A reader-writer lock implementation that is intended to be simple, yet very
    /// efficient.  In particular only 1 interlocked operation is taken for any lock 
    /// operation (we use spin locks to achieve this).  The spin lock is never held
    /// for more than a few instructions (in particular, we never call event APIs
    /// or in fact any non-trivial API while holding the spin lock).   
    /// </summary>
    public class ReaderWriterLockSlim : IDisposable
    {
        private static readonly int ProcessorCount = Environment.ProcessorCount;

        //Specifying if the lock can be reacquired recursively.
        private readonly bool _fIsReentrant;

        // Lock specification for _spinLock:  This lock protects exactly the local fields associated with this
        // instance of ReaderWriterLockSlim.  It does NOT protect the memory associated with 
        // the events that hang off this lock (eg writeEvent, readEvent upgradeEvent).
        SpinLock _spinLock;

        // These variables allow use to avoid Setting events (which is expensive) if we don't have to. 
        private uint _numWriteWaiters;        // maximum number of threads that can be doing a WaitOne on the writeEvent 
        private uint _numReadWaiters;         // maximum number of threads that can be doing a WaitOne on the readEvent
        private uint _numWriteUpgradeWaiters;      // maximum number of threads that can be doing a WaitOne on the upgradeEvent (at most 1). 
        private uint _numUpgradeWaiters;

        private WaiterStates _waiterStates;

        private int _upgradeLockOwnerId;
        private int _writeLockOwnerId;

        // conditions we wait on. 
        private EventWaitHandle _writeEvent;    // threads waiting to acquire a write lock go here.
        private EventWaitHandle _readEvent;     // threads waiting to acquire a read lock go here (will be released in bulk)
        private EventWaitHandle _upgradeEvent;  // thread waiting to acquire the upgrade lock
        private EventWaitHandle _waitUpgradeEvent;  // thread waiting to upgrade from the upgrade lock to a write lock go here (at most one)

        // Every lock instance has a unique ID, which is used by ReaderWriterCount to associate itself with the lock
        // without holding a reference to it.
        private static long s_nextLockID;
        private long _lockID;

        // See comments on ReaderWriterCount.
        [ThreadStatic]
        private static ReaderWriterCount t_rwc;

        private bool _fUpgradeThreadHoldingRead;

        private const int MaxSpinCount = 20;

        //The uint, that contains info like if the writer lock is held, num of 
        //readers etc.
        private uint _owners;

        //Various R/W masks
        //Note:
        //The Uint is divided as follows:
        //
        //Writer-Owned  Waiting-Writers   Waiting Upgraders     Num-Readers
        //    31          30                 29                 28.......0
        //
        //Dividing the uint, allows to vastly simplify logic for checking if a 
        //reader should go in etc. Setting the writer bit will automatically
        //make the value of the uint much larger than the max num of readers 
        //allowed, thus causing the check for max_readers to fail. 

        private const uint WRITER_HELD = 0x80000000;
        private const uint WAITING_WRITERS = 0x40000000;
        private const uint WAITING_UPGRADER = 0x20000000;

        //The max readers is actually one less then its theoretical max.
        //This is done in order to prevent reader count overflows. If the reader
        //count reaches max, other readers will wait.
        private const uint MAX_READER = 0x10000000 - 2;

        private const uint READER_MASK = 0x10000000 - 1;

        private bool _fDisposed;

        private void InitializeThreadCounts()
        {
            _upgradeLockOwnerId = -1;
            _writeLockOwnerId = -1;
        }

        public ReaderWriterLockSlim()
            : this(LockRecursionPolicy.NoRecursion)
        {
        }

        public ReaderWriterLockSlim(LockRecursionPolicy recursionPolicy)
        {
            if (recursionPolicy == LockRecursionPolicy.SupportsRecursion)
            {
                _fIsReentrant = true;
            }
            InitializeThreadCounts();
            _waiterStates = WaiterStates.NoWaiters;
            _lockID = Interlocked.Increment(ref s_nextLockID);
        }

        private bool HasNoWaiters
        {
            get
            {
#if DEBUG
                Debug.Assert(_spinLock.IsHeld);
#endif

                return (_waiterStates & WaiterStates.NoWaiters) != WaiterStates.None;
            }
            set
            {
#if DEBUG
                Debug.Assert(_spinLock.IsHeld);
#endif

                if (value)
                {
                    _waiterStates |= WaiterStates.NoWaiters;
                }
                else
                {
                    _waiterStates &= ~WaiterStates.NoWaiters;
                }
            }
        }

        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        private static bool IsRWEntryEmpty(ReaderWriterCount rwc)
        {
            if (rwc.lockID == 0)
                return true;
            else if (rwc.readercount == 0 && rwc.writercount == 0 && rwc.upgradecount == 0)
                return true;
            else
                return false;
        }

        private bool IsRwHashEntryChanged(ReaderWriterCount lrwc)
        {
            return lrwc.lockID != _lockID;
        }

        /// <summary>
        /// This routine retrieves/sets the per-thread counts needed to enforce the
        /// various rules related to acquiring the lock. 
        /// 
        /// DontAllocate is set to true if the caller just wants to get an existing
        /// entry for this thread, but doesn't want to add one if an existing one
        /// could not be found.
        /// </summary>
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        private ReaderWriterCount GetThreadRWCount(bool dontAllocate)
        {
            ReaderWriterCount rwc = t_rwc;
            ReaderWriterCount empty = null;
            while (rwc != null)
            {
                if (rwc.lockID == _lockID)
                    return rwc;

                if (!dontAllocate && empty == null && IsRWEntryEmpty(rwc))
                    empty = rwc;

                rwc = rwc.next;
            }

            if (dontAllocate)
                return null;

            if (empty == null)
            {
                empty = new ReaderWriterCount();
                empty.next = t_rwc;
                t_rwc = empty;
            }

            empty.lockID = _lockID;
            return empty;
        }

        public void EnterReadLock()
        {
            TryEnterReadLock(-1);
        }

        //
        // Common timeout support
        //
        private struct TimeoutTracker
        {
            private int _total;
            private int _start;

            public TimeoutTracker(TimeSpan timeout)
            {
                long ltm = (long)timeout.TotalMilliseconds;
                if (ltm < -1 || ltm > (long)Int32.MaxValue)
                    throw new ArgumentOutOfRangeException(nameof(timeout));
                _total = (int)ltm;
                if (_total != -1 && _total != 0)
                    _start = Environment.TickCount;
                else
                    _start = 0;
            }

            public TimeoutTracker(int millisecondsTimeout)
            {
                if (millisecondsTimeout < -1)
                    throw new ArgumentOutOfRangeException(nameof(millisecondsTimeout));
                _total = millisecondsTimeout;
                if (_total != -1 && _total != 0)
                    _start = Environment.TickCount;
                else
                    _start = 0;
            }

            public int RemainingMilliseconds
            {
                get
                {
                    if (_total == -1 || _total == 0)
                        return _total;

                    int elapsed = Environment.TickCount - _start;
                    // elapsed may be negative if TickCount has overflowed by 2^31 milliseconds.
                    if (elapsed < 0 || elapsed >= _total)
                        return 0;

                    return _total - elapsed;
                }
            }

            public bool IsExpired
            {
                get
                {
                    return RemainingMilliseconds == 0;
                }
            }
        }

        public bool TryEnterReadLock(TimeSpan timeout)
        {
            return TryEnterReadLock(new TimeoutTracker(timeout));
        }

        public bool TryEnterReadLock(int millisecondsTimeout)
        {
            return TryEnterReadLock(new TimeoutTracker(millisecondsTimeout));
        }

        private bool TryEnterReadLock(TimeoutTracker timeout)
        {
            return TryEnterReadLockCore(timeout);
        }

        private bool TryEnterReadLockCore(TimeoutTracker timeout)
        {
            if (_fDisposed)
                throw new ObjectDisposedException(null);

            ReaderWriterCount lrwc = null;
            int id = Environment.CurrentManagedThreadId;

            if (!_fIsReentrant)
            {
                if (id == _writeLockOwnerId)
                {
                    //Check for AW->AR
                    throw new LockRecursionException(SR.LockRecursionException_ReadAfterWriteNotAllowed);
                }

                _spinLock.Enter(EnterSpinLockReason.EnterAnyRead);

                lrwc = GetThreadRWCount(false);

                //Check if the reader lock is already acquired. Note, we could
                //check the presence of a reader by not allocating rwc (But that 
                //would lead to two lookups in the common case. It's better to keep
                //a count in the structure).
                if (lrwc.readercount > 0)
                {
                    _spinLock.Exit();
                    throw new LockRecursionException(SR.LockRecursionException_RecursiveReadNotAllowed);
                }
                else if (id == _upgradeLockOwnerId)
                {
                    //The upgrade lock is already held.
                    //Update the global read counts and exit.

                    lrwc.readercount++;
                    _owners++;
                    _spinLock.Exit();
                    return true;
                }
            }
            else
            {
                _spinLock.Enter(EnterSpinLockReason.EnterAnyRead);
                lrwc = GetThreadRWCount(false);
                if (lrwc.readercount > 0)
                {
                    lrwc.readercount++;
                    _spinLock.Exit();
                    return true;
                }
                else if (id == _upgradeLockOwnerId)
                {
                    //The upgrade lock is already held.
                    //Update the global read counts and exit.
                    lrwc.readercount++;
                    _owners++;
                    _spinLock.Exit();
                    _fUpgradeThreadHoldingRead = true;
                    return true;
                }
                else if (id == _writeLockOwnerId)
                {
                    //The write lock is already held.
                    //Update global read counts here,
                    lrwc.readercount++;
                    _owners++;
                    _spinLock.Exit();
                    return true;
                }
            }

            bool retVal = true;
            int spinCount = 0;

            for (; ;)
            {
                // We can enter a read lock if there are only read-locks have been given out
                // and a writer is not trying to get in.  

                if (_owners < MAX_READER)
                {
                    // Good case, there is no contention, we are basically done
                    _owners++;       // Indicate we have another reader
                    lrwc.readercount++;
                    break;
                }

                if (timeout.IsExpired)
                {
                    _spinLock.Exit();
                    return false;
                }

                if (spinCount < MaxSpinCount && ShouldSpinForEnterAnyRead())
                {
                    _spinLock.Exit();
                    spinCount++;
                    SpinWait(spinCount);
                    _spinLock.Enter(EnterSpinLockReason.EnterAnyRead);
                    //The per-thread structure may have been recycled as the lock is acquired (due to message pumping), load again.
                    if (IsRwHashEntryChanged(lrwc))
                        lrwc = GetThreadRWCount(false);
                    continue;
                }

                // Drat, we need to wait.  Mark that we have waiters and wait.  
                if (_readEvent == null)      // Create the needed event 
                {
                    LazyCreateEvent(ref _readEvent, EnterLockType.Read);
                    if (IsRwHashEntryChanged(lrwc))
                        lrwc = GetThreadRWCount(false);
                    continue;   // since we left the lock, start over. 
                }

                retVal = WaitOnEvent(_readEvent, ref _numReadWaiters, timeout, EnterLockType.Read);
                if (!retVal)
                {
                    return false;
                }
                if (IsRwHashEntryChanged(lrwc))
                    lrwc = GetThreadRWCount(false);
            }

            _spinLock.Exit();
            return retVal;
        }

        public void EnterWriteLock()
        {
            TryEnterWriteLock(-1);
        }

        public bool TryEnterWriteLock(TimeSpan timeout)
        {
            return TryEnterWriteLock(new TimeoutTracker(timeout));
        }

        public bool TryEnterWriteLock(int millisecondsTimeout)
        {
            return TryEnterWriteLock(new TimeoutTracker(millisecondsTimeout));
        }

        private bool TryEnterWriteLock(TimeoutTracker timeout)
        {
            return TryEnterWriteLockCore(timeout);
        }

        private bool TryEnterWriteLockCore(TimeoutTracker timeout)
        {
            if (_fDisposed)
                throw new ObjectDisposedException(null);

            int id = Environment.CurrentManagedThreadId;
            ReaderWriterCount lrwc;
            bool upgradingToWrite = false;

            if (!_fIsReentrant)
            {
                EnterSpinLockReason enterMyLockReason;
                if (id == _writeLockOwnerId)
                {
                    //Check for AW->AW
                    throw new LockRecursionException(SR.LockRecursionException_RecursiveWriteNotAllowed);
                }
                else if (id == _upgradeLockOwnerId)
                {
                    //AU->AW case is allowed once.
                    upgradingToWrite = true;
                    enterMyLockReason = EnterSpinLockReason.UpgradeToWrite;
                }
                else
                {
                    enterMyLockReason = EnterSpinLockReason.EnterWrite;
                }
                _spinLock.Enter(enterMyLockReason);

                lrwc = GetThreadRWCount(true);

                //Can't acquire write lock with reader lock held. 
                if (lrwc != null && lrwc.readercount > 0)
                {
                    _spinLock.Exit();
                    throw new LockRecursionException(SR.LockRecursionException_WriteAfterReadNotAllowed);
                }
            }
            else
            {
                EnterSpinLockReason enterMyLockReason;
                if (id == _writeLockOwnerId)
                {
                    enterMyLockReason = EnterSpinLockReason.EnterRecursiveWrite;
                }
                else if (id == _upgradeLockOwnerId)
                {
                    enterMyLockReason = EnterSpinLockReason.UpgradeToWrite;
                }
                else
                {
                    enterMyLockReason = EnterSpinLockReason.EnterWrite;
                }
                _spinLock.Enter(enterMyLockReason);

                lrwc = GetThreadRWCount(false);

                if (id == _writeLockOwnerId)
                {
                    lrwc.writercount++;
                    _spinLock.Exit();
                    return true;
                }
                else if (id == _upgradeLockOwnerId)
                {
                    upgradingToWrite = true;
                }
                else if (lrwc.readercount > 0)
                {
                    //Write locks may not be acquired if only read locks have been
                    //acquired.
                    _spinLock.Exit();
                    throw new LockRecursionException(SR.LockRecursionException_WriteAfterReadNotAllowed);
                }
            }

            bool retVal = true;
            int spinCount = 0;

            for (; ;)
            {
                if (IsWriterAcquired())
                {
                    // Good case, there is no contention, we are basically done
                    SetWriterAcquired();
                    break;
                }

                //Check if there is just one upgrader, and no readers.
                //Assumption: Only one thread can have the upgrade lock, so the 
                //following check will fail for all other threads that may sneak in 
                //when the upgrading thread is waiting.

                if (upgradingToWrite)
                {
                    uint readercount = GetNumReaders();

                    if (readercount == 1)
                    {
                        //Good case again, there is just one upgrader, and no readers.
                        SetWriterAcquired();    // indicate we have a writer.
                        break;
                    }
                    else if (readercount == 2)
                    {
                        if (lrwc != null)
                        {
                            if (IsRwHashEntryChanged(lrwc))
                                lrwc = GetThreadRWCount(false);

                            if (lrwc.readercount > 0)
                            {
                                //This check is needed for EU->ER->EW case, as the owner count will be two.
                                Debug.Assert(_fIsReentrant);
                                Debug.Assert(_fUpgradeThreadHoldingRead);

                                //Good case again, there is just one upgrader, and no readers.
                                SetWriterAcquired();   // indicate we have a writer.
                                break;
                            }
                        }
                    }
                }

                if (timeout.IsExpired)
                {
                    _spinLock.Exit();
                    return false;
                }

                if (spinCount < MaxSpinCount && ShouldSpinForEnterAnyWrite(upgradingToWrite))
                {
                    _spinLock.Exit();
                    spinCount++;
                    SpinWait(spinCount);
                    _spinLock.Enter(upgradingToWrite ? EnterSpinLockReason.UpgradeToWrite : EnterSpinLockReason.EnterWrite);
                    continue;
                }

                if (upgradingToWrite)
                {
                    if (_waitUpgradeEvent == null)   // Create the needed event
                    {
                        LazyCreateEvent(ref _waitUpgradeEvent, EnterLockType.UpgradeToWrite);
                        continue;   // since we left the lock, start over. 
                    }

                    Debug.Assert(_numWriteUpgradeWaiters == 0, "There can be at most one thread with the upgrade lock held.");

                    retVal = WaitOnEvent(_waitUpgradeEvent, ref _numWriteUpgradeWaiters, timeout, EnterLockType.UpgradeToWrite);

                    //The lock is not held in case of failure.
                    if (!retVal)
                        return false;
                }
                else
                {
                    // Drat, we need to wait.  Mark that we have waiters and wait.
                    if (_writeEvent == null)     // create the needed event.
                    {
                        LazyCreateEvent(ref _writeEvent, EnterLockType.Write);
                        continue;   // since we left the lock, start over. 
                    }

                    retVal = WaitOnEvent(_writeEvent, ref _numWriteWaiters, timeout, EnterLockType.Write);
                    //The lock is not held in case of failure.
                    if (!retVal)
                        return false;
                }
            }

            Debug.Assert((_owners & WRITER_HELD) > 0);

            if (_fIsReentrant)
            {
                if (IsRwHashEntryChanged(lrwc))
                    lrwc = GetThreadRWCount(false);
                lrwc.writercount++;
            }

            _spinLock.Exit();

            _writeLockOwnerId = id;

            return true;
        }

        public void EnterUpgradeableReadLock()
        {
            TryEnterUpgradeableReadLock(-1);
        }

        public bool TryEnterUpgradeableReadLock(TimeSpan timeout)
        {
            return TryEnterUpgradeableReadLock(new TimeoutTracker(timeout));
        }

        public bool TryEnterUpgradeableReadLock(int millisecondsTimeout)
        {
            return TryEnterUpgradeableReadLock(new TimeoutTracker(millisecondsTimeout));
        }

        private bool TryEnterUpgradeableReadLock(TimeoutTracker timeout)
        {
            return TryEnterUpgradeableReadLockCore(timeout);
        }

        private bool TryEnterUpgradeableReadLockCore(TimeoutTracker timeout)
        {
            if (_fDisposed)
                throw new ObjectDisposedException(null);

            int id = Environment.CurrentManagedThreadId;
            ReaderWriterCount lrwc;

            if (!_fIsReentrant)
            {
                if (id == _upgradeLockOwnerId)
                {
                    //Check for AU->AU
                    throw new LockRecursionException(SR.LockRecursionException_RecursiveUpgradeNotAllowed);
                }
                else if (id == _writeLockOwnerId)
                {
                    //Check for AU->AW
                    throw new LockRecursionException(SR.LockRecursionException_UpgradeAfterWriteNotAllowed);
                }

                _spinLock.Enter(EnterSpinLockReason.EnterAnyRead);
                lrwc = GetThreadRWCount(true);
                //Can't acquire upgrade lock with reader lock held. 
                if (lrwc != null && lrwc.readercount > 0)
                {
                    _spinLock.Exit();
                    throw new LockRecursionException(SR.LockRecursionException_UpgradeAfterReadNotAllowed);
                }
            }
            else
            {
                _spinLock.Enter(EnterSpinLockReason.EnterAnyRead);
                lrwc = GetThreadRWCount(false);

                if (id == _upgradeLockOwnerId)
                {
                    lrwc.upgradecount++;
                    _spinLock.Exit();
                    return true;
                }
                else if (id == _writeLockOwnerId)
                {
                    //Write lock is already held, Just update the global state 
                    //to show presence of upgrader.
                    Debug.Assert((_owners & WRITER_HELD) > 0);
                    _owners++;
                    _upgradeLockOwnerId = id;
                    lrwc.upgradecount++;
                    if (lrwc.readercount > 0)
                        _fUpgradeThreadHoldingRead = true;
                    _spinLock.Exit();
                    return true;
                }
                else if (lrwc.readercount > 0)
                {
                    //Upgrade locks may not be acquired if only read locks have been
                    //acquired.                
                    _spinLock.Exit();
                    throw new LockRecursionException(SR.LockRecursionException_UpgradeAfterReadNotAllowed);
                }
            }

            bool retVal = true;
            int spinCount = 0;

            for (; ;)
            {
                //Once an upgrade lock is taken, it's like having a reader lock held
                //until upgrade or downgrade operations are performed.              

                if ((_upgradeLockOwnerId == -1) && (_owners < MAX_READER))
                {
                    _owners++;
                    _upgradeLockOwnerId = id;
                    break;
                }

                if (timeout.IsExpired)
                {
                    _spinLock.Exit();
                    return false;
                }

                if (spinCount < MaxSpinCount && ShouldSpinForEnterAnyRead())
                {
                    _spinLock.Exit();
                    spinCount++;
                    SpinWait(spinCount);
                    _spinLock.Enter(EnterSpinLockReason.EnterAnyRead);
                    continue;
                }

                // Drat, we need to wait.  Mark that we have waiters and wait. 
                if (_upgradeEvent == null)   // Create the needed event
                {
                    LazyCreateEvent(ref _upgradeEvent, EnterLockType.UpgradeableRead);
                    continue;   // since we left the lock, start over. 
                }

                //Only one thread with the upgrade lock held can proceed.
                retVal = WaitOnEvent(_upgradeEvent, ref _numUpgradeWaiters, timeout, EnterLockType.UpgradeableRead);
                if (!retVal)
                    return false;
            }

            if (_fIsReentrant)
            {
                //The lock may have been dropped getting here, so make a quick check to see whether some other
                //thread did not grab the entry.
                if (IsRwHashEntryChanged(lrwc))
                    lrwc = GetThreadRWCount(false);
                lrwc.upgradecount++;
            }

            _spinLock.Exit();

            return true;
        }

        public void ExitReadLock()
        {
            ReaderWriterCount lrwc = null;

            _spinLock.Enter(EnterSpinLockReason.ExitAnyRead);

            lrwc = GetThreadRWCount(true);

            if (lrwc == null || lrwc.readercount < 1)
            {
                //You have to be holding the read lock to make this call.
                _spinLock.Exit();
                throw new SynchronizationLockException(SR.SynchronizationLockException_MisMatchedRead);
            }

            if (_fIsReentrant)
            {
                if (lrwc.readercount > 1)
                {
                    lrwc.readercount--;
                    _spinLock.Exit();
                    return;
                }

                if (Environment.CurrentManagedThreadId == _upgradeLockOwnerId)
                {
                    _fUpgradeThreadHoldingRead = false;
                }
            }

            Debug.Assert(_owners > 0, "ReleasingReaderLock: releasing lock and no read lock taken");

            --_owners;

            Debug.Assert(lrwc.readercount == 1);
            lrwc.readercount--;

            ExitAndWakeUpAppropriateWaiters();
        }

        public void ExitWriteLock()
        {
            ReaderWriterCount lrwc;
            if (!_fIsReentrant)
            {
                if (Environment.CurrentManagedThreadId != _writeLockOwnerId)
                {
                    //You have to be holding the write lock to make this call.
                    throw new SynchronizationLockException(SR.SynchronizationLockException_MisMatchedWrite);
                }
                _spinLock.Enter(EnterSpinLockReason.ExitAnyWrite);
            }
            else
            {
                _spinLock.Enter(EnterSpinLockReason.ExitAnyWrite);
                lrwc = GetThreadRWCount(false);

                if (lrwc == null)
                {
                    _spinLock.Exit();
                    throw new SynchronizationLockException(SR.SynchronizationLockException_MisMatchedWrite);
                }

                if (lrwc.writercount < 1)
                {
                    _spinLock.Exit();
                    throw new SynchronizationLockException(SR.SynchronizationLockException_MisMatchedWrite);
                }

                lrwc.writercount--;

                if (lrwc.writercount > 0)
                {
                    _spinLock.Exit();
                    return;
                }
            }

            Debug.Assert((_owners & WRITER_HELD) > 0, "Calling ReleaseWriterLock when no write lock is held");

            ClearWriterAcquired();

            _writeLockOwnerId = -1;

            ExitAndWakeUpAppropriateWaiters();
        }

        public void ExitUpgradeableReadLock()
        {
            ReaderWriterCount lrwc;
            if (!_fIsReentrant)
            {
                if (Environment.CurrentManagedThreadId != _upgradeLockOwnerId)
                {
                    //You have to be holding the upgrade lock to make this call.
                    throw new SynchronizationLockException(SR.SynchronizationLockException_MisMatchedUpgrade);
                }
                _spinLock.Enter(EnterSpinLockReason.ExitAnyRead);
            }
            else
            {
                _spinLock.Enter(EnterSpinLockReason.ExitAnyRead);
                lrwc = GetThreadRWCount(true);

                if (lrwc == null)
                {
                    _spinLock.Exit();
                    throw new SynchronizationLockException(SR.SynchronizationLockException_MisMatchedUpgrade);
                }

                if (lrwc.upgradecount < 1)
                {
                    _spinLock.Exit();
                    throw new SynchronizationLockException(SR.SynchronizationLockException_MisMatchedUpgrade);
                }

                lrwc.upgradecount--;

                if (lrwc.upgradecount > 0)
                {
                    _spinLock.Exit();
                    return;
                }

                _fUpgradeThreadHoldingRead = false;
            }

            _owners--;
            _upgradeLockOwnerId = -1;

            ExitAndWakeUpAppropriateWaiters();
        }

        /// <summary>
        /// A routine for lazily creating a event outside the lock (so if errors
        /// happen they are outside the lock and that we don't do much work
        /// while holding a spin lock).  If all goes well, reenter the lock and
        /// set 'waitEvent' 
        /// </summary>
        private void LazyCreateEvent(ref EventWaitHandle waitEvent, EnterLockType enterLockType)
        {
#if DEBUG
            Debug.Assert(_spinLock.IsHeld);
            Debug.Assert(waitEvent == null);
#endif

            _spinLock.Exit();

            var newEvent =
                new EventWaitHandle(
                    false,
                    enterLockType == EnterLockType.Read ? EventResetMode.ManualReset : EventResetMode.AutoReset);

            EnterSpinLockReason enterMyLockReason;
            switch (enterLockType)
            {
                case EnterLockType.Read:
                case EnterLockType.UpgradeableRead:
                    enterMyLockReason = EnterSpinLockReason.EnterAnyRead | EnterSpinLockReason.Wait;
                    break;

                case EnterLockType.Write:
                    enterMyLockReason = EnterSpinLockReason.EnterWrite | EnterSpinLockReason.Wait;
                    break;

                default:
                    Debug.Assert(enterLockType == EnterLockType.UpgradeToWrite);
                    enterMyLockReason = EnterSpinLockReason.UpgradeToWrite | EnterSpinLockReason.Wait;
                    break;
            }
            _spinLock.Enter(enterMyLockReason);

            if (waitEvent == null)          // maybe someone snuck in. 
                waitEvent = newEvent;
            else
                newEvent.Dispose();
        }

        /// <summary>
        /// Waits on 'waitEvent' with a timeout  
        /// Before the wait 'numWaiters' is incremented and is restored before leaving this routine.
        /// </summary>
        private bool WaitOnEvent(
            EventWaitHandle waitEvent,
            ref uint numWaiters,
            TimeoutTracker timeout,
            EnterLockType enterLockType)
        {
#if DEBUG
            Debug.Assert(_spinLock.IsHeld);
#endif

            WaiterStates waiterSignaledState = WaiterStates.None;
            EnterSpinLockReason enterMyLockReason;
            switch (enterLockType)
            {
                case EnterLockType.UpgradeableRead:
                    waiterSignaledState = WaiterStates.UpgradeableReadWaiterSignaled;
                    goto case EnterLockType.Read;

                case EnterLockType.Read:
                    enterMyLockReason = EnterSpinLockReason.EnterAnyRead;
                    break;

                case EnterLockType.Write:
                    waiterSignaledState = WaiterStates.WriteWaiterSignaled;
                    enterMyLockReason = EnterSpinLockReason.EnterWrite;
                    break;

                default:
                    Debug.Assert(enterLockType == EnterLockType.UpgradeToWrite);
                    enterMyLockReason = EnterSpinLockReason.UpgradeToWrite;
                    break;
            }

            // It was not possible to acquire the RW lock because some other thread was holding some type of lock. The other
            // thread, when it releases its lock, will wake appropriate waiters. Along with resetting the wait event, clear the
            // waiter signaled bit for this type of waiter if applicable, to indicate that a waiter of this type is no longer
            // signaled.
            //
            // If the waiter signaled bit is not updated upon event reset, the following scenario would lead to deadlock:
            //   - Thread T0 signals the write waiter event or the upgradeable read waiter event to wake a waiter
            //   - There are no threads waiting on the event, but T1 is in WaitOnEvent() after exiting the spin lock and before
            //     actually waiting on the event (that is, it's recorded that there is one waiter for the event). It remains in
            //     this region for a while, in the repro case it typically gets context-switched out.
            //   - T2 acquires the RW lock in some fashion that blocks T0 or T3 from acquiring the RW lock
            //   - T0 or T3 fails to acquire the RW lock enough times for it to enter WaitOnEvent for the same event as T1
            //   - T0 or T3 resets the event
            //   - T2 releases the RW lock and does not wake a waiter because the reset at the previous step lost a signal but
            //     _waiterStates was not updated to reflect that
            //   - T1 and other threads begin waiting on the event, but there's no longer any thread that would wake them
            if (waiterSignaledState != WaiterStates.None && (_waiterStates & waiterSignaledState) != WaiterStates.None)
            {
                _waiterStates &= ~waiterSignaledState;
            }
            waitEvent.Reset();

            numWaiters++;
            HasNoWaiters = false;

            //Setting these bits will prevent new readers from getting in.
            if (_numWriteWaiters == 1)
                SetWritersWaiting();
            if (_numWriteUpgradeWaiters == 1)
                SetUpgraderWaiting();

            bool waitSuccessful = false;
            _spinLock.Exit();      // Do the wait outside of any lock

            try
            {
                waitSuccessful = waitEvent.WaitOne(timeout.RemainingMilliseconds);
            }
            finally
            {
                _spinLock.Enter(enterMyLockReason);

                --numWaiters;

                if (waitSuccessful &&
                    waiterSignaledState != WaiterStates.None &&
                    (_waiterStates & waiterSignaledState) != WaiterStates.None)
                {
                    // Indicate that a signaled waiter of this type has woken. Since non-read waiters are signaled to wake one
                    // at a time, we avoid waking up more than one waiter of that type upon successive enter/exit loops until
                    // the signaled thread actually wakes up. For example, if there are multiple write waiters and one thread is
                    // repeatedly entering and exiting a write lock, every exit would otherwise signal a different write waiter
                    // to wake up unnecessarily when only one woken waiter may actually succeed in entering the write lock.
                    _waiterStates &= ~waiterSignaledState;
                }

                if (_numWriteWaiters == 0 && _numWriteUpgradeWaiters == 0 && _numUpgradeWaiters == 0 && _numReadWaiters == 0)
                    HasNoWaiters = true;

                if (_numWriteWaiters == 0)
                    ClearWritersWaiting();
                if (_numWriteUpgradeWaiters == 0)
                    ClearUpgraderWaiting();

                if (!waitSuccessful)        // We may also be about to throw for some reason.  Exit myLock.
                {
                    if (enterLockType >= EnterLockType.Write)
                    {
                        // Write waiters block read waiters from acquiring the lock. Since this was the last write waiter, try
                        // to wake up the appropriate read waiters.
                        ExitAndWakeUpAppropriateReadWaiters();
                    }
                    else
                    {
                        _spinLock.Exit();
                    }
                }
            }
            return waitSuccessful;
        }

        /// <summary>
        /// Determines the appropriate events to set, leaves the locks, and sets the events. 
        /// </summary>
        private void ExitAndWakeUpAppropriateWaiters()
        {
#if DEBUG
            Debug.Assert(_spinLock.IsHeld);
#endif
            if (HasNoWaiters)
            {
                _spinLock.Exit();
                return;
            }

            ExitAndWakeUpAppropriateWaitersPreferringWriters();
        }

        private void ExitAndWakeUpAppropriateWaitersPreferringWriters()
        {
            uint readercount = GetNumReaders();

            //We need this case for EU->ER->EW case, as the read count will be 2 in
            //that scenario.
            if (_fIsReentrant)
            {
                if (_numWriteUpgradeWaiters > 0 && _fUpgradeThreadHoldingRead && readercount == 2)
                {
                    _spinLock.Exit();      // Exit before signaling to improve efficiency (wakee will need the lock)
                    _waitUpgradeEvent.Set();     // release all upgraders (however there can be at most one). 
                    return;
                }
            }

            if (readercount == 1 && _numWriteUpgradeWaiters > 0)
            {
                //We have to be careful now, as we are dropping the lock. 
                //No new writes should be allowed to sneak in if an upgrade
                //was pending. 

                _spinLock.Exit();      // Exit before signaling to improve efficiency (wakee will need the lock)
                _waitUpgradeEvent.Set();     // release all upgraders (however there can be at most one).            
            }
            else if (readercount == 0 && _numWriteWaiters > 0)
            {
                // Check if a waiter of the same type has already been signaled but hasn't woken yet. If so, avoid signaling
                // and waking another waiter unnecessarily.
                WaiterStates signaled = _waiterStates & WaiterStates.WriteWaiterSignaled;
                if (signaled == WaiterStates.None)
                {
                    _waiterStates |= WaiterStates.WriteWaiterSignaled;
                }

                _spinLock.Exit();      // Exit before signaling to improve efficiency (wakee will need the lock)

                if (signaled == WaiterStates.None)
                {
                    _writeEvent.Set();   // release one writer. 
                }
            }
            else
            {
                ExitAndWakeUpAppropriateReadWaiters();
            }
        }

        private void ExitAndWakeUpAppropriateReadWaiters()
        {
#if DEBUG
            Debug.Assert(_spinLock.IsHeld);
#endif

            if (_numWriteWaiters != 0 || _numWriteUpgradeWaiters != 0 || HasNoWaiters)
            {
                _spinLock.Exit();
                return;
            }

            Debug.Assert(_numReadWaiters != 0 || _numUpgradeWaiters != 0);

            bool setReadEvent = _numReadWaiters != 0;
            bool setUpgradeEvent = _numUpgradeWaiters != 0 && _upgradeLockOwnerId == -1;
            if (setUpgradeEvent)
            {
                // Check if a waiter of the same type has already been signaled but hasn't woken yet. If so, avoid signaling
                // and waking another waiter unnecessarily.
                if ((_waiterStates & WaiterStates.UpgradeableReadWaiterSignaled) == WaiterStates.None)
                {
                    _waiterStates |= WaiterStates.UpgradeableReadWaiterSignaled;
                }
                else
                {
                    setUpgradeEvent = false;
                }
            }

            _spinLock.Exit();    // Exit before signaling to improve efficiency (wakee will need the lock)

            if (setReadEvent)
                _readEvent.Set();  // release all readers. 

            if (setUpgradeEvent)
                _upgradeEvent.Set(); //release one upgrader.
        }

        private bool IsWriterAcquired()
        {
            return (_owners & ~WAITING_WRITERS) == 0;
        }

        private void SetWriterAcquired()
        {
            _owners |= WRITER_HELD;    // indicate we have a writer.
        }

        private void ClearWriterAcquired()
        {
            _owners &= ~WRITER_HELD;
        }

        private void SetWritersWaiting()
        {
            _owners |= WAITING_WRITERS;
        }

        private void ClearWritersWaiting()
        {
            _owners &= ~WAITING_WRITERS;
        }

        private void SetUpgraderWaiting()
        {
            _owners |= WAITING_UPGRADER;
        }

        private void ClearUpgraderWaiting()
        {
            _owners &= ~WAITING_UPGRADER;
        }

        private uint GetNumReaders()
        {
            return _owners & READER_MASK;
        }

        private bool ShouldSpinForEnterAnyRead()
        {
            // If there is a write waiter or write upgrade waiter, the waiter would block a reader from acquiring the RW lock
            // because the waiter takes precedence. In that case, the reader is not likely to make progress by spinning.
            // Although another thread holding a write lock would prevent this thread from acquiring a read lock, it is by
            // itself not a good enough reason to skip spinning.
            return HasNoWaiters || (_numWriteWaiters == 0 && _numWriteUpgradeWaiters == 0);
        }

        private bool ShouldSpinForEnterAnyWrite(bool isUpgradeToWrite)
        {
            // If there is a write upgrade waiter, the waiter would block a writer from acquiring the RW lock because the waiter
            // holds a read lock. In that case, the writer is not likely to make progress by spinning. Regarding upgrading to a
            // write lock, there is no type of waiter that would block the upgrade from happening. Although another thread
            // holding a read or write lock would prevent this thread from acquiring the write lock, it is by itself not a good
            // enough reason to skip spinning.
            return isUpgradeToWrite || _numWriteUpgradeWaiters == 0;
        }

        private static void SpinWait(int spinCount)
        {
            const int LockSpinCycles = 20;

            //Exponential back-off
            if ((spinCount < 5) && (ProcessorCount > 1))
            {
                RuntimeThread.SpinWait(LockSpinCycles * spinCount);
            }
            else
            {
                RuntimeThread.Sleep(0);
            }

            // Don't want to Sleep(1) in this spin wait:
            //   - Don't want to spin for that long, since a proper wait will follow when the spin wait fails. The artificial
            //     delay introduced by Sleep(1) will in some cases be much longer than desired.
            //   - Sleep(1) would put the thread into a wait state, and a proper wait will follow when the spin wait fails
            //     anyway, so it's preferable to put the thread into the proper wait state
        }

        public void Dispose()
        {
            Dispose(true);
        }

        private void Dispose(bool disposing)
        {
            if (disposing && !_fDisposed)
            {
                if (WaitingReadCount > 0 || WaitingUpgradeCount > 0 || WaitingWriteCount > 0)
                    throw new SynchronizationLockException(SR.SynchronizationLockException_IncorrectDispose);

                if (IsReadLockHeld || IsUpgradeableReadLockHeld || IsWriteLockHeld)
                    throw new SynchronizationLockException(SR.SynchronizationLockException_IncorrectDispose);

                if (_writeEvent != null)
                {
                    _writeEvent.Dispose();
                    _writeEvent = null;
                }

                if (_readEvent != null)
                {
                    _readEvent.Dispose();
                    _readEvent = null;
                }

                if (_upgradeEvent != null)
                {
                    _upgradeEvent.Dispose();
                    _upgradeEvent = null;
                }

                if (_waitUpgradeEvent != null)
                {
                    _waitUpgradeEvent.Dispose();
                    _waitUpgradeEvent = null;
                }

                _fDisposed = true;
            }
        }

        public bool IsReadLockHeld
        {
            get
            {
                if (RecursiveReadCount > 0)
                    return true;
                else
                    return false;
            }
        }

        public bool IsUpgradeableReadLockHeld
        {
            get
            {
                if (RecursiveUpgradeCount > 0)
                    return true;
                else
                    return false;
            }
        }

        public bool IsWriteLockHeld
        {
            get
            {
                if (RecursiveWriteCount > 0)
                    return true;
                else
                    return false;
            }
        }

        public LockRecursionPolicy RecursionPolicy
        {
            get
            {
                if (_fIsReentrant)
                {
                    return LockRecursionPolicy.SupportsRecursion;
                }
                else
                {
                    return LockRecursionPolicy.NoRecursion;
                }
            }
        }

        public int CurrentReadCount
        {
            get
            {
                int numreaders = (int)GetNumReaders();

                if (_upgradeLockOwnerId != -1)
                    return numreaders - 1;
                else
                    return numreaders;
            }
        }


        public int RecursiveReadCount
        {
            get
            {
                int count = 0;
                ReaderWriterCount lrwc = GetThreadRWCount(true);
                if (lrwc != null)
                    count = lrwc.readercount;

                return count;
            }
        }

        public int RecursiveUpgradeCount
        {
            get
            {
                if (_fIsReentrant)
                {
                    int count = 0;

                    ReaderWriterCount lrwc = GetThreadRWCount(true);
                    if (lrwc != null)
                        count = lrwc.upgradecount;

                    return count;
                }
                else
                {
                    if (Environment.CurrentManagedThreadId == _upgradeLockOwnerId)
                        return 1;
                    else
                        return 0;
                }
            }
        }

        public int RecursiveWriteCount
        {
            get
            {
                if (_fIsReentrant)
                {
                    int count = 0;

                    ReaderWriterCount lrwc = GetThreadRWCount(true);
                    if (lrwc != null)
                        count = lrwc.writercount;

                    return count;
                }
                else
                {
                    if (Environment.CurrentManagedThreadId == _writeLockOwnerId)
                        return 1;
                    else
                        return 0;
                }
            }
        }

        public int WaitingReadCount
        {
            get
            {
                return (int)_numReadWaiters;
            }
        }

        public int WaitingUpgradeCount
        {
            get
            {
                return (int)_numUpgradeWaiters;
            }
        }

        public int WaitingWriteCount
        {
            get
            {
                return (int)_numWriteWaiters;
            }
        }

        private struct SpinLock
        {
            private int _isLocked;

            /// <summary>
            /// Used to deprioritize threads attempting to enter the lock when they would not make progress after doing so.
            /// <see cref="EnterSpin(EnterSpinLockReason)"/> avoids acquiring the lock as long as the operation for which it
            /// was called is deprioritized.
            /// 
            /// Layout:
            /// - Low 16 bits: Number of threads that have deprioritized an enter-any-write operation
            /// - High 16 bits: Number of threads that have deprioritized an enter-any-read operation
            /// </summary>
            private int _enterDeprioritizationState;

            // Layout-specific constants for _enterDeprioritizationState
            private const int DeprioritizeEnterAnyReadIncrement = 1 << 16;
            private const int DeprioritizeEnterAnyWriteIncrement = 1;

            // The variables controlling spinning behavior of this spin lock
            private const int LockSpinCycles = 20;
            private const int LockSpinCount = 10;
            private const int LockSleep0Count = 5;
            private const int DeprioritizedLockSleep1Count = 5;

            private static int GetEnterDeprioritizationStateChange(EnterSpinLockReason reason)
            {
                EnterSpinLockReason operation = reason & EnterSpinLockReason.OperationMask;
                switch (operation)
                {
                    case EnterSpinLockReason.EnterAnyRead:
                        return 0;

                    case EnterSpinLockReason.ExitAnyRead:
                        // A read lock is held until this thread is able to exit it, so deprioritize enter-write threads as they
                        // will not be able to make progress
                        return DeprioritizeEnterAnyWriteIncrement;

                    case EnterSpinLockReason.EnterWrite:
                        // Writers are typically much less frequent and much less in number than readers. Waiting writers take
                        // precedence over new read attempts in order to let current readers release their lock and allow a
                        // writer to obtain the lock. Before a writer can register as a waiter though, the presence of just
                        // relatively few enter-read spins can easily starve the enter-write from even entering this lock,
                        // delaying its spin loop for an unreasonable duration.
                        //
                        // Deprioritize enter-read to preference enter-write. This makes it easier for enter-write threads to
                        // starve enter-read threads. However, writers can already by design starve readers. A waiting writer
                        // blocks enter-read threads and a new enter-write that needs to wait will be given precedence over
                        // previously waiting enter-read threads. So this is not a new problem, and the RW lock is designed for
                        // scenarios where writers are rare compared to readers.
                        return DeprioritizeEnterAnyReadIncrement;

                    default:
                        Debug.Assert(
                            operation == EnterSpinLockReason.UpgradeToWrite ||
                            operation == EnterSpinLockReason.EnterRecursiveWrite ||
                            operation == EnterSpinLockReason.ExitAnyWrite);

                        // UpgradeToWrite:
                        // - A read lock is held and an exit-read is not nearby, so deprioritize enter-write threads as they
                        //   will not be able to make progress. This thread also intends to enter a write lock, so deprioritize
                        //   enter -read threads as well, see case EnterSpinLockReason.EnterWrite for the rationale.
                        // EnterRecursiveWrite, ExitAnyWrite:
                        // - In both cases, a write lock is held until this thread is able to exit it, so deprioritize
                        //   enter -read and enter-write threads as they will not be able to make progress
                        return DeprioritizeEnterAnyReadIncrement + DeprioritizeEnterAnyWriteIncrement;
                }
            }

            private ushort EnterForEnterAnyReadDeprioritizedCount
            {
                get
                {
                    Debug.Assert(DeprioritizeEnterAnyReadIncrement == (1 << 16));
                    return (ushort)((uint)_enterDeprioritizationState >> 16);
                }
            }

            private ushort EnterForEnterAnyWriteDeprioritizedCount
            {
                get
                {
                    Debug.Assert(DeprioritizeEnterAnyWriteIncrement == 1);
                    return (ushort)_enterDeprioritizationState;
                }
            }

            private bool IsEnterDeprioritized(EnterSpinLockReason reason)
            {
                Debug.Assert((reason & EnterSpinLockReason.Wait) != 0 || reason == (reason & EnterSpinLockReason.OperationMask));
                Debug.Assert(
                    (reason & EnterSpinLockReason.Wait) == 0 ||
                    (reason & EnterSpinLockReason.OperationMask) == EnterSpinLockReason.EnterAnyRead ||
                    (reason & EnterSpinLockReason.OperationMask) == EnterSpinLockReason.EnterWrite ||
                    (reason & EnterSpinLockReason.OperationMask) == EnterSpinLockReason.UpgradeToWrite);

                switch (reason)
                {
                    default:
                        Debug.Assert(
                            (reason & EnterSpinLockReason.Wait) != 0 ||
                            reason == EnterSpinLockReason.ExitAnyRead ||
                            reason == EnterSpinLockReason.EnterRecursiveWrite ||
                            reason == EnterSpinLockReason.ExitAnyWrite);
                        return false;

                    case EnterSpinLockReason.EnterAnyRead:
                        return EnterForEnterAnyReadDeprioritizedCount != 0;

                    case EnterSpinLockReason.EnterWrite:
                        Debug.Assert((GetEnterDeprioritizationStateChange(reason) & DeprioritizeEnterAnyWriteIncrement) == 0);
                        return EnterForEnterAnyWriteDeprioritizedCount != 0;

                    case EnterSpinLockReason.UpgradeToWrite:
                        Debug.Assert((GetEnterDeprioritizationStateChange(reason) & DeprioritizeEnterAnyWriteIncrement) != 0);
                        return EnterForEnterAnyWriteDeprioritizedCount > 1;
                }
            }

            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            private bool TryEnter()
            {
                return Interlocked.CompareExchange(ref _isLocked, 1, 0) == 0;
            }

            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            public void Enter(EnterSpinLockReason reason)
            {
                if (!TryEnter())
                {
                    EnterSpin(reason);
                }
            }

            private void EnterSpin(EnterSpinLockReason reason)
            {
                int deprioritizationStateChange = GetEnterDeprioritizationStateChange(reason);
                if (deprioritizationStateChange != 0)
                {
                    Interlocked.Add(ref _enterDeprioritizationState, deprioritizationStateChange);
                }

                int processorCount = ProcessorCount;
                for (int spinIndex = 0; ; spinIndex++)
                {
                    if (spinIndex < LockSpinCount && processorCount > 1)
                    {
                        RuntimeThread.SpinWait(LockSpinCycles * (spinIndex + 1)); // Wait a few dozen instructions to let another processor release lock.
                    }
                    else if (spinIndex < (LockSpinCount + LockSleep0Count))
                    {
                        RuntimeThread.Sleep(0);   // Give up my quantum.
                    }
                    else
                    {
                        RuntimeThread.Sleep(1);   // Give up my quantum.
                    }

                    if (!IsEnterDeprioritized(reason))
                    {
                        if (_isLocked == 0 && TryEnter())
                        {
                            if (deprioritizationStateChange != 0)
                            {
                                Interlocked.Add(ref _enterDeprioritizationState, -deprioritizationStateChange);
                            }
                            return;
                        }
                        continue;
                    }

                    // It's possible for an Enter thread to be deprioritized for an extended duration. It's undesirable for a
                    // deprioritized thread to keep waking up to spin despite a Sleep(1) when a large number of such threads are
                    // involved. After a threshold of Sleep(1)s, ignore the deprioritization and enter this lock to allow this
                    // thread to stop spinning and hopefully enter a proper wait state.
                    Debug.Assert(
                        reason == EnterSpinLockReason.EnterAnyRead ||
                        reason == EnterSpinLockReason.EnterWrite ||
                        reason == EnterSpinLockReason.UpgradeToWrite);
                    if (spinIndex >= (LockSpinCount + LockSleep0Count + DeprioritizedLockSleep1Count))
                    {
                        reason |= EnterSpinLockReason.Wait;
                        spinIndex = -1;
                    }
                }
            }

            public void Exit()
            {
                Debug.Assert(_isLocked != 0, "Exiting spin lock that is not held");
                Volatile.Write(ref _isLocked, 0);
            }

#if DEBUG
            public bool IsHeld => _isLocked != 0;
#endif
        }

        [Flags]
        private enum WaiterStates : byte
        {
            None = 0x0,

            // Used for quick check when there are no waiters
            NoWaiters = 0x1,

            // Used to avoid signaling more than one waiter to wake up when only one can make progress, see WaitOnEvent
            WriteWaiterSignaled = 0x2,
            UpgradeableReadWaiterSignaled = 0x4
            // Write upgrade waiters are excluded because there can only be one at any given time
        }

        private enum EnterSpinLockReason
        {
            EnterAnyRead = 0,
            ExitAnyRead = 1,
            EnterWrite = 2,
            UpgradeToWrite = 3,
            EnterRecursiveWrite = 4,
            ExitAnyWrite = 5,

            OperationMask = 0x7,

            Wait = 0x8
        }

        private enum EnterLockType
        {
            Read,
            UpgradeableRead,
            Write,
            UpgradeToWrite
        }
    }
}