Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/mono/mono.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJay Krell <jay.krell@cornell.edu>2018-08-09 08:52:56 +0300
committerGitHub <noreply@github.com>2018-08-09 08:52:56 +0300
commit36956720f7a3e854b467bf6dbd7aedd8d142e1ae (patch)
treefa7c9e5574b264ec18d1630ad455245852bff62c /support
parent14d20074ffb298cc396916328897eac7f5f8c077 (diff)
[cxx] Port complex math to small portable C and C++. (#9821)
* [cxx] Port complex math to small portable C and C++ with the only dependency being hypot and non-complex math, and small preexisting code we already had for msvc. I.e. we already had two versions, with varying portability. Use one of them, adding about three lines to it. There was some debate back and forth about macros/renames here. This version significantly reduces line damage and is much easier to read. Doing the rename as a separate step may still be advisable, to erase any doubt as to portable semantics, i.e. namespace isolation. Mono style divergence is also left unfixed to avoid further line damage. i.e. consider `double_complex` => `MonoComplex`. `mono_double_complex_` => `mono_complex_`.
Diffstat (limited to 'support')
-rw-r--r--support/libm/complex.c26
-rw-r--r--support/libm/complex.h124
-rw-r--r--support/libm/math_private.h770
3 files changed, 6 insertions, 914 deletions
diff --git a/support/libm/complex.c b/support/libm/complex.c
index 18a4f9bb8b6..1eb004dd9af 100644
--- a/support/libm/complex.c
+++ b/support/libm/complex.c
@@ -10,14 +10,9 @@
* ====================================================
*/
-#include <sys/cdefs.h>
-
#include <float.h>
#include <math.h>
-#include "complex.h"
-#include "math_private.h"
-
/*-
* Copyright (c) 2004 Stefan Farfeleder
* All rights reserved.
@@ -46,20 +41,6 @@
* $FreeBSD$
*/
-double
-creal(double complex z)
-{
- return z;
-}
-
-double
-cimag(double complex z)
-{
- const double_complex z1 = { .f = z };
-
- return (IMAGPART(z1));
-}
-
/*
* cabs() wrapper for hypot().
*
@@ -67,8 +48,13 @@ cimag(double complex z)
* Placed into the Public Domain, 1994.
*/
+static inline
double
-cabs(double complex z)
+cabs(double_complex z)
{
+#ifdef _MSC_VER // older versions deprecate hypot
+ return _hypot (creal (z), cimag (z));
+#else
return hypot(creal(z), cimag(z));
+#endif
}
diff --git a/support/libm/complex.h b/support/libm/complex.h
deleted file mode 100644
index 2fc2284d63e..00000000000
--- a/support/libm/complex.h
+++ /dev/null
@@ -1,124 +0,0 @@
-/*-
- * Copyright (c) 2001-2011 The FreeBSD Project.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- *
- * $FreeBSD$
- */
-
-#ifndef _COMPLEX_H
-#define _COMPLEX_H
-
-#include <config.h>
-#include <sys/cdefs.h>
-
-#if HOST_ANDROID && !defined(__pure2)
-/* NDK unified headers don't define __pure2 */
-#define __pure2 __attribute__((__const__))
-#endif
-
-#ifdef __GNUC__
-#if __STDC_VERSION__ < 199901
-#define _Complex __complex__
-#endif
-#define _Complex_I ((float _Complex)1.0i)
-#endif
-
-#ifdef __generic
-_Static_assert(__generic(_Complex_I, float _Complex, 1, 0),
- "_Complex_I must be of type float _Complex");
-#endif
-
-#define complex _Complex
-#define I _Complex_I
-
-#if __ISO_C_VISIBLE >= 2011
-#ifdef __clang__
-#define CMPLX(x, y) ((double complex){ x, y })
-#define CMPLXF(x, y) ((float complex){ x, y })
-#define CMPLXL(x, y) ((long double complex){ x, y })
-#elif __GNUC_PREREQ__(4, 7)
-#define CMPLX(x, y) __builtin_complex((double)(x), (double)(y))
-#define CMPLXF(x, y) __builtin_complex((float)(x), (float)(y))
-#define CMPLXL(x, y) __builtin_complex((long double)(x), (long double)(y))
-#endif
-#endif /* __ISO_C_VISIBLE >= 2011 */
-
-__BEGIN_DECLS
-#pragma GCC visibility push(default)
-
-double cabs(double complex);
-float cabsf(float complex);
-long double cabsl(long double complex);
-double complex cacos(double complex);
-float complex cacosf(float complex);
-double complex cacosh(double complex);
-float complex cacoshf(float complex);
-double carg(double complex);
-float cargf(float complex);
-long double cargl(long double complex);
-double complex casin(double complex);
-float complex casinf(float complex);
-double complex casinh(double complex);
-float complex casinhf(float complex);
-double complex catan(double complex);
-float complex catanf(float complex);
-double complex catanh(double complex);
-float complex catanhf(float complex);
-double complex ccos(double complex);
-float complex ccosf(float complex);
-double complex ccosh(double complex);
-float complex ccoshf(float complex);
-double complex cexp(double complex);
-float complex cexpf(float complex);
-double cimag(double complex) __pure2;
-float cimagf(float complex) __pure2;
-long double cimagl(long double complex) __pure2;
-double complex conj(double complex) __pure2;
-float complex conjf(float complex) __pure2;
-long double complex
- conjl(long double complex) __pure2;
-float complex cprojf(float complex) __pure2;
-double complex cproj(double complex) __pure2;
-long double complex
- cprojl(long double complex) __pure2;
-double creal(double complex) __pure2;
-float crealf(float complex) __pure2;
-long double creall(long double complex) __pure2;
-double complex csin(double complex);
-float complex csinf(float complex);
-double complex csinh(double complex);
-float complex csinhf(float complex);
-double complex csqrt(double complex);
-float complex csqrtf(float complex);
-long double complex
- csqrtl(long double complex);
-double complex ctan(double complex);
-float complex ctanf(float complex);
-double complex ctanh(double complex);
-float complex ctanhf(float complex);
-
-#pragma GCC visibility pop
-__END_DECLS
-
-#endif /* _COMPLEX_H */ \ No newline at end of file
diff --git a/support/libm/math_private.h b/support/libm/math_private.h
deleted file mode 100644
index ddb615e15cd..00000000000
--- a/support/libm/math_private.h
+++ /dev/null
@@ -1,770 +0,0 @@
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
- * from: @(#)fdlibm.h 5.1 93/09/24
- * $FreeBSD$
- */
-
-#ifndef _MATH_PRIVATE_H_
-#define _MATH_PRIVATE_H_
-
-#include <sys/types.h>
-
-#if HAVE_MACHINE_ENDIAN_H
-#include <machine/endian.h>
-#elif HAVE_SYS_ENDIAN_H && HOST_ANDROID
-/* Android unified headers don't have machine/endian.h */
-#include <sys/endian.h>
-#endif
-
-/*
- * The original fdlibm code used statements like:
- * n0 = ((*(int*)&one)>>29)^1; * index of high word *
- * ix0 = *(n0+(int*)&x); * high word of x *
- * ix1 = *((1-n0)+(int*)&x); * low word of x *
- * to dig two 32 bit words out of the 64 bit IEEE floating point
- * value. That is non-ANSI, and, moreover, the gcc instruction
- * scheduler gets it wrong. We instead use the following macros.
- * Unlike the original code, we determine the endianness at compile
- * time, not at run time; I don't see much benefit to selecting
- * endianness at run time.
- */
-
-/*
- * A union which permits us to convert between a double and two 32 bit
- * ints.
- */
-
-#ifdef __arm__
-#if defined(__VFP_FP__) || defined(__ARM_EABI__)
-#define IEEE_WORD_ORDER BYTE_ORDER
-#else
-#define IEEE_WORD_ORDER BIG_ENDIAN
-#endif
-#else /* __arm__ */
-#define IEEE_WORD_ORDER BYTE_ORDER
-#endif
-
-#if IEEE_WORD_ORDER == BIG_ENDIAN
-
-typedef union
-{
- double value;
- struct
- {
- u_int32_t msw;
- u_int32_t lsw;
- } parts;
- struct
- {
- u_int64_t w;
- } xparts;
-} ieee_double_shape_type;
-
-#endif
-
-#if IEEE_WORD_ORDER == LITTLE_ENDIAN
-
-typedef union
-{
- double value;
- struct
- {
- u_int32_t lsw;
- u_int32_t msw;
- } parts;
- struct
- {
- u_int64_t w;
- } xparts;
-} ieee_double_shape_type;
-
-#endif
-
-/* Get two 32 bit ints from a double. */
-
-#define EXTRACT_WORDS(ix0,ix1,d) \
-do { \
- ieee_double_shape_type ew_u; \
- ew_u.value = (d); \
- (ix0) = ew_u.parts.msw; \
- (ix1) = ew_u.parts.lsw; \
-} while (0)
-
-/* Get a 64-bit int from a double. */
-#define EXTRACT_WORD64(ix,d) \
-do { \
- ieee_double_shape_type ew_u; \
- ew_u.value = (d); \
- (ix) = ew_u.xparts.w; \
-} while (0)
-
-/* Get the more significant 32 bit int from a double. */
-
-#define GET_HIGH_WORD(i,d) \
-do { \
- ieee_double_shape_type gh_u; \
- gh_u.value = (d); \
- (i) = gh_u.parts.msw; \
-} while (0)
-
-/* Get the less significant 32 bit int from a double. */
-
-#define GET_LOW_WORD(i,d) \
-do { \
- ieee_double_shape_type gl_u; \
- gl_u.value = (d); \
- (i) = gl_u.parts.lsw; \
-} while (0)
-
-/* Set a double from two 32 bit ints. */
-
-#define INSERT_WORDS(d,ix0,ix1) \
-do { \
- ieee_double_shape_type iw_u; \
- iw_u.parts.msw = (ix0); \
- iw_u.parts.lsw = (ix1); \
- (d) = iw_u.value; \
-} while (0)
-
-/* Set a double from a 64-bit int. */
-#define INSERT_WORD64(d,ix) \
-do { \
- ieee_double_shape_type iw_u; \
- iw_u.xparts.w = (ix); \
- (d) = iw_u.value; \
-} while (0)
-
-/* Set the more significant 32 bits of a double from an int. */
-
-#define SET_HIGH_WORD(d,v) \
-do { \
- ieee_double_shape_type sh_u; \
- sh_u.value = (d); \
- sh_u.parts.msw = (v); \
- (d) = sh_u.value; \
-} while (0)
-
-/* Set the less significant 32 bits of a double from an int. */
-
-#define SET_LOW_WORD(d,v) \
-do { \
- ieee_double_shape_type sl_u; \
- sl_u.value = (d); \
- sl_u.parts.lsw = (v); \
- (d) = sl_u.value; \
-} while (0)
-
-/*
- * A union which permits us to convert between a float and a 32 bit
- * int.
- */
-
-typedef union
-{
- float value;
- /* FIXME: Assumes 32 bit int. */
- unsigned int word;
-} ieee_float_shape_type;
-
-/* Get a 32 bit int from a float. */
-
-#define GET_FLOAT_WORD(i,d) \
-do { \
- ieee_float_shape_type gf_u; \
- gf_u.value = (d); \
- (i) = gf_u.word; \
-} while (0)
-
-/* Set a float from a 32 bit int. */
-
-#define SET_FLOAT_WORD(d,i) \
-do { \
- ieee_float_shape_type sf_u; \
- sf_u.word = (i); \
- (d) = sf_u.value; \
-} while (0)
-
-/*
- * Get expsign and mantissa as 16 bit and 64 bit ints from an 80 bit long
- * double.
- */
-
-#define EXTRACT_LDBL80_WORDS(ix0,ix1,d) \
-do { \
- union IEEEl2bits ew_u; \
- ew_u.e = (d); \
- (ix0) = ew_u.xbits.expsign; \
- (ix1) = ew_u.xbits.man; \
-} while (0)
-
-/*
- * Get expsign and mantissa as one 16 bit and two 64 bit ints from a 128 bit
- * long double.
- */
-
-#define EXTRACT_LDBL128_WORDS(ix0,ix1,ix2,d) \
-do { \
- union IEEEl2bits ew_u; \
- ew_u.e = (d); \
- (ix0) = ew_u.xbits.expsign; \
- (ix1) = ew_u.xbits.manh; \
- (ix2) = ew_u.xbits.manl; \
-} while (0)
-
-/* Get expsign as a 16 bit int from a long double. */
-
-#define GET_LDBL_EXPSIGN(i,d) \
-do { \
- union IEEEl2bits ge_u; \
- ge_u.e = (d); \
- (i) = ge_u.xbits.expsign; \
-} while (0)
-
-/*
- * Set an 80 bit long double from a 16 bit int expsign and a 64 bit int
- * mantissa.
- */
-
-#define INSERT_LDBL80_WORDS(d,ix0,ix1) \
-do { \
- union IEEEl2bits iw_u; \
- iw_u.xbits.expsign = (ix0); \
- iw_u.xbits.man = (ix1); \
- (d) = iw_u.e; \
-} while (0)
-
-/*
- * Set a 128 bit long double from a 16 bit int expsign and two 64 bit ints
- * comprising the mantissa.
- */
-
-#define INSERT_LDBL128_WORDS(d,ix0,ix1,ix2) \
-do { \
- union IEEEl2bits iw_u; \
- iw_u.xbits.expsign = (ix0); \
- iw_u.xbits.manh = (ix1); \
- iw_u.xbits.manl = (ix2); \
- (d) = iw_u.e; \
-} while (0)
-
-/* Set expsign of a long double from a 16 bit int. */
-
-#define SET_LDBL_EXPSIGN(d,v) \
-do { \
- union IEEEl2bits se_u; \
- se_u.e = (d); \
- se_u.xbits.expsign = (v); \
- (d) = se_u.e; \
-} while (0)
-
-#ifdef __i386__
-/* Long double constants are broken on i386. */
-#define LD80C(m, ex, v) { \
- .xbits.man = __CONCAT(m, ULL), \
- .xbits.expsign = (0x3fff + (ex)) | ((v) < 0 ? 0x8000 : 0), \
-}
-#else
-/* The above works on non-i386 too, but we use this to check v. */
-#define LD80C(m, ex, v) { .e = (v), }
-#endif
-
-#ifdef FLT_EVAL_METHOD
-/*
- * Attempt to get strict C99 semantics for assignment with non-C99 compilers.
- */
-#if FLT_EVAL_METHOD == 0 || __GNUC__ == 0
-#define STRICT_ASSIGN(type, lval, rval) ((lval) = (rval))
-#else
-#define STRICT_ASSIGN(type, lval, rval) do { \
- volatile type __lval; \
- \
- if (sizeof(type) >= sizeof(long double)) \
- (lval) = (rval); \
- else { \
- __lval = (rval); \
- (lval) = __lval; \
- } \
-} while (0)
-#endif
-#endif /* FLT_EVAL_METHOD */
-
-/* Support switching the mode to FP_PE if necessary. */
-#if defined(__i386__) && !defined(NO_FPSETPREC)
-#define ENTERI() \
- long double __retval; \
- fp_prec_t __oprec; \
- \
- if ((__oprec = fpgetprec()) != FP_PE) \
- fpsetprec(FP_PE)
-#define RETURNI(x) do { \
- __retval = (x); \
- if (__oprec != FP_PE) \
- fpsetprec(__oprec); \
- RETURNF(__retval); \
-} while (0)
-#else
-#define ENTERI(x)
-#define RETURNI(x) RETURNF(x)
-#endif
-
-/* Default return statement if hack*_t() is not used. */
-#define RETURNF(v) return (v)
-
-/*
- * 2sum gives the same result as 2sumF without requiring |a| >= |b| or
- * a == 0, but is slower.
- */
-#define _2sum(a, b) do { \
- __typeof(a) __s, __w; \
- \
- __w = (a) + (b); \
- __s = __w - (a); \
- (b) = ((a) - (__w - __s)) + ((b) - __s); \
- (a) = __w; \
-} while (0)
-
-/*
- * 2sumF algorithm.
- *
- * "Normalize" the terms in the infinite-precision expression a + b for
- * the sum of 2 floating point values so that b is as small as possible
- * relative to 'a'. (The resulting 'a' is the value of the expression in
- * the same precision as 'a' and the resulting b is the rounding error.)
- * |a| must be >= |b| or 0, b's type must be no larger than 'a's type, and
- * exponent overflow or underflow must not occur. This uses a Theorem of
- * Dekker (1971). See Knuth (1981) 4.2.2 Theorem C. The name "TwoSum"
- * is apparently due to Skewchuk (1997).
- *
- * For this to always work, assignment of a + b to 'a' must not retain any
- * extra precision in a + b. This is required by C standards but broken
- * in many compilers. The brokenness cannot be worked around using
- * STRICT_ASSIGN() like we do elsewhere, since the efficiency of this
- * algorithm would be destroyed by non-null strict assignments. (The
- * compilers are correct to be broken -- the efficiency of all floating
- * point code calculations would be destroyed similarly if they forced the
- * conversions.)
- *
- * Fortunately, a case that works well can usually be arranged by building
- * any extra precision into the type of 'a' -- 'a' should have type float_t,
- * double_t or long double. b's type should be no larger than 'a's type.
- * Callers should use these types with scopes as large as possible, to
- * reduce their own extra-precision and efficiciency problems. In
- * particular, they shouldn't convert back and forth just to call here.
- */
-#ifdef DEBUG
-#define _2sumF(a, b) do { \
- __typeof(a) __w; \
- volatile __typeof(a) __ia, __ib, __r, __vw; \
- \
- __ia = (a); \
- __ib = (b); \
- assert(__ia == 0 || fabsl(__ia) >= fabsl(__ib)); \
- \
- __w = (a) + (b); \
- (b) = ((a) - __w) + (b); \
- (a) = __w; \
- \
- /* The next 2 assertions are weak if (a) is already long double. */ \
- assert((long double)__ia + __ib == (long double)(a) + (b)); \
- __vw = __ia + __ib; \
- __r = __ia - __vw; \
- __r += __ib; \
- assert(__vw == (a) && __r == (b)); \
-} while (0)
-#else /* !DEBUG */
-#define _2sumF(a, b) do { \
- __typeof(a) __w; \
- \
- __w = (a) + (b); \
- (b) = ((a) - __w) + (b); \
- (a) = __w; \
-} while (0)
-#endif /* DEBUG */
-
-/*
- * Set x += c, where x is represented in extra precision as a + b.
- * x must be sufficiently normalized and sufficiently larger than c,
- * and the result is then sufficiently normalized.
- *
- * The details of ordering are that |a| must be >= |c| (so that (a, c)
- * can be normalized without extra work to swap 'a' with c). The details of
- * the normalization are that b must be small relative to the normalized 'a'.
- * Normalization of (a, c) makes the normalized c tiny relative to the
- * normalized a, so b remains small relative to 'a' in the result. However,
- * b need not ever be tiny relative to 'a'. For example, b might be about
- * 2**20 times smaller than 'a' to give about 20 extra bits of precision.
- * That is usually enough, and adding c (which by normalization is about
- * 2**53 times smaller than a) cannot change b significantly. However,
- * cancellation of 'a' with c in normalization of (a, c) may reduce 'a'
- * significantly relative to b. The caller must ensure that significant
- * cancellation doesn't occur, either by having c of the same sign as 'a',
- * or by having |c| a few percent smaller than |a|. Pre-normalization of
- * (a, b) may help.
- *
- * This is is a variant of an algorithm of Kahan (see Knuth (1981) 4.2.2
- * exercise 19). We gain considerable efficiency by requiring the terms to
- * be sufficiently normalized and sufficiently increasing.
- */
-#define _3sumF(a, b, c) do { \
- __typeof(a) __tmp; \
- \
- __tmp = (c); \
- _2sumF(__tmp, (a)); \
- (b) += (a); \
- (a) = __tmp; \
-} while (0)
-
-/*
- * Common routine to process the arguments to nan(), nanf(), and nanl().
- */
-void _scan_nan(uint32_t *__words, int __num_words, const char *__s);
-
-#ifdef _COMPLEX_H
-
-/*
- * C99 specifies that complex numbers have the same representation as
- * an array of two elements, where the first element is the real part
- * and the second element is the imaginary part.
- */
-typedef union {
- float complex f;
- float a[2];
-} float_complex;
-typedef union {
- double complex f;
- double a[2];
-} double_complex;
-typedef union {
- long double complex f;
- long double a[2];
-} long_double_complex;
-#define REALPART(z) ((z).a[0])
-#define IMAGPART(z) ((z).a[1])
-
-/*
- * Inline functions that can be used to construct complex values.
- *
- * The C99 standard intends x+I*y to be used for this, but x+I*y is
- * currently unusable in general since gcc introduces many overflow,
- * underflow, sign and efficiency bugs by rewriting I*y as
- * (0.0+I)*(y+0.0*I) and laboriously computing the full complex product.
- * In particular, I*Inf is corrupted to NaN+I*Inf, and I*-0 is corrupted
- * to -0.0+I*0.0.
- */
-static __inline float complex
-cpackf(float x, float y)
-{
- float_complex z;
-
- REALPART(z) = x;
- IMAGPART(z) = y;
- return (z.f);
-}
-
-static __inline double complex
-cpack(double x, double y)
-{
- double_complex z;
-
- REALPART(z) = x;
- IMAGPART(z) = y;
- return (z.f);
-}
-
-static __inline long double complex
-cpackl(long double x, long double y)
-{
- long_double_complex z;
-
- REALPART(z) = x;
- IMAGPART(z) = y;
- return (z.f);
-}
-#endif /* _COMPLEX_H */
-
-#ifdef __GNUCLIKE_ASM
-
-/* Asm versions of some functions. */
-
-#ifdef __amd64__
-static __inline int
-irint(double x)
-{
- int n;
-
- asm("cvtsd2si %1,%0" : "=r" (n) : "x" (x));
- return (n);
-}
-#define HAVE_EFFICIENT_IRINT
-#endif
-
-#ifdef __i386__
-static __inline int
-irint(double x)
-{
- int n;
-
- asm("fistl %0" : "=m" (n) : "t" (x));
- return (n);
-}
-#define HAVE_EFFICIENT_IRINT
-#endif
-
-#if defined(__amd64__) || defined(__i386__)
-static __inline int
-irintl(long double x)
-{
- int n;
-
- asm("fistl %0" : "=m" (n) : "t" (x));
- return (n);
-}
-#define HAVE_EFFICIENT_IRINTL
-#endif
-
-#endif /* __GNUCLIKE_ASM */
-
-#ifdef DEBUG
-#if defined(__amd64__) || defined(__i386__)
-#define breakpoint() asm("int $3")
-#else
-#include <signal.h>
-
-#define breakpoint() raise(SIGTRAP)
-#endif
-#endif
-
-/* Write a pari script to test things externally. */
-#ifdef DOPRINT
-#include <stdio.h>
-
-#ifndef DOPRINT_SWIZZLE
-#define DOPRINT_SWIZZLE 0
-#endif
-
-#ifdef DOPRINT_LD80
-
-#define DOPRINT_START(xp) do { \
- uint64_t __lx; \
- uint16_t __hx; \
- \
- /* Hack to give more-problematic args. */ \
- EXTRACT_LDBL80_WORDS(__hx, __lx, *xp); \
- __lx ^= DOPRINT_SWIZZLE; \
- INSERT_LDBL80_WORDS(*xp, __hx, __lx); \
- printf("x = %.21Lg; ", (long double)*xp); \
-} while (0)
-#define DOPRINT_END1(v) \
- printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
-#define DOPRINT_END2(hi, lo) \
- printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n", \
- (long double)(hi), (long double)(lo))
-
-#elif defined(DOPRINT_D64)
-
-#define DOPRINT_START(xp) do { \
- uint32_t __hx, __lx; \
- \
- EXTRACT_WORDS(__hx, __lx, *xp); \
- __lx ^= DOPRINT_SWIZZLE; \
- INSERT_WORDS(*xp, __hx, __lx); \
- printf("x = %.21Lg; ", (long double)*xp); \
-} while (0)
-#define DOPRINT_END1(v) \
- printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
-#define DOPRINT_END2(hi, lo) \
- printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n", \
- (long double)(hi), (long double)(lo))
-
-#elif defined(DOPRINT_F32)
-
-#define DOPRINT_START(xp) do { \
- uint32_t __hx; \
- \
- GET_FLOAT_WORD(__hx, *xp); \
- __hx ^= DOPRINT_SWIZZLE; \
- SET_FLOAT_WORD(*xp, __hx); \
- printf("x = %.21Lg; ", (long double)*xp); \
-} while (0)
-#define DOPRINT_END1(v) \
- printf("y = %.21Lg; z = 0; show(x, y, z);\n", (long double)(v))
-#define DOPRINT_END2(hi, lo) \
- printf("y = %.21Lg; z = %.21Lg; show(x, y, z);\n", \
- (long double)(hi), (long double)(lo))
-
-#else /* !DOPRINT_LD80 && !DOPRINT_D64 (LD128 only) */
-
-#ifndef DOPRINT_SWIZZLE_HIGH
-#define DOPRINT_SWIZZLE_HIGH 0
-#endif
-
-#define DOPRINT_START(xp) do { \
- uint64_t __lx, __llx; \
- uint16_t __hx; \
- \
- EXTRACT_LDBL128_WORDS(__hx, __lx, __llx, *xp); \
- __llx ^= DOPRINT_SWIZZLE; \
- __lx ^= DOPRINT_SWIZZLE_HIGH; \
- INSERT_LDBL128_WORDS(*xp, __hx, __lx, __llx); \
- printf("x = %.36Lg; ", (long double)*xp); \
-} while (0)
-#define DOPRINT_END1(v) \
- printf("y = %.36Lg; z = 0; show(x, y, z);\n", (long double)(v))
-#define DOPRINT_END2(hi, lo) \
- printf("y = %.36Lg; z = %.36Lg; show(x, y, z);\n", \
- (long double)(hi), (long double)(lo))
-
-#endif /* DOPRINT_LD80 */
-
-#else /* !DOPRINT */
-#define DOPRINT_START(xp)
-#define DOPRINT_END1(v)
-#define DOPRINT_END2(hi, lo)
-#endif /* DOPRINT */
-
-#define RETURNP(x) do { \
- DOPRINT_END1(x); \
- RETURNF(x); \
-} while (0)
-#define RETURNPI(x) do { \
- DOPRINT_END1(x); \
- RETURNI(x); \
-} while (0)
-#define RETURN2P(x, y) do { \
- DOPRINT_END2((x), (y)); \
- RETURNF((x) + (y)); \
-} while (0)
-#define RETURN2PI(x, y) do { \
- DOPRINT_END2((x), (y)); \
- RETURNI((x) + (y)); \
-} while (0)
-#ifdef STRUCT_RETURN
-#define RETURNSP(rp) do { \
- if (!(rp)->lo_set) \
- RETURNP((rp)->hi); \
- RETURN2P((rp)->hi, (rp)->lo); \
-} while (0)
-#define RETURNSPI(rp) do { \
- if (!(rp)->lo_set) \
- RETURNPI((rp)->hi); \
- RETURN2PI((rp)->hi, (rp)->lo); \
-} while (0)
-#endif
-#define SUM2P(x, y) ({ \
- const __typeof (x) __x = (x); \
- const __typeof (y) __y = (y); \
- \
- DOPRINT_END2(__x, __y); \
- __x + __y; \
-})
-
-/*
- * ieee style elementary functions
- *
- * We rename functions here to improve other sources' diffability
- * against fdlibm.
- */
-#define __ieee754_sqrt sqrt
-#define __ieee754_acos acos
-#define __ieee754_acosh acosh
-#define __ieee754_log log
-#define __ieee754_log2 log2
-#define __ieee754_atanh atanh
-#define __ieee754_asin asin
-#define __ieee754_atan2 atan2
-#define __ieee754_exp exp
-#define __ieee754_cosh cosh
-#define __ieee754_fmod fmod
-#define __ieee754_pow pow
-#define __ieee754_lgamma lgamma
-#define __ieee754_gamma gamma
-#define __ieee754_lgamma_r lgamma_r
-#define __ieee754_gamma_r gamma_r
-#define __ieee754_log10 log10
-#define __ieee754_sinh sinh
-#define __ieee754_hypot hypot
-#define __ieee754_j0 j0
-#define __ieee754_j1 j1
-#define __ieee754_y0 y0
-#define __ieee754_y1 y1
-#define __ieee754_jn jn
-#define __ieee754_yn yn
-#define __ieee754_remainder remainder
-#define __ieee754_scalb scalb
-#define __ieee754_sqrtf sqrtf
-#define __ieee754_acosf acosf
-#define __ieee754_acoshf acoshf
-#define __ieee754_logf logf
-#define __ieee754_atanhf atanhf
-#define __ieee754_asinf asinf
-#define __ieee754_atan2f atan2f
-#define __ieee754_expf expf
-#define __ieee754_coshf coshf
-#define __ieee754_fmodf fmodf
-#define __ieee754_powf powf
-#define __ieee754_lgammaf lgammaf
-#define __ieee754_gammaf gammaf
-#define __ieee754_lgammaf_r lgammaf_r
-#define __ieee754_gammaf_r gammaf_r
-#define __ieee754_log10f log10f
-#define __ieee754_log2f log2f
-#define __ieee754_sinhf sinhf
-#define __ieee754_hypotf hypotf
-#define __ieee754_j0f j0f
-#define __ieee754_j1f j1f
-#define __ieee754_y0f y0f
-#define __ieee754_y1f y1f
-#define __ieee754_jnf jnf
-#define __ieee754_ynf ynf
-#define __ieee754_remainderf remainderf
-#define __ieee754_scalbf scalbf
-
-/* fdlibm kernel function */
-int __kernel_rem_pio2(double*,double*,int,int,int);
-
-/* double precision kernel functions */
-#ifndef INLINE_REM_PIO2
-int __ieee754_rem_pio2(double,double*);
-#endif
-double __kernel_sin(double,double,int);
-double __kernel_cos(double,double);
-double __kernel_tan(double,double,int);
-double __ldexp_exp(double,int);
-#ifdef _COMPLEX_H
-double complex __ldexp_cexp(double complex,int);
-#endif
-
-/* float precision kernel functions */
-#ifndef INLINE_REM_PIO2F
-int __ieee754_rem_pio2f(float,double*);
-#endif
-#ifndef INLINE_KERNEL_SINDF
-float __kernel_sindf(double);
-#endif
-#ifndef INLINE_KERNEL_COSDF
-float __kernel_cosdf(double);
-#endif
-#ifndef INLINE_KERNEL_TANDF
-float __kernel_tandf(double,int);
-#endif
-float __ldexp_expf(float,int);
-#ifdef _COMPLEX_H
-float complex __ldexp_cexpf(float complex,int);
-#endif
-
-/* long double precision kernel functions */
-long double __kernel_sinl(long double, long double, int);
-long double __kernel_cosl(long double, long double);
-long double __kernel_tanl(long double, long double, int);
-
-#endif /* !_MATH_PRIVATE_H_ */ \ No newline at end of file