Welcome to mirror list, hosted at ThFree Co, Russian Federation.

LambdaCompiler.Statements.cs « Compiler « Microsoft.Scripting.Core « Runtime « dlr « class « mcs - github.com/mono/mono.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 7ab065c2d93680a26674b475400c81d1117ccfa9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
/* ****************************************************************************
 *
 * Copyright (c) Microsoft Corporation. 
 *
 * This source code is subject to terms and conditions of the Apache License, Version 2.0. A 
 * copy of the license can be found in the License.html file at the root of this distribution. If 
 * you cannot locate the  Apache License, Version 2.0, please send an email to 
 * dlr@microsoft.com. By using this source code in any fashion, you are agreeing to be bound 
 * by the terms of the Apache License, Version 2.0.
 *
 * You must not remove this notice, or any other, from this software.
 *
 *
 * ***************************************************************************/

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Dynamic.Utils;
using System.Reflection;
using System.Reflection.Emit;
using System.Globalization;

#if !FEATURE_CORE_DLR
namespace Microsoft.Scripting.Ast.Compiler {
#else
namespace System.Linq.Expressions.Compiler {
#endif
    partial class LambdaCompiler {
        private void EmitBlockExpression(Expression expr, CompilationFlags flags) {
            // emit body
            Emit((BlockExpression)expr, UpdateEmitAsTypeFlag(flags, CompilationFlags.EmitAsDefaultType));
        }

        private void Emit(BlockExpression node, CompilationFlags flags) {
            EnterScope(node);

            CompilationFlags emitAs = flags & CompilationFlags.EmitAsTypeMask;

            int count = node.ExpressionCount;
            CompilationFlags tailCall = flags & CompilationFlags.EmitAsTailCallMask;
            for (int index = 0; index < count - 1; index++) {
                var e = node.GetExpression(index);
                var next = node.GetExpression(index + 1);

                if (EmitDebugSymbols) {
                    // No need to emit a clearance if the next expression in the block is also a
                    // DebugInfoExprssion.
                    var debugInfo = e as DebugInfoExpression;
                    if (debugInfo != null && debugInfo.IsClear && next is DebugInfoExpression) {
                        continue;
                    }
                }

                CompilationFlags tailCallFlag;
                if (tailCall != CompilationFlags.EmitAsNoTail) {
                    var g = next as GotoExpression;
                    if (g != null && (g.Value == null || !Significant(g.Value)) && ReferenceLabel(g.Target).CanReturn) {
                        // Since tail call flags are not passed into EmitTryExpression, CanReturn means the goto will be emitted
                        // as Ret. Therefore we can emit the current expression with tail call.
                        tailCallFlag = CompilationFlags.EmitAsTail;
                    } else {
                        // In the middle of the block.
                        // We may do better here by marking it as Tail if the following expressions are not going to emit any IL.
                        tailCallFlag = CompilationFlags.EmitAsMiddle;
                    }
                } else {
                    tailCallFlag = CompilationFlags.EmitAsNoTail;
                }

                flags = UpdateEmitAsTailCallFlag(flags, tailCallFlag);
                EmitExpressionAsVoid(e, flags);
            }

            // if the type of Block it means this is not a Comma
            // so we will force the last expression to emit as void.
            // We don't need EmitAsType flag anymore, should only pass
            // the EmitTailCall field in flags to emitting the last expression.
            if (emitAs == CompilationFlags.EmitAsVoidType || node.Type == typeof(void)) {
                EmitExpressionAsVoid(node.GetExpression(count - 1), tailCall);
            } else {
                EmitExpressionAsType(node.GetExpression(count - 1), node.Type, tailCall);
            }

            ExitScope(node);
        }

        private void EnterScope(object node) {
            if (HasVariables(node) &&
                (_scope.MergedScopes == null || !_scope.MergedScopes.Contains(node))) {

                CompilerScope scope;
                if (!_tree.Scopes.TryGetValue(node, out scope)) {
                    //
                    // Very often, we want to compile nodes as reductions
                    // rather than as IL, but usually they need to allocate
                    // some IL locals. To support this, we allow emitting a
                    // BlockExpression that was not bound by VariableBinder.
                    // This works as long as the variables are only used
                    // locally -- i.e. not closed over.
                    //
                    // User-created blocks will never hit this case; only our
                    // internally reduced nodes will.
                    //
                    scope = new CompilerScope(node, false) { NeedsClosure = _scope.NeedsClosure };
                }

                _scope = scope.Enter(this, _scope);
                Debug.Assert(_scope.Node == node);
            }
        }

        private static bool HasVariables(object node) {
            var block = node as BlockExpression;
            if (block != null) {
                return block.Variables.Count > 0;
            }
            return ((CatchBlock)node).Variable != null;
        }

        private void ExitScope(object node) {
            if (_scope.Node == node) {
                _scope = _scope.Exit();
            }
        }

        private void EmitDefaultExpression(Expression expr) {
            var node = (DefaultExpression)expr;
            if (node.Type != typeof(void)) {
                // emit default(T)
                _ilg.EmitDefault(node.Type);
            }
        }

        private void EmitLoopExpression(Expression expr) {
            LoopExpression node = (LoopExpression)expr;

            PushLabelBlock(LabelScopeKind.Statement);
            LabelInfo breakTarget = DefineLabel(node.BreakLabel);
            LabelInfo continueTarget = DefineLabel(node.ContinueLabel);

            continueTarget.MarkWithEmptyStack();

            EmitExpressionAsVoid(node.Body);

            _ilg.Emit(OpCodes.Br, continueTarget.Label);

            PopLabelBlock(LabelScopeKind.Statement);

            breakTarget.MarkWithEmptyStack();
        }

        #region SwitchExpression

        private void EmitSwitchExpression(Expression expr, CompilationFlags flags) {
            SwitchExpression node = (SwitchExpression)expr;

            // Try to emit it as an IL switch. Works for integer types.
            if (TryEmitSwitchInstruction(node, flags)) {
                return;
            }

            // Try to emit as a hashtable lookup. Works for strings.
            if (TryEmitHashtableSwitch(node, flags)) {
                return;
            }

            //
            // Fall back to a series of tests. We need to IL gen instead of
            // transform the tree to avoid stack overflow on a big switch.
            //

            var switchValue = Expression.Parameter(node.SwitchValue.Type, "switchValue");
            var testValue = Expression.Parameter(GetTestValueType(node), "testValue");
            _scope.AddLocal(this, switchValue);
            _scope.AddLocal(this, testValue);

            EmitExpression(node.SwitchValue);
            _scope.EmitSet(switchValue);

            // Emit tests
            var labels = new Label[node.Cases.Count];
            var isGoto = new bool[node.Cases.Count];
            for (int i = 0, n = node.Cases.Count; i < n; i++) {
                DefineSwitchCaseLabel(node.Cases[i], out labels[i], out isGoto[i]);
                foreach (Expression test in node.Cases[i].TestValues) {
                    // Pull the test out into a temp so it runs on the same
                    // stack as the switch. This simplifies spilling.
                    EmitExpression(test);
                    _scope.EmitSet(testValue);
                    Debug.Assert(TypeUtils.AreReferenceAssignable(testValue.Type, test.Type));
                    EmitExpressionAndBranch(true, Expression.Equal(switchValue, testValue, false, node.Comparison), labels[i]);
                }
            }

            // Define labels
            Label end = _ilg.DefineLabel();
            Label @default = (node.DefaultBody == null) ? end : _ilg.DefineLabel();

            // Emit the case and default bodies
            EmitSwitchCases(node, labels, isGoto, @default, end, flags);
        }

        /// <summary>
        /// Gets the common test test value type of the SwitchExpression.
        /// </summary>
        private static Type GetTestValueType(SwitchExpression node) {
            if (node.Comparison == null) {
                // If we have no comparison, all right side types must be the
                // same.
                return node.Cases[0].TestValues[0].Type;
            }

            // Otherwise, get the type from the method.
            Type result = node.Comparison.GetParametersCached()[1].ParameterType.GetNonRefType();
            if (node.IsLifted) {
                result = TypeUtils.GetNullableType(result);
            }
            return result;
        }

        private sealed class SwitchLabel {
            internal readonly decimal Key;
            internal readonly Label Label;

            // Boxed version of Key, preseving the original type.
            internal readonly object Constant;

            internal SwitchLabel(decimal key, object @constant, Label label) {
                Key = key;
                Constant = @constant;
                Label = label;
            }
        }

        private sealed class SwitchInfo {
            internal readonly SwitchExpression Node;
            internal readonly LocalBuilder Value;
            internal readonly Label Default;
            internal readonly Type Type;
            internal readonly bool IsUnsigned;
            internal readonly bool Is64BitSwitch;

            internal SwitchInfo(SwitchExpression node, LocalBuilder value, Label @default) {
                Node = node;
                Value = value;
                Default = @default;
                Type = Node.SwitchValue.Type;
                IsUnsigned = TypeUtils.IsUnsigned(Type);
                var code = Type.GetTypeCode(Type);
                Is64BitSwitch = code == TypeCode.UInt64 || code == TypeCode.Int64;
            }
        }

        private static bool FitsInBucket(List<SwitchLabel> buckets, decimal key, int count) {
            Debug.Assert(key > buckets[buckets.Count - 1].Key);
            decimal jumpTableSlots = key - buckets[0].Key + 1;
            if (jumpTableSlots > int.MaxValue) {
                return false;
            }
            // density must be > 50%
            return (buckets.Count + count) * 2 > jumpTableSlots;
        }

        private static void MergeBuckets(List<List<SwitchLabel>> buckets) {
            while (buckets.Count > 1) {
                List<SwitchLabel> first = buckets[buckets.Count - 2];
                List<SwitchLabel> second = buckets[buckets.Count - 1];

                if (!FitsInBucket(first, second[second.Count - 1].Key, second.Count)) {
                    return;
                }

                // Merge them
                first.AddRange(second);
                buckets.RemoveAt(buckets.Count - 1);
            }
        }

        // Add key to a new or existing bucket
        private static void AddToBuckets(List<List<SwitchLabel>> buckets, SwitchLabel key) {
            if (buckets.Count > 0) {
                List<SwitchLabel> last = buckets[buckets.Count - 1];
                if (FitsInBucket(last, key.Key, 1)) {
                    last.Add(key);
                    // we might be able to merge now
                    MergeBuckets(buckets);
                    return;
                }
            }
            // else create a new bucket
            buckets.Add(new List<SwitchLabel> { key });
        }

        // Determines if the type is an integer we can switch on.
        private static bool CanOptimizeSwitchType(Type valueType) {
            // enums & char are allowed
            switch (Type.GetTypeCode(valueType)) {
                case TypeCode.Byte:
                case TypeCode.SByte:
                case TypeCode.Char:
                case TypeCode.Int16:
                case TypeCode.Int32:
                case TypeCode.UInt16:
                case TypeCode.UInt32:
                case TypeCode.Int64:
                case TypeCode.UInt64:
                    return true;
                default:
                    return false;
            }
        }

        // Tries to emit switch as a jmp table
        private bool TryEmitSwitchInstruction(SwitchExpression node, CompilationFlags flags) {
            // If we have a comparison, bail
            if (node.Comparison != null) {
                return false;
            }

            // Make sure the switch value type and the right side type
            // are types we can optimize
            Type type = node.SwitchValue.Type;
            if (!CanOptimizeSwitchType(type) ||
                !TypeUtils.AreEquivalent(type, node.Cases[0].TestValues[0].Type)) {
                return false;
            }

            // Make sure all test values are constant, or we can't emit the
            // jump table.
            if (!node.Cases.All(c => c.TestValues.All(t => t is ConstantExpression))) {
                return false;
            }

            //
            // We can emit the optimized switch, let's do it.
            //

            // Build target labels, collect keys.
            var labels = new Label[node.Cases.Count];
            var isGoto = new bool[node.Cases.Count];

            var uniqueKeys = new Set<decimal>();
            var keys = new List<SwitchLabel>();
            for (int i = 0; i < node.Cases.Count; i++) {

                DefineSwitchCaseLabel(node.Cases[i], out labels[i], out isGoto[i]);

                foreach (ConstantExpression test in node.Cases[i].TestValues) {
                    // Guarenteed to work thanks to CanOptimizeSwitchType.
                    //
                    // Use decimal because it can hold Int64 or UInt64 without
                    // precision loss or signed/unsigned conversions.
                    decimal key = ConvertSwitchValue(test.Value);

                    // Only add each key once. If it appears twice, it's
                    // allowed, but can't be reached.
                    if (!uniqueKeys.Contains(key)) {
                        keys.Add(new SwitchLabel(key, test.Value, labels[i]));
                        uniqueKeys.Add(key);
                    }
                }
            }

            // Sort the keys, and group them into buckets.
            keys.Sort((x, y) => Math.Sign(x.Key - y.Key));
            var buckets = new List<List<SwitchLabel>>();
            foreach (var key in keys) {
                AddToBuckets(buckets, key);
            }

            // Emit the switchValue
            LocalBuilder value = GetLocal(node.SwitchValue.Type);
            EmitExpression(node.SwitchValue);
            _ilg.Emit(OpCodes.Stloc, value);

            // Create end label, and default label if needed
            Label end = _ilg.DefineLabel();
            Label @default = (node.DefaultBody == null) ? end : _ilg.DefineLabel();

            // Emit the switch
            var info = new SwitchInfo(node, value, @default);
            EmitSwitchBuckets(info, buckets, 0, buckets.Count - 1);

            // Emit the case bodies and default
            EmitSwitchCases(node, labels, isGoto, @default, end, flags);

            FreeLocal(value);
            return true;
        }

        private static decimal ConvertSwitchValue(object value) {
            if (value is char) {
                return (int)(char)value;
            }
            return Convert.ToDecimal(value, CultureInfo.InvariantCulture);
        }

        /// <summary>
        /// Creates the label for this case.
        /// Optimization: if the body is just a goto, and we can branch
        /// to it, put the goto target directly in the jump table.
        /// </summary>
        private void DefineSwitchCaseLabel(SwitchCase @case, out Label label, out bool isGoto) {
            var jump = @case.Body as GotoExpression;
            // if it's a goto with no value
            if (jump != null && jump.Value == null) {
                // Reference the label from the switch. This will cause us to
                // analyze the jump target and determine if it is safe.
                LabelInfo jumpInfo = ReferenceLabel(jump.Target);

                // If we have are allowed to emit the "branch" opcode, then we
                // can jump directly there from the switch's jump table.
                // (Otherwise, we need to emit the goto later as a "leave".)
                if (jumpInfo.CanBranch) {
                    label = jumpInfo.Label;
                    isGoto = true;
                    return;
                }
            }
            // otherwise, just define a new label
            label = _ilg.DefineLabel();
            isGoto = false;
        }

        private void EmitSwitchCases(SwitchExpression node, Label[] labels, bool[] isGoto, Label @default, Label end, CompilationFlags flags) {
            // Jump to default (to handle the fallthrough case)
            _ilg.Emit(OpCodes.Br, @default);

            // Emit the cases
            for (int i = 0, n = node.Cases.Count; i < n; i++) {
                // If the body is a goto, we already emitted an optimized
                // branch directly to it. No need to emit anything else.
                if (isGoto[i]) {
                    continue;
                }

                _ilg.MarkLabel(labels[i]);
                EmitExpressionAsType(node.Cases[i].Body, node.Type, flags);

                // Last case doesn't need branch
                if (node.DefaultBody != null || i < n - 1) {
                    if ((flags & CompilationFlags.EmitAsTailCallMask) == CompilationFlags.EmitAsTail) {
                        //The switch case is at the tail of the lambda so
                        //it is safe to emit a Ret.
                        _ilg.Emit(OpCodes.Ret);
                    } else {
                        _ilg.Emit(OpCodes.Br, end);
                    }
                }
            }

            // Default value
            if (node.DefaultBody != null) {
                _ilg.MarkLabel(@default);
                EmitExpressionAsType(node.DefaultBody, node.Type, flags);
            }

            _ilg.MarkLabel(end);
        }

        private void EmitSwitchBuckets(SwitchInfo info, List<List<SwitchLabel>> buckets, int first, int last) {
            if (first == last) {
                EmitSwitchBucket(info, buckets[first]);
                return;
            }

            // Split the buckets into two groups, and use an if test to find
            // the right bucket. This ensures we'll only need O(lg(B)) tests
            // where B is the number of buckets
            int mid = (int)(((long)first + last + 1) / 2);

            if (first == mid - 1) {
                EmitSwitchBucket(info, buckets[first]);
            } else {
                // If the first half contains more than one, we need to emit an
                // explicit guard
                Label secondHalf = _ilg.DefineLabel();
                _ilg.Emit(OpCodes.Ldloc, info.Value);
                _ilg.EmitConstant(buckets[mid - 1].Last().Constant);
                _ilg.Emit(info.IsUnsigned ? OpCodes.Bgt_Un : OpCodes.Bgt, secondHalf);
                EmitSwitchBuckets(info, buckets, first, mid - 1);
                _ilg.MarkLabel(secondHalf);
            }

            EmitSwitchBuckets(info, buckets, mid, last);
        }

        private void EmitSwitchBucket(SwitchInfo info, List<SwitchLabel> bucket) {
            // No need for switch if we only have one value
            if (bucket.Count == 1) {
                _ilg.Emit(OpCodes.Ldloc, info.Value);
                _ilg.EmitConstant(bucket[0].Constant);
                _ilg.Emit(OpCodes.Beq, bucket[0].Label);
                return;
            }

            // 
            // If we're switching off of Int64/UInt64, we need more guards here
            // because we'll have to narrow the switch value to an Int32, and
            // we can't do that unless the value is in the right range.
            //
            Label? after = null;
            if (info.Is64BitSwitch) {
                after = _ilg.DefineLabel();
                _ilg.Emit(OpCodes.Ldloc, info.Value);
                _ilg.EmitConstant(bucket.Last().Constant);
                _ilg.Emit(info.IsUnsigned ? OpCodes.Bgt_Un : OpCodes.Bgt, after.Value);
                _ilg.Emit(OpCodes.Ldloc, info.Value);
                _ilg.EmitConstant(bucket[0].Constant);
                _ilg.Emit(info.IsUnsigned ? OpCodes.Blt_Un : OpCodes.Blt, after.Value);
            }

            _ilg.Emit(OpCodes.Ldloc, info.Value);

            // Normalize key
            decimal key = bucket[0].Key;
            if (key != 0) {
                _ilg.EmitConstant(bucket[0].Constant);
                _ilg.Emit(OpCodes.Sub);
            }

            if (info.Is64BitSwitch) {
                _ilg.Emit(OpCodes.Conv_I4);
            }

            // Collect labels
            int len = (int)(bucket[bucket.Count - 1].Key - bucket[0].Key + 1);
            Label[] jmpLabels = new Label[len];

            // Initialize all labels to the default
            int slot = 0;
            foreach (SwitchLabel label in bucket) {
                while (key++ != label.Key) {
                    jmpLabels[slot++] = info.Default;
                }
                jmpLabels[slot++] = label.Label;
            }

            // check we used all keys and filled all slots
            Debug.Assert(key == bucket[bucket.Count - 1].Key + 1);
            Debug.Assert(slot == jmpLabels.Length);

            // Finally, emit the switch instruction
            _ilg.Emit(OpCodes.Switch, jmpLabels);

            if (info.Is64BitSwitch) {
                _ilg.MarkLabel(after.Value);
            }
        }

        private bool TryEmitHashtableSwitch(SwitchExpression node, CompilationFlags flags) {
            // If we have a comparison other than string equality, bail
            if (node.Comparison != typeof(string).GetMethod("op_Equality", BindingFlags.Public | BindingFlags.Static | BindingFlags.ExactBinding, null, new[] { typeof(string), typeof(string) }, null)) {
                return false;
            }

            // All test values must be constant.
            int tests = 0;
            foreach (SwitchCase c in node.Cases) {
                foreach (Expression t in c.TestValues) {
                    if (!(t is ConstantExpression)) {
                        return false;
                    }
                    tests++;
                }
            }

            // Must have >= 7 labels for it to be worth it.
            if (tests < 7) {
                return false;
            }

            // If we're in a DynamicMethod, we could just build the dictionary
            // immediately. But that would cause the two code paths to be more
            // different than they really need to be.
            var initializers = new List<ElementInit>(tests);
            var cases = new List<SwitchCase>(node.Cases.Count);

            int nullCase = -1;
            MethodInfo add = typeof(Dictionary<string, int>).GetMethod("Add", new[] { typeof(string), typeof(int) });
            for (int i = 0, n = node.Cases.Count; i < n; i++) {
                foreach (ConstantExpression t in node.Cases[i].TestValues) {
                    if (t.Value != null) {
                        initializers.Add(Expression.ElementInit(add, t, Expression.Constant(i)));
                    } else {
                        nullCase = i;
                    }
                }
                cases.Add(Expression.SwitchCase(node.Cases[i].Body, Expression.Constant(i)));
            }

            // Create the field to hold the lazily initialized dictionary
            MemberExpression dictField = CreateLazyInitializedField<Dictionary<string, int>>("dictionarySwitch");

            // If we happen to initialize it twice (multithreaded case), it's
            // not the end of the world. The C# compiler does better here by
            // emitting a volatile access to the field.
            Expression dictInit = Expression.Condition(
                Expression.Equal(dictField, Expression.Constant(null, dictField.Type)),
                Expression.Assign(
                    dictField,
                    Expression.ListInit(
                        Expression.New(
                            typeof(Dictionary<string, int>).GetConstructor(new[] { typeof(int) }),
                            Expression.Constant(initializers.Count)
                        ),
                        initializers
                    )
                ),
                dictField
            );

            //
            // Create a tree like:
            //
            // switchValue = switchValueExpression;
            // if (switchValue == null) {
            //     switchIndex = nullCase;
            // } else {
            //     if (_dictField == null) {
            //         _dictField = new Dictionary<string, int>(count) { { ... }, ... };
            //     }
            //     if (!_dictField.TryGetValue(switchValue, out switchIndex)) {
            //         switchIndex = -1;
            //     }
            // }
            // switch (switchIndex) {
            //     case 0: ...
            //     case 1: ...
            //     ...
            //     default:
            // }
            //
            var switchValue = Expression.Variable(typeof(string), "switchValue");
            var switchIndex = Expression.Variable(typeof(int), "switchIndex");
            var reduced = Expression.Block(
                new[] { switchIndex, switchValue },
                Expression.Assign(switchValue, node.SwitchValue),
                Expression.IfThenElse(
                    Expression.Equal(switchValue, Expression.Constant(null, typeof(string))),
                    Expression.Assign(switchIndex, Expression.Constant(nullCase)),
                    Expression.IfThenElse(
                        Expression.Call(dictInit, "TryGetValue", null, switchValue, switchIndex),
                        Expression.Empty(),
                        Expression.Assign(switchIndex, Expression.Constant(-1))
                    )
                ),
                Expression.Switch(node.Type, switchIndex, node.DefaultBody, null, cases)
            );

            EmitExpression(reduced, flags);
            return true;
        }

        #endregion

        private void CheckRethrow() {
            // Rethrow is only valid inside a catch.
            for (LabelScopeInfo j = _labelBlock; j != null; j = j.Parent) {
                if (j.Kind == LabelScopeKind.Catch) {
                    return;
                } else if (j.Kind == LabelScopeKind.Finally) {
                    // Rethrow from inside finally is not verifiable
                    break;
                }
            }
            throw Error.RethrowRequiresCatch();
        }

        #region TryStatement

        private void CheckTry() {
            // Try inside a filter is not verifiable
            for (LabelScopeInfo j = _labelBlock; j != null; j = j.Parent) {
                if (j.Kind == LabelScopeKind.Filter) {
                    throw Error.TryNotAllowedInFilter();
                }
            }
        }

        private void EmitSaveExceptionOrPop(CatchBlock cb) {
            if (cb.Variable != null) {
                // If the variable is present, store the exception
                // in the variable.
                _scope.EmitSet(cb.Variable);
            } else {
                // Otherwise, pop it off the stack.
                _ilg.Emit(OpCodes.Pop);
            }
        }

        private void EmitTryExpression(Expression expr) {
            var node = (TryExpression)expr;

            CheckTry();

            //******************************************************************
            // 1. ENTERING TRY
            //******************************************************************

            PushLabelBlock(LabelScopeKind.Try);
            _ilg.BeginExceptionBlock();

            //******************************************************************
            // 2. Emit the try statement body
            //******************************************************************

            EmitExpression(node.Body);

            Type tryType = expr.Type;
            LocalBuilder value = null;
            if (tryType != typeof(void)) {
                //store the value of the try body
                value = GetLocal(tryType);
                _ilg.Emit(OpCodes.Stloc, value);
            }
            //******************************************************************
            // 3. Emit the catch blocks
            //******************************************************************

            foreach (CatchBlock cb in node.Handlers) {
                PushLabelBlock(LabelScopeKind.Catch);

                // Begin the strongly typed exception block
                if (cb.Filter == null) {
                    _ilg.BeginCatchBlock(cb.Test);
                } else {
                    _ilg.BeginExceptFilterBlock();
                }

                EnterScope(cb);

                EmitCatchStart(cb);

                //
                // Emit the catch block body
                //
                EmitExpression(cb.Body);
                if (tryType != typeof(void)) {
                    //store the value of the catch block body
                    _ilg.Emit(OpCodes.Stloc, value);
                }

                ExitScope(cb);

                PopLabelBlock(LabelScopeKind.Catch);
            }

            //******************************************************************
            // 4. Emit the finally block
            //******************************************************************

            if (node.Finally != null || node.Fault != null) {
                PushLabelBlock(LabelScopeKind.Finally);

                if (node.Finally != null) {
                    _ilg.BeginFinallyBlock();
                } else {
                    _ilg.BeginFaultBlock();
                }

                // Emit the body
                EmitExpressionAsVoid(node.Finally ?? node.Fault);

                _ilg.EndExceptionBlock();
                PopLabelBlock(LabelScopeKind.Finally);
            } else {
                _ilg.EndExceptionBlock();
            }

            if (tryType != typeof(void)) {
                _ilg.Emit(OpCodes.Ldloc, value);
                FreeLocal(value);
            }
            PopLabelBlock(LabelScopeKind.Try);
        }

        /// <summary>
        /// Emits the start of a catch block.  The exception value that is provided by the
        /// CLR is stored in the variable specified by the catch block or popped if no
        /// variable is provided.
        /// </summary>
        private void EmitCatchStart(CatchBlock cb) {
            if (cb.Filter == null) {
                EmitSaveExceptionOrPop(cb);
                return;
            }

            // emit filter block. Filter blocks are untyped so we need to do
            // the type check ourselves.  
            Label endFilter = _ilg.DefineLabel();
            Label rightType = _ilg.DefineLabel();

            // skip if it's not our exception type, but save
            // the exception if it is so it's available to the
            // filter
            _ilg.Emit(OpCodes.Isinst, cb.Test);
            _ilg.Emit(OpCodes.Dup);
            _ilg.Emit(OpCodes.Brtrue, rightType);
            _ilg.Emit(OpCodes.Pop);
            _ilg.Emit(OpCodes.Ldc_I4_0);
            _ilg.Emit(OpCodes.Br, endFilter);

            // it's our type, save it and emit the filter.
            _ilg.MarkLabel(rightType);
            EmitSaveExceptionOrPop(cb);
            PushLabelBlock(LabelScopeKind.Filter);
            EmitExpression(cb.Filter);
            PopLabelBlock(LabelScopeKind.Filter);

            // begin the catch, clear the exception, we've 
            // already saved it
            _ilg.MarkLabel(endFilter);
            _ilg.BeginCatchBlock(null);
            _ilg.Emit(OpCodes.Pop);
        }

        #endregion
    }
}