Welcome to mirror list, hosted at ThFree Co, Russian Federation.

ECDsaCng.cs « Cryptography « Security « System « System.Core « referencesource « class « mcs - github.com/mono/mono.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: b0267ab9983b832e9bd385c318469aa00218336f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
// ==++==
// 
//   Copyright (c) Microsoft Corporation.  All rights reserved.
// 
// ==--==

using System;
using System.Diagnostics;
using System.IO;
using System.Security;
using System.Security.Permissions;
using System.Diagnostics.Contracts;
using Microsoft.Win32.SafeHandles;

namespace System.Security.Cryptography {
    /// <summary>
    ///     Wrapper for NCrypt's implementation of elliptic curve DSA
    /// </summary>
    [System.Security.Permissions.HostProtection(MayLeakOnAbort = true)]
    public sealed class ECDsaCng : ECDsa {
#if MONO
        public ECDsaCng() : this(521) {
        }

        public ECDsaCng(int keySize) {
            throw new NotImplementedException ();
        }

        [SecuritySafeCritical]
        public ECDsaCng(CngKey key) {
            throw new NotImplementedException ();
        }

        public ECDsaCng(ECCurve curve) {
            throw new NotImplementedException ();
        }

        public CngKey Key {
            get {
                throw new NotImplementedException ();
            }

            private set {
                throw new NotImplementedException ();
            }
        }

        public override byte[] SignHash(byte[] hash) {
            throw new NotImplementedException();
        }

        public override bool VerifyHash(byte[] hash, byte[] signature) {
            throw new NotImplementedException();
        }
#else
        private static KeySizes[] s_legalKeySizes = new KeySizes[] { new KeySizes(256, 384, 128), new KeySizes(521, 521, 0) };

        private CngKey m_key;
        private CngAlgorithm m_hashAlgorithm = CngAlgorithm.Sha256;

        //
        // Constructors
        //

        public ECDsaCng() : this(521) {
            Contract.Ensures(LegalKeySizesValue != null);
        }

        public ECDsaCng(int keySize) {
            Contract.Ensures(LegalKeySizesValue != null);

            if (!NCryptNative.NCryptSupported) {
                throw new PlatformNotSupportedException(SR.GetString(SR.Cryptography_PlatformNotSupported));
            }

            LegalKeySizesValue = s_legalKeySizes;
            KeySize = keySize;
        }

        [SecuritySafeCritical]
        public ECDsaCng(CngKey key) {
            Contract.Ensures(LegalKeySizesValue != null);
            Contract.Ensures(m_key != null && IsEccAlgorithmGroup(m_key.AlgorithmGroup));

            if (key == null) {
                throw new ArgumentNullException("key");
            }
            if (!IsEccAlgorithmGroup(key.AlgorithmGroup)) {
                throw new ArgumentException(SR.GetString(SR.Cryptography_ArgECDsaRequiresECDsaKey), "key");
            }

            if (!NCryptNative.NCryptSupported) {
                throw new PlatformNotSupportedException(SR.GetString(SR.Cryptography_PlatformNotSupported));
            }

            LegalKeySizesValue = s_legalKeySizes;

            // Make a copy of the key so that we continue to work if it gets disposed before this algorithm
            //
            // This requires an assert for UnmanagedCode since we'll need to access the raw handles of the key
            // and the handle constructor of CngKey.  The assert is safe since ECDsaCng will never expose the
            // key handles to calling code (without first demanding UnmanagedCode via the Handle property of
            // CngKey).
            //
            // We also need to dispose of the key handle since CngKey.Handle returns a duplicate
            new SecurityPermission(SecurityPermissionFlag.UnmanagedCode).Assert();
            using (SafeNCryptKeyHandle keyHandle = key.Handle) {
                Key = CngKey.Open(keyHandle, key.IsEphemeral ? CngKeyHandleOpenOptions.EphemeralKey : CngKeyHandleOpenOptions.None);
            }
            CodeAccessPermission.RevertAssert();

            // Our LegalKeySizes value stores the values that we encoded as being the correct
            // legal key size limitations for this algorithm, as documented on MSDN.
            //
            // But on a new OS version we might not question if our limit is accurate, or MSDN
            // could have been innacurate to start with.
            //
            // Since the key is already loaded, we know that Windows thought it to be valid;
            // therefore we should set KeySizeValue directly to bypass the LegalKeySizes conformance
            // check.
            //
            // For RSA there are known cases where this change matters. RSACryptoServiceProvider can
            // create a 384-bit RSA key, which we consider too small to be legal. It can also create
            // a 1032-bit RSA key, which we consider illegal because it doesn't match our 64-bit
            // alignment requirement. (In both cases Windows loads it just fine)
            KeySizeValue = m_key.KeySize;
        }

        /// <summary>
        ///     Hash algorithm to use when generating a signature over arbitrary data
        /// </summary>
        public CngAlgorithm HashAlgorithm {
            get {
                Contract.Ensures(Contract.Result<CngAlgorithm>() != null);
                return m_hashAlgorithm;
            }

            set {
                Contract.Ensures(m_hashAlgorithm != null);

                if (value == null) {
                    throw new ArgumentNullException("value");
                }

                m_hashAlgorithm = value;
            }
        }

        /// <summary>
        ///     Key to use for signing
        /// </summary>
        public CngKey Key {
            get {
                Contract.Ensures(Contract.Result<CngKey>() != null);
                Contract.Ensures(IsEccAlgorithmGroup(Contract.Result<CngKey>().AlgorithmGroup));
                Contract.Ensures(m_key != null && IsEccAlgorithmGroup(m_key.AlgorithmGroup));

                // If the size of the key no longer matches our stored value, then we need to replace it with
                // a new key of the correct size.
                if (m_key != null && m_key.KeySize != KeySize) {
                    m_key.Dispose();
                    m_key = null;
                }

                if (m_key == null) {
                    // Map the current key size to a CNG algorithm name
                    CngAlgorithm algorithm = null;
                    switch (KeySize) {
                        case 256:
                            algorithm = CngAlgorithm.ECDsaP256;
                            break;

                        case 384:
                            algorithm = CngAlgorithm.ECDsaP384;
                            break;

                        case 521:
                            algorithm = CngAlgorithm.ECDsaP521;
                            break;

                        default:
                            Debug.Assert(false, "Illegal key size set");
                            break;
                    }

                    m_key = CngKey.Create(algorithm);
                }

                return m_key;
            }

            private set {
                Contract.Requires(value != null);
                Contract.Ensures(m_key != null && IsEccAlgorithmGroup(m_key.AlgorithmGroup));

                if (!IsEccAlgorithmGroup(value.AlgorithmGroup)) {
                    throw new ArgumentException(SR.GetString(SR.Cryptography_ArgECDsaRequiresECDsaKey));
                }

                if (m_key != null) {
                    m_key.Dispose();
                }

                //
                // We do not duplicate the handle because the only time the user has access to the key itself
                // to dispose underneath us is when they construct via the CngKey constructor, which does a
                // copy. Otherwise all key lifetimes are controlled directly by the ECDsaCng class.
                //

                m_key = value;

                // Our LegalKeySizes value stores the values that we encoded as being the correct
                // legal key size limitations for this algorithm, as documented on MSDN.
                //
                // But on a new OS version we might not question if our limit is accurate, or MSDN
                // could have been innacurate to start with.
                //
                // Since the key is already loaded, we know that Windows thought it to be valid;
                // therefore we should set KeySizeValue directly to bypass the LegalKeySizes conformance
                // check.
                //
                // For RSA there are known cases where this change matters. RSACryptoServiceProvider can
                // create a 384-bit RSA key, which we consider too small to be legal. It can also create
                // a 1032-bit RSA key, which we consider illegal because it doesn't match our 64-bit
                // alignment requirement. (In both cases Windows loads it just fine)
                KeySizeValue = m_key.KeySize;
            }
        }

        /// <summary>
        ///     Clean up the algorithm
        /// </summary>
        protected override void Dispose(bool disposing) {
            try {
                if (m_key != null) {
                    m_key.Dispose();
                }
            }
            finally {
                base.Dispose(disposing);
            }
        }

        //
        // XML Import
        //
        // #ECCXMLFormat
        //
        // There is currently not a standard XML format for ECC keys, so we will not implement the default
        // To/FromXmlString so that we're not tied to one format when a standard one does exist. Instead we'll
        // use an overload which allows the user to specify the format they'd like to serialize into.
        //
        // See code:System.Security.Cryptography.Rfc4050KeyFormatter#RFC4050ECKeyFormat for information about
        // the currently supported format.
        //

        public override void FromXmlString(string xmlString) {
            throw new NotImplementedException(SR.GetString(SR.Cryptography_ECXmlSerializationFormatRequired));
        }

        public void FromXmlString(string xml, ECKeyXmlFormat format) {
            if (xml == null) {
                throw new ArgumentNullException("xml");
            }
            if (format != ECKeyXmlFormat.Rfc4050) {
                throw new ArgumentOutOfRangeException("format");
            }

            Key = Rfc4050KeyFormatter.FromXml(xml);
        }

        //
        // Signature generation
        //

        public byte[] SignData(byte[] data) {
            Contract.Ensures(Contract.Result<byte[]>() != null);

            if (data == null) {
                throw new ArgumentNullException("data");
            }

            return SignData(data, 0, data.Length);
        }

        [SecuritySafeCritical]
        public byte[] SignData(byte[] data, int offset, int count) {
            Contract.Ensures(Contract.Result<byte[]>() != null);

            if (data == null) {
                throw new ArgumentNullException("data");
            }
            if (offset < 0 || offset > data.Length) {
                throw new ArgumentOutOfRangeException("offset");
            }
            if (count < 0 || count > data.Length - offset) {
                throw new ArgumentOutOfRangeException("count");
            }

            using (BCryptHashAlgorithm hashAlgorithm = new BCryptHashAlgorithm(HashAlgorithm, BCryptNative.ProviderName.MicrosoftPrimitiveProvider)) {
                hashAlgorithm.HashCore(data, offset, count);
                byte[] hashValue = hashAlgorithm.HashFinal();

                return SignHash(hashValue);
            }
        }

        [SecuritySafeCritical]
        public byte[] SignData(Stream data) {
            Contract.Ensures(Contract.Result<byte[]>() != null);

            if (data == null) {
                throw new ArgumentNullException("data");
            }

            using (BCryptHashAlgorithm hashAlgorithm = new BCryptHashAlgorithm(HashAlgorithm, BCryptNative.ProviderName.MicrosoftPrimitiveProvider)) {
                hashAlgorithm.HashStream(data);
                byte[] hashValue = hashAlgorithm.HashFinal();

                return SignHash(hashValue);
            }
        }

        [SecuritySafeCritical]
        public override byte[] SignHash(byte[] hash) {
            if (hash == null) {
                throw new ArgumentNullException("hash");
            }

            // Make sure we're allowed to sign using this key
            KeyContainerPermission permission = Key.BuildKeyContainerPermission(KeyContainerPermissionFlags.Sign);
            if (permission != null) {
                permission.Demand();
            }

            // Now that know we have permission to use this key for signing, pull the key value out, which
            // will require unmanaged code permission
            new SecurityPermission(SecurityPermissionFlag.UnmanagedCode).Assert();

            // This looks odd, but the key handle is actually a duplicate so we need to dispose it
            using (SafeNCryptKeyHandle keyHandle = Key.Handle) {
                CodeAccessPermission.RevertAssert();

                return NCryptNative.SignHash(keyHandle, hash);
            }
        }

        //
        // XML Export
        //
        // See  code:System.Security.Cryptography.ECDsaCng#ECCXMLFormat and 
        // code:System.Security.Cryptography.Rfc4050KeyFormatter#RFC4050ECKeyFormat for information about
        // XML serialization of elliptic curve keys
        //

        public override string ToXmlString(bool includePrivateParameters) {
            throw new NotImplementedException(SR.GetString(SR.Cryptography_ECXmlSerializationFormatRequired));
        }

        public string ToXmlString(ECKeyXmlFormat format) {
            Contract.Ensures(Contract.Result<string>() != null);

            if (format != ECKeyXmlFormat.Rfc4050) {
                throw new ArgumentOutOfRangeException("format");
            }

            return Rfc4050KeyFormatter.ToXml(Key);
        }

        //
        // Signature verification
        //

        public bool VerifyData(byte[] data, byte[] signature) {
            if (data == null) {
                throw new ArgumentNullException("data");
            }

            return VerifyData(data, 0, data.Length, signature);
        }

        [SecuritySafeCritical]
        public bool VerifyData(byte[] data, int offset, int count, byte[] signature) {
            if (data == null) {
                throw new ArgumentNullException("data");
            }
            if (offset < 0 || offset > data.Length) {
                throw new ArgumentOutOfRangeException("offset");
            }
            if (count < 0 || count > data.Length - offset) {
                throw new ArgumentOutOfRangeException("count");
            }
            if (signature == null) {
                throw new ArgumentNullException("signature");
            }

            using (BCryptHashAlgorithm hashAlgorithm = new BCryptHashAlgorithm(HashAlgorithm, BCryptNative.ProviderName.MicrosoftPrimitiveProvider)) {
                hashAlgorithm.HashCore(data, offset, count);
                byte[] hashValue = hashAlgorithm.HashFinal();

                return VerifyHash(hashValue, signature);
            }
        }

        [SecuritySafeCritical]
        public bool VerifyData(Stream data, byte[] signature) {
            if (data == null) {
                throw new ArgumentNullException("data");
            }
            if (signature == null) {
                throw new ArgumentNullException("signature");
            }

            using (BCryptHashAlgorithm hashAlgorithm = new BCryptHashAlgorithm(HashAlgorithm, BCryptNative.ProviderName.MicrosoftPrimitiveProvider)) {
                hashAlgorithm.HashStream(data);
                byte[] hashValue = hashAlgorithm.HashFinal();

                return VerifyHash(hashValue, signature);
            }
        }

        [SecuritySafeCritical]
        public override bool VerifyHash(byte[] hash, byte[] signature) {
            if (hash == null) {
                throw new ArgumentNullException("hash");
            }
            if (signature == null) {
                throw new ArgumentNullException("signature");
            }

            // We need to get the raw key handle to verify the signature. Asserting here is safe since verifiation
            // is not a protected operation, and we do not expose the handle to the user code.
            new SecurityPermission(SecurityPermissionFlag.UnmanagedCode).Assert();

            // This looks odd, but Key.Handle is really a duplicate so we need to dispose it
            using (SafeNCryptKeyHandle keyHandle = Key.Handle) {
                CodeAccessPermission.RevertAssert();

                return NCryptNative.VerifySignature(keyHandle, hash, signature);
            }
        }

        /// <summary>
        ///     Helper property to get the NCrypt key handle
        /// </summary>
        private SafeNCryptKeyHandle KeyHandle {
            [SecuritySafeCritical]
            get { return Key.Handle; }
        }

        protected override byte[] HashData(byte[] data, int offset, int count, HashAlgorithmName hashAlgorithm) {
            // we're sealed and the base should have checked this before calling us
            Debug.Assert(data != null);
            Debug.Assert(offset >= 0 && offset <= data.Length);
            Debug.Assert(count >= 0 && count <= data.Length - offset);
            Debug.Assert(!String.IsNullOrEmpty(hashAlgorithm.Name));

            using (BCryptHashAlgorithm hasher = new BCryptHashAlgorithm(new CngAlgorithm(hashAlgorithm.Name), BCryptNative.ProviderName.MicrosoftPrimitiveProvider)) {
                hasher.HashCore(data, offset, count);
                return hasher.HashFinal();
            }
        }

        protected override byte[] HashData(Stream data, HashAlgorithmName hashAlgorithm) {
            // we're sealed and the base should have checked this before calling us
            Debug.Assert(data != null);
            Debug.Assert(!String.IsNullOrEmpty(hashAlgorithm.Name));

            using (BCryptHashAlgorithm hasher = new BCryptHashAlgorithm(new CngAlgorithm(hashAlgorithm.Name), BCryptNative.ProviderName.MicrosoftPrimitiveProvider)) {
                hasher.HashStream(data);
                return hasher.HashFinal();
            }
        }

        private static bool IsEccAlgorithmGroup(CngAlgorithmGroup algorithmGroup)
        {
            // Sometimes, when reading from certificates, ECDSA keys get identified as ECDH.
            // Windows allows the ECDH keys to perform both key exchange (ECDH) and signing (ECDSA),
            // so either value is acceptable for the ECDSA wrapper object.
            //
            // It is worth noting, however, that ECDSA-identified keys cannot be used for key exchange (ECDH) in CNG.
            return algorithmGroup == CngAlgorithmGroup.ECDsa || algorithmGroup == CngAlgorithmGroup.ECDiffieHellman;
        }
#endif
    }
}