Welcome to mirror list, hosted at ThFree Co, Russian Federation.

Timer.cs « Observable « Linq « Reactive « System.Reactive.Linq « Source « NET « Rx - github.com/mono/rx.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 14df7578b91d89641a40d4608b6a5777724e27f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
// Copyright (c) Microsoft Open Technologies, Inc. All rights reserved. See License.txt in the project root for license information.

#if !NO_PERF
using System;
using System.Diagnostics;
using System.Reactive.Concurrency;
using System.Reactive.Disposables;
using System.Threading;

namespace System.Reactive.Linq.ObservableImpl
{
    class Timer : Producer<long>
    {
        private readonly DateTimeOffset? _dueTimeA;
        private readonly TimeSpan? _dueTimeR;
        private readonly TimeSpan? _period;
        private readonly IScheduler _scheduler;

        public Timer(DateTimeOffset dueTime, TimeSpan? period, IScheduler scheduler)
        {
            _dueTimeA = dueTime;
            _period = period;
            _scheduler = scheduler;
        }

        public Timer(TimeSpan dueTime, TimeSpan? period, IScheduler scheduler)
        {
            _dueTimeR = dueTime;
            _period = period;
            _scheduler = scheduler;
        }

        protected override IDisposable Run(IObserver<long> observer, IDisposable cancel, Action<IDisposable> setSink)
        {
            if (_period.HasValue)
            {
                var sink = new TimerImpl(this, observer, cancel);
                setSink(sink);
                return sink.Run();
            }
            else
            {
                var sink = new _(this, observer, cancel);
                setSink(sink);
                return sink.Run();
            }
        }

        class _ : Sink<long>
        {
            private readonly Timer _parent;

            public _(Timer parent, IObserver<long> observer, IDisposable cancel)
                : base(observer, cancel)
            {
                _parent = parent;
            }

            public IDisposable Run()
            {
                if (_parent._dueTimeA.HasValue)
                {
                    return _parent._scheduler.Schedule(_parent._dueTimeA.Value, Invoke);
                }
                else
                {
                    return _parent._scheduler.Schedule(_parent._dueTimeR.Value, Invoke);
                }
            }

            private void Invoke()
            {
                base._observer.OnNext(0);
                base._observer.OnCompleted();
                base.Dispose();
            }
        }

        class TimerImpl : Sink<long>
        {
            private readonly Timer _parent;
            private readonly TimeSpan _period;

            public TimerImpl(Timer parent, IObserver<long> observer, IDisposable cancel)
                : base(observer, cancel)
            {
                _parent = parent;
                _period = _parent._period.Value;
            }

            public IDisposable Run()
            {
                if (_parent._dueTimeA.HasValue)
                {
                    var dueTime = _parent._dueTimeA.Value;
                    return _parent._scheduler.Schedule(default(object), dueTime, InvokeStart);
                }
                else
                {
                    var dueTime = _parent._dueTimeR.Value;

                    //
                    // Optimize for the case of Observable.Interval.
                    //
                    if (dueTime == _period)
                    {
                        return _parent._scheduler.SchedulePeriodic(0L, _period, (Func<long, long>)Tick);
                    }

                    return _parent._scheduler.Schedule(default(object), dueTime, InvokeStart);
                }
            }

            //
            // BREAKING CHANGE v2 > v1.x - No more correction for time drift based on absolute time. This
            //                             didn't work for large period values anyway; the fractional
            //                             error exceeded corrections. Also complicated dealing with system
            //                             clock change conditions and caused numerous bugs.
            //
            // - For more precise scheduling, use a custom scheduler that measures TimeSpan values in a
            //   better way, e.g. spinning to make up for the last part of the period. Whether or not the
            //   values of the TimeSpan period match NT time or wall clock time is up to the scheduler.
            //
            // - For more accurate scheduling wrt the system clock, use Generate with DateTimeOffset time
            //   selectors. When the system clock changes, intervals will not be the same as diffs between
            //   consecutive absolute time values. The precision will be low (1s range by default).
            //
            private long Tick(long count)
            {
                base._observer.OnNext(count);
                return unchecked(count + 1);
            }

            private int _pendingTickCount;
            private IDisposable _periodic;

            private IDisposable InvokeStart(IScheduler self, object state)
            {
                //
                // Notice the first call to OnNext will introduce skew if it takes significantly long when
                // using the following naive implementation:
                //
                //    Code:  base._observer.OnNext(0L);
                //           return self.SchedulePeriodicEmulated(1L, _period, (Func<long, long>)Tick);
                //
                // What we're saying here is that Observable.Timer(dueTime, period) is pretty much the same
                // as writing Observable.Timer(dueTime).Concat(Observable.Interval(period)).
                //
                //    Expected:  dueTime
                //                  |
                //                  0--period--1--period--2--period--3--period--4--...
                //                  |
                //                  +-OnNext(0L)-|
                //    
                //    Actual:    dueTime
                //                  |
                //                  0------------#--period--1--period--2--period--3--period--4--...
                //                  |
                //                  +-OnNext(0L)-|
                //
                // Different solutions for this behavior have different problems:
                //
                // 1. Scheduling the periodic job first and using an AsyncLock to serialize the OnNext calls
                //    has the drawback that InvokeStart may never return. This happens when every callback
                //    doesn't meet the period's deadline, hence the periodic job keeps queueing stuff up. In
                //    this case, InvokeStart stays the owner of the AsyncLock and the call to Wait will never
                //    return, thus not allowing any interleaving of work on this scheduler's logical thread.
                //
                // 2. Scheduling the periodic job first and using a (blocking) synchronization primitive to
                //    signal completion of the OnNext(0L) call to the Tick call requires quite a bit of state
                //    and careful handling of the case when OnNext(0L) throws. What's worse is the blocking
                //    behavior inside Tick.
                //
                // In order to avoid blocking behavior, we need a scheme much like SchedulePeriodic emulation
                // where work to dispatch OnNext(n + 1) is delegated to a catch up loop in case OnNext(n) was
                // still running. Because SchedulePeriodic emulation exhibits such behavior in all cases, we
                // only need to deal with the overlap of OnNext(0L) with future periodic OnNext(n) dispatch
                // jobs. In the worst case where every callback takes longer than the deadline implied by the
                // period, the periodic job will just queue up work that's dispatched by the tail-recursive
                // catch up loop. In the best case, all work will be dispatched on the periodic scheduler.
                //

                //
                // We start with one tick pending because we're about to start doing OnNext(0L).
                //
                _pendingTickCount = 1;

                var d = new SingleAssignmentDisposable();
                _periodic = d;
                d.Disposable = self.SchedulePeriodic(1L, _period, (Func<long, long>)Tock);

                try
                {
                    base._observer.OnNext(0L);
                }
                catch (Exception e)
                {
                    d.Dispose();
                    e.Throw();
                }

                //
                // If the periodic scheduling job already ran before we finished dispatching the OnNext(0L)
                // call, we'll find pendingTickCount to be > 1. In this case, we need to catch up by dispatching
                // subsequent calls to OnNext as fast as possible, but without running a loop in order to ensure
                // fair play with the scheduler. So, we run a tail-recursive loop in CatchUp instead.
                //
                if (Interlocked.Decrement(ref _pendingTickCount) > 0)
                {
                    var c = new SingleAssignmentDisposable();
                    c.Disposable = self.Schedule(1L, CatchUp);

                    return new CompositeDisposable(2) { d, c };
                }

                return d;
            }

            private long Tock(long count)
            {
                //
                // Notice the handler for (emulated) periodic scheduling is non-reentrant.
                //
                // When there's no overlap with the OnNext(0L) call, the following code will cycle through
                // pendingTickCount 0 -> 1 -> 0 for the remainder of the timer's execution.
                //
                // If there's overlap with the OnNext(0L) call, pendingTickCount will increase to record
                // the number of catch up OnNext calls required, which will be dispatched by the recursive
                // scheduling loop in CatchUp (which quits when it reaches 0 pending ticks).
                //
                if (Interlocked.Increment(ref _pendingTickCount) == 1)
                {
                    base._observer.OnNext(count);
                    Interlocked.Decrement(ref _pendingTickCount);
                }

                return unchecked(count + 1);
            }

            private void CatchUp(long count, Action<long> recurse)
            {
                try
                {
                    base._observer.OnNext(count);
                }
                catch (Exception e)
                {
                    _periodic.Dispose();
                    e.Throw();
                }

                //
                // We can simply bail out if we decreased the tick count to 0. In that case, the Tock
                // method will take over when it sees the 0 -> 1 transition.
                //
                if (Interlocked.Decrement(ref _pendingTickCount) > 0)
                {
                    recurse(unchecked(count + 1));
                }
            }
        }
    }
}
#endif