Welcome to mirror list, hosted at ThFree Co, Russian Federation.

trainNeuralNetwork.cpp « src - github.com/moses-smt/nplm.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: fa27627f36b97c26f6d0a11367f6d5076f994d47 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
#include <ctime>
#include <cmath>

#include <iostream>
#include <fstream>
#include <vector>
#include <algorithm>

#include <boost/unordered_map.hpp> 
#include <boost/functional.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/random/mersenne_twister.hpp>
#include <boost/algorithm/string/join.hpp>

#include "../3rdparty/Eigen/Dense"
#include "../3rdparty/Eigen/Sparse"
#include "maybe_omp.h"
#include <tclap/CmdLine.h>

#include "model.h"
#include "propagator.h"
#include "param.h"
#include "neuralClasses.h"
#include "graphClasses.h"
#include "util.h"
#include "multinomial.h"
//#include "gradientCheck.h"

//#define EIGEN_DONT_PARALLELIZE

using namespace std;
using namespace TCLAP;
using namespace Eigen;
using namespace boost;
using namespace boost::random;

using namespace nplm;

typedef unordered_map<Matrix<int,Dynamic,1>, double> vector_map;

typedef long long int data_size_t; // training data can easily exceed 2G instances

int main(int argc, char** argv)
{ 
    param myParam;
    try {
      // program options //
      CmdLine cmd("Trains a two-layer neural probabilistic language model.", ' ' , "0.1");

      // The options are printed in reverse order

      ValueArg<string> unigram_probs_file("", "unigram_probs_file", "Unigram model (deprecated and ignored)." , false, "", "string", cmd);

      ValueArg<int> num_threads("", "num_threads", "Number of threads. Default: maximum.", false, 0, "int", cmd);

      ValueArg<double> final_momentum("", "final_momentum", "Final value of momentum. Default: 0.9.", false, 0.9, "double", cmd);
      ValueArg<double> initial_momentum("", "initial_momentum", "Initial value of momentum. Default: 0.9.", false, 0.9, "double", cmd);
      ValueArg<bool> use_momentum("", "use_momentum", "Use momentum (hidden layer weights only). 1 = yes, 0 = no. Default: 0.", false, 0, "bool", cmd);

      ValueArg<double> normalization_init("", "normalization_init", "Initial normalization parameter. Default: 0.", false, 0.0, "double", cmd);
      ValueArg<bool> normalization("", "normalization", "Learn individual normalization factors during training. 1 = yes, 0 = no. Default: 0.", false, 0, "bool", cmd);

      ValueArg<int> num_noise_samples("", "num_noise_samples", "Number of noise samples for noise-contrastive estimation. Default: 25.", false, 25, "int", cmd);

      ValueArg<double> L2_reg("", "L2_reg", "L2 regularization strength (hidden layer weights only). Default: 0.", false, 0.0, "double", cmd);

      ValueArg<double> learning_rate("", "learning_rate", "Learning rate for stochastic gradient ascent. Default: 0.01.", false, 0.01, "double", cmd);

      ValueArg<int> validation_minibatch_size("", "validation_minibatch_size", "Minibatch size for validation. Default: 64.", false, 64, "int", cmd);
      ValueArg<int> minibatch_size("", "minibatch_size", "Minibatch size (for training). Default: 64.", false, 64, "int", cmd);

      ValueArg<int> num_epochs("", "num_epochs", "Number of epochs. Default: 10.", false, 10, "int", cmd);

      ValueArg<double> init_range("", "init_range", "Maximum (of uniform) or standard deviation (of normal) for initialization. Default: 0.01", false, 0.01, "double", cmd);
      ValueArg<bool> init_normal("", "init_normal", "Initialize parameters from a normal distribution. 1 = normal, 0 = uniform. Default: 0.", false, 0, "bool", cmd);

      ValueArg<string> loss_function("", "loss_function", "Loss function (log, nce). Default: nce.", false, "nce", "string", cmd);
      ValueArg<string> activation_function("", "activation_function", "Activation function (identity, rectifier, tanh, hardtanh). Default: rectifier.", false, "rectifier", "string", cmd);
      ValueArg<int> num_hidden("", "num_hidden", "Number of hidden nodes. Default: 100.", false, 100, "int", cmd);

      ValueArg<bool> share_embeddings("", "share_embeddings", "Share input and output embeddings. 1 = yes, 0 = no. Default: 0.", false, 0, "bool", cmd);
      ValueArg<int> output_embedding_dimension("", "output_embedding_dimension", "Number of output embedding dimensions. Default: 50.", false, 50, "int", cmd);
      ValueArg<int> input_embedding_dimension("", "input_embedding_dimension", "Number of input embedding dimensions. Default: 50.", false, 50, "int", cmd);
      ValueArg<int> embedding_dimension("", "embedding_dimension", "Number of input and output embedding dimensions. Default: none.", false, -1, "int", cmd);

      ValueArg<int> vocab_size("", "vocab_size", "Vocabulary size. Default: auto.", false, 0, "int", cmd);
      ValueArg<int> input_vocab_size("", "input_vocab_size", "Vocabulary size. Default: auto.", false, 0, "int", cmd);
      ValueArg<int> output_vocab_size("", "output_vocab_size", "Vocabulary size. Default: auto.", false, 0, "int", cmd);
      ValueArg<int> ngram_size("", "ngram_size", "Size of n-grams. Default: auto.", false, 0, "int", cmd);

      ValueArg<string> model_prefix("", "model_prefix", "Prefix for output model files." , false, "", "string", cmd);
      ValueArg<string> words_file("", "words_file", "Vocabulary." , false, "", "string", cmd);
      ValueArg<string> input_words_file("", "input_words_file", "Vocabulary." , false, "", "string", cmd);
      ValueArg<string> output_words_file("", "output_words_file", "Vocabulary." , false, "", "string", cmd);
      ValueArg<string> validation_file("", "validation_file", "Validation data (one numberized example per line)." , false, "", "string", cmd);
      ValueArg<string> train_file("", "train_file", "Training data (one numberized example per line)." , true, "", "string", cmd);

      cmd.parse(argc, argv);

      // define program parameters //
      myParam.train_file = train_file.getValue();
      myParam.validation_file = validation_file.getValue();
      myParam.input_words_file = input_words_file.getValue();
      myParam.output_words_file = output_words_file.getValue();
      if (words_file.getValue() != "")
	  myParam.input_words_file = myParam.output_words_file = words_file.getValue();

      myParam.model_prefix = model_prefix.getValue();

      myParam.ngram_size = ngram_size.getValue();
      myParam.vocab_size = vocab_size.getValue();
      myParam.input_vocab_size = input_vocab_size.getValue();
      myParam.output_vocab_size = output_vocab_size.getValue();
      if (vocab_size.getValue() >= 0)
	  myParam.input_vocab_size = myParam.output_vocab_size = vocab_size.getValue();

      myParam.num_hidden = num_hidden.getValue();
      myParam.activation_function = activation_function.getValue();
      myParam.loss_function = loss_function.getValue();

      myParam.num_threads = num_threads.getValue();

      myParam.num_noise_samples = num_noise_samples.getValue();

      myParam.input_embedding_dimension = input_embedding_dimension.getValue();
      myParam.output_embedding_dimension = output_embedding_dimension.getValue();
      if (embedding_dimension.getValue() >= 0)
	      myParam.input_embedding_dimension = myParam.output_embedding_dimension = embedding_dimension.getValue();

      myParam.minibatch_size = minibatch_size.getValue();
      myParam.validation_minibatch_size = validation_minibatch_size.getValue();
      myParam.num_epochs= num_epochs.getValue();
      myParam.learning_rate = learning_rate.getValue();
      myParam.use_momentum = use_momentum.getValue();
      myParam.share_embeddings = share_embeddings.getValue();
      myParam.normalization = normalization.getValue();
      myParam.initial_momentum = initial_momentum.getValue();
      myParam.final_momentum = final_momentum.getValue();
      myParam.L2_reg = L2_reg.getValue();
      myParam.init_normal= init_normal.getValue();
      myParam.init_range = init_range.getValue();
      myParam.normalization_init = normalization_init.getValue();

      cerr << "Command line: " << endl;
      cerr << boost::algorithm::join(vector<string>(argv, argv+argc), " ") << endl;

      const string sep(" Value: ");
      cerr << train_file.getDescription() << sep << train_file.getValue() << endl;
      cerr << validation_file.getDescription() << sep << validation_file.getValue() << endl;
      cerr << input_words_file.getDescription() << sep << input_words_file.getValue() << endl;
      cerr << output_words_file.getDescription() << sep << output_words_file.getValue() << endl;
      cerr << model_prefix.getDescription() << sep << model_prefix.getValue() << endl;

      cerr << ngram_size.getDescription() << sep << ngram_size.getValue() << endl;
      cerr << input_vocab_size.getDescription() << sep << input_vocab_size.getValue() << endl;
      cerr << output_vocab_size.getDescription() << sep << output_vocab_size.getValue() << endl;

      if (embedding_dimension.getValue() >= 0)
      {
	  cerr << embedding_dimension.getDescription() << sep << embedding_dimension.getValue() << endl;
      }
      else
      {
	  cerr << input_embedding_dimension.getDescription() << sep << input_embedding_dimension.getValue() << endl;
	  cerr << output_embedding_dimension.getDescription() << sep << output_embedding_dimension.getValue() << endl;
      }
      cerr << share_embeddings.getDescription() << sep << share_embeddings.getValue() << endl;
      if (share_embeddings.getValue() && input_embedding_dimension.getValue() != output_embedding_dimension.getValue())
      {
	  cerr << "error: sharing input and output embeddings requires that input and output embeddings have same dimension" << endl;
	  exit(1);
      }

      cerr << num_hidden.getDescription() << sep << num_hidden.getValue() << endl;

      if (string_to_activation_function(activation_function.getValue()) == InvalidFunction)
      {
	 cerr << "error: invalid activation function: " << activation_function.getValue() << endl;
	  exit(1);
      }
      cerr << activation_function.getDescription() << sep << activation_function.getValue() << endl;

      if (string_to_loss_function(loss_function.getValue()) == InvalidLoss)
      {
	 cerr << "error: invalid loss function: " << loss_function.getValue() << endl;
	  exit(1);
      }
      cerr << loss_function.getDescription() << sep << loss_function.getValue() << endl;

      cerr << init_normal.getDescription() << sep << init_normal.getValue() << endl;
      cerr << init_range.getDescription() << sep << init_range.getValue() << endl;

      cerr << num_epochs.getDescription() << sep << num_epochs.getValue() << endl;
      cerr << minibatch_size.getDescription() << sep << minibatch_size.getValue() << endl;
      if (myParam.validation_file != "")
	  cerr << validation_minibatch_size.getDescription() << sep << validation_minibatch_size.getValue() << endl;
      cerr << learning_rate.getDescription() << sep << learning_rate.getValue() << endl;
      cerr << L2_reg.getDescription() << sep << L2_reg.getValue() << endl;

      cerr << num_noise_samples.getDescription() << sep << num_noise_samples.getValue() << endl;

      cerr << normalization.getDescription() << sep << normalization.getValue() << endl;
      if (myParam.normalization)
	  cerr << normalization_init.getDescription() << sep << normalization_init.getValue() << endl;

      cerr << use_momentum.getDescription() << sep << use_momentum.getValue() << endl;
      if (myParam.use_momentum)
      {
	  cerr << initial_momentum.getDescription() << sep << initial_momentum.getValue() << endl;
	  cerr << final_momentum.getDescription() << sep << final_momentum.getValue() << endl;
      }

      cerr << num_threads.getDescription() << sep << num_threads.getValue() << endl;

      if (unigram_probs_file.getValue() != "")
      {
	  cerr << "Note: --unigram_probs_file is deprecated and ignored." << endl;
      }
    }
    catch (TCLAP::ArgException &e)
    {
      cerr << "error: " << e.error() <<  " for arg " << e.argId() << endl;
      exit(1);
    }

    myParam.num_threads = setup_threads(myParam.num_threads);
    int save_threads;

    //unsigned seed = std::time(0);
    unsigned seed = 1234; //for testing only
    mt19937 rng(seed);

    /////////////////////////READING IN THE TRAINING AND VALIDATION DATA///////////////////
    /////////////////////////////////////////////////////////////////////////////////////

    // Read training data
    vector<int> training_data_flat;
    readDataFile(myParam.train_file, myParam.ngram_size, training_data_flat, myParam.minibatch_size);
    data_size_t training_data_size = training_data_flat.size() / myParam.ngram_size;
    cerr << "Number of training instances: "<< training_data_size << endl;

    Map< Matrix<int,Dynamic,Dynamic> > training_data(training_data_flat.data(), myParam.ngram_size, training_data_size);

    // If neither --input_vocab_size nor --input_words_file is given, set input_vocab_size to the maximum word index
    if (myParam.input_vocab_size == 0 and myParam.input_words_file == "")
    {
        myParam.input_vocab_size = training_data.topRows(myParam.ngram_size-1).maxCoeff()+1;
    }

    // If neither --output_vocab_size nor --output_words_file is given, set output_vocab_size to the maximum word index
    if (myParam.output_vocab_size == 0 and myParam.words_file == "")
    {
        myParam.output_vocab_size = training_data.row(myParam.ngram_size-1).maxCoeff()+1;
    }

    // Randomly shuffle training data to improve learning
    for (data_size_t i=training_data_size-1; i>0; i--)
    {
        data_size_t j = boost::random::uniform_int_distribution<data_size_t>(0, i-1)(rng);
	training_data.col(i).swap(training_data.col(j));
    }

    // Read validation data
    vector<int> validation_data_flat;
    int validation_data_size = 0;
    
    if (myParam.validation_file != "")
    {
	readDataFile(myParam.validation_file, myParam.ngram_size, validation_data_flat);
	validation_data_size = validation_data_flat.size() / myParam.ngram_size;
	cerr << "Number of validation instances: " << validation_data_size << endl;
    }

    Map< Matrix<int,Dynamic,Dynamic> > validation_data(validation_data_flat.data(), myParam.ngram_size, validation_data_size);

    ///// Read in vocabulary file. We don't actually use it; it just gets reproduced in the output file

    vector<string> input_words;
    if (myParam.input_words_file != "")
    {
        readWordsFile(myParam.input_words_file, input_words);
	if (myParam.input_vocab_size == 0)
	    myParam.input_vocab_size = input_words.size();
    }

    vector<string> output_words;
    if (myParam.output_words_file != "")
    {
        readWordsFile(myParam.output_words_file, output_words);
	if (myParam.output_vocab_size == 0)
	    myParam.output_vocab_size = output_words.size();
    }

    ///// Construct unigram model and sampler that will be used for NCE

    vector<data_size_t> unigram_counts(myParam.output_vocab_size);
    for (data_size_t train_id=0; train_id < training_data_size; train_id++)
    {
        int output_word = training_data(myParam.ngram_size-1, train_id);
	unigram_counts[output_word] += 1;
    }
    multinomial<data_size_t> unigram (unigram_counts);

    ///// Create and initialize the neural network and associated propagators.

    model nn(myParam.ngram_size,
        myParam.input_vocab_size,
        myParam.output_vocab_size,
        myParam.input_embedding_dimension,
	      myParam.num_hidden,
        myParam.output_embedding_dimension,
        myParam.share_embeddings);

    nn.initialize(rng, myParam.init_normal, myParam.init_range, -log(myParam.output_vocab_size));
    nn.set_activation_function(string_to_activation_function(myParam.activation_function));
    loss_function_type loss_function = string_to_loss_function(myParam.loss_function);

    propagator prop(nn, myParam.minibatch_size);
    propagator prop_validation(nn, myParam.validation_minibatch_size);
    SoftmaxNCELoss<multinomial<data_size_t> > softmax_loss(unigram);
    // normalization parameters
    vector_map c_h, c_h_running_gradient;
    
    ///////////////////////TRAINING THE NEURAL NETWORK////////////////////////////////////
    /////////////////////////////////////////////////////////////////////////////////////

    data_size_t num_batches = (training_data_size-1)/myParam.minibatch_size + 1;
    cerr<<"Number of training minibatches: "<<num_batches<<endl;

    int num_validation_batches = 0;
    if (validation_data_size > 0)
    {
        num_validation_batches = (validation_data_size-1)/myParam.validation_minibatch_size+1;
	cerr<<"Number of validation minibatches: "<<num_validation_batches<<endl;
    } 

    double current_momentum = myParam.initial_momentum;
    double momentum_delta = (myParam.final_momentum - myParam.initial_momentum)/(myParam.num_epochs-1);
    double current_learning_rate = myParam.learning_rate;
    double current_validation_ll = 0.0;

    int ngram_size = myParam.ngram_size;
    int input_vocab_size = myParam.input_vocab_size;
    int output_vocab_size = myParam.output_vocab_size;
    int minibatch_size = myParam.minibatch_size;
    int validation_minibatch_size = myParam.validation_minibatch_size;
    int num_noise_samples = myParam.num_noise_samples;

    if (myParam.normalization)
    {
	for (data_size_t i=0;i<training_data_size;i++)
	{
	    Matrix<int,Dynamic,1> context = training_data.block(0,i,ngram_size-1,1);
	    if (c_h.find(context) == c_h.end())
	    {
	        c_h[context] = -myParam.normalization_init;
	    }
	}
    }

    for (int epoch=0; epoch<myParam.num_epochs; epoch++)
    { 
        cerr << "Epoch " << epoch+1 << endl;
        cerr << "Current learning rate: " << current_learning_rate << endl;

        if (myParam.use_momentum) 
	    cerr << "Current momentum: " << current_momentum << endl;
	else
            current_momentum = -1;

	cerr << "Training minibatches: ";

	double log_likelihood = 0.0;

	int num_samples = 0;
	if (loss_function == LogLoss)
	    num_samples = output_vocab_size;
	else if (loss_function == NCELoss)
	    num_samples = 1+num_noise_samples;

	Matrix<double,Dynamic,Dynamic> minibatch_weights(num_samples, minibatch_size);
	Matrix<int,Dynamic,Dynamic> minibatch_samples(num_samples, minibatch_size);
	Matrix<double,Dynamic,Dynamic> scores(num_samples, minibatch_size);
	Matrix<double,Dynamic,Dynamic> probs(num_samples, minibatch_size);

        for(data_size_t batch=0;batch<num_batches;batch++)
        {
            if (batch > 0 && batch % 10000 == 0)
            {
	        cerr << batch <<"...";
            } 

            data_size_t minibatch_start_index = minibatch_size * batch;
            int current_minibatch_size = min(static_cast<data_size_t>(minibatch_size), training_data_size - minibatch_start_index);
	    Matrix<int,Dynamic,Dynamic> minibatch = training_data.middleCols(minibatch_start_index, current_minibatch_size);

            double adjusted_learning_rate = current_learning_rate/current_minibatch_size;
            //cerr<<"Adjusted learning rate: "<<adjusted_learning_rate<<endl;

            /*
            if (batch == rand() % num_batches)
            {
                cerr<<"we are checking the gradient in batch "<<batch<<endl;
                /////////////////////////CHECKING GRADIENTS////////////////////////////////////////
                gradientChecking(myParam,minibatch_start_index,current_minibatch_size,word_nodes,context_nodes,hidden_layer_node,hidden_layer_to_output_node,
                              shuffled_training_data,c_h,unif_real_vector,eng_real_vector,unif_int_vector,eng_int_vector,unigram_probs_vector,
                              q_vector,J_vector,D_prime);
            }
            */

            ///// Forward propagation

            prop.fProp(minibatch.topRows(ngram_size-1));

	    if (loss_function == NCELoss)
	    {
	        ///// Noise-contrastive estimation

	        // Generate noise samples. Gather positive and negative samples into matrix.

	        start_timer(3);

		minibatch_samples.block(0, 0, 1, current_minibatch_size) = minibatch.bottomRows(1);
		
		for (int sample_id = 1; sample_id < num_noise_samples+1; sample_id++)
		    for (int train_id = 0; train_id < current_minibatch_size; train_id++)
		        minibatch_samples(sample_id, train_id) = unigram.sample(rng);
	    
		stop_timer(3);

		// Final forward propagation step (sparse)
		start_timer(4);
		prop.output_layer_node.param->fProp(prop.second_hidden_activation_node.fProp_matrix,
						    minibatch_samples, scores);
		stop_timer(4);

		// Apply normalization parameters
		if (myParam.normalization)
		{
		    for (int train_id = 0;train_id < current_minibatch_size;train_id++)
		    {
			Matrix<int,Dynamic,1> context = minibatch.block(0, train_id, ngram_size-1, 1);
			scores.col(train_id).array() += c_h[context];
		    }
		}

		double minibatch_log_likelihood;
		start_timer(5);
		softmax_loss.fProp(scores.leftCols(current_minibatch_size), 
				   minibatch_samples,
				   probs, minibatch_log_likelihood);
		stop_timer(5);
		log_likelihood += minibatch_log_likelihood;

		///// Backward propagation

		start_timer(6);
		softmax_loss.bProp(probs, minibatch_weights);
		stop_timer(6);
		
		// Update the normalization parameters
		
		if (myParam.normalization)
		{
		    for (int train_id = 0;train_id < current_minibatch_size;train_id++)
		    {
			Matrix<int,Dynamic,1> context = minibatch.block(0, train_id, ngram_size-1, 1);
			c_h[context] += adjusted_learning_rate * minibatch_weights.col(train_id).sum();
		    }
		}

		// Be careful of short minibatch
		prop.bProp(minibatch.topRows(ngram_size-1),
			   minibatch_samples.leftCols(current_minibatch_size), 
			   minibatch_weights.leftCols(current_minibatch_size),
			   adjusted_learning_rate, current_momentum, myParam.L2_reg);
	    }
	    else if (loss_function == LogLoss)
	    {
	        ///// Standard log-likelihood
	        start_timer(4);
		prop.output_layer_node.param->fProp(prop.second_hidden_activation_node.fProp_matrix, scores);
		stop_timer(4);

		double minibatch_log_likelihood;
		start_timer(5);
		SoftmaxLogLoss().fProp(scores.leftCols(current_minibatch_size), 
				       minibatch.row(ngram_size-1), 
				       probs, 
				       minibatch_log_likelihood);
		stop_timer(5);
		log_likelihood += minibatch_log_likelihood;

		///// Backward propagation
		
		start_timer(6);
		SoftmaxLogLoss().bProp(minibatch.row(ngram_size-1).leftCols(current_minibatch_size), 
				       probs.leftCols(current_minibatch_size), 
				       minibatch_weights);
		stop_timer(6);
		
		prop.bProp(minibatch.topRows(ngram_size-1).leftCols(current_minibatch_size),
			   minibatch_weights,
			   adjusted_learning_rate, current_momentum, myParam.L2_reg);
	    }
        }
	cerr << "done." << endl;

	if (loss_function == LogLoss)
	{
	    cerr << "Training log-likelihood: " << log_likelihood << endl;
            cerr << "         perplexity:     "<< exp(-log_likelihood/training_data_size) << endl;
	}
	else if (loss_function == NCELoss)
	    cerr << "Training NCE log-likelihood: " << log_likelihood << endl;

        current_momentum += momentum_delta;

	#ifdef USE_CHRONO
	cerr << "Propagation times:";
	for (int i=0; i<timer.size(); i++)
	  cerr << " " << timer.get(i);
	cerr << endl;
	#endif

	if (myParam.model_prefix != "")
	{
	    cerr << "Writing model" << endl;
	    if (myParam.input_words_file != "")
	        nn.write(myParam.model_prefix + "." + lexical_cast<string>(epoch+1), input_words, output_words);
	    else
	        nn.write(myParam.model_prefix + "." + lexical_cast<string>(epoch+1));
	}

        if (epoch % 1 == 0 && validation_data_size > 0)
        {
            //////COMPUTING VALIDATION SET PERPLEXITY///////////////////////
            ////////////////////////////////////////////////////////////////

            double log_likelihood = 0.0;

	    Matrix<double,Dynamic,Dynamic> scores(output_vocab_size, validation_minibatch_size);
	    Matrix<double,Dynamic,Dynamic> output_probs(output_vocab_size, validation_minibatch_size);
	    Matrix<int,Dynamic,Dynamic> minibatch(ngram_size, validation_minibatch_size);

            for (int validation_batch =0;validation_batch < num_validation_batches;validation_batch++)
            {
                int validation_minibatch_start_index = validation_minibatch_size * validation_batch;
		int current_minibatch_size = min(validation_minibatch_size,
						 validation_data_size - validation_minibatch_start_index);
		minibatch.leftCols(current_minibatch_size) = validation_data.middleCols(validation_minibatch_start_index, 
											current_minibatch_size);
		prop_validation.fProp(minibatch.topRows(ngram_size-1));

		// Do full forward prop through output word embedding layer
		start_timer(4);
		prop_validation.output_layer_node.param->fProp(prop_validation.second_hidden_activation_node.fProp_matrix, scores);
		stop_timer(4);

		// And softmax and loss. Be careful of short minibatch
		double minibatch_log_likelihood;
		start_timer(5);
		SoftmaxLogLoss().fProp(scores.leftCols(current_minibatch_size), 
				       minibatch.row(ngram_size-1),
				       output_probs,
				       minibatch_log_likelihood);
		stop_timer(5);
		log_likelihood += minibatch_log_likelihood;
	    }

            cerr << "Validation log-likelihood: "<< log_likelihood << endl;
            cerr << "           perplexity:     "<< exp(-log_likelihood/validation_data_size) << endl;

	    // If the validation perplexity decreases, halve the learning rate.
            if (epoch > 0 && log_likelihood < current_validation_ll)
            { 
                current_learning_rate /= 2;
            }
            current_validation_ll = log_likelihood;
	}

    }
    return 0;
}