Welcome to mirror list, hosted at ThFree Co, Russian Federation.

gd.cc « vowpalwabbit - github.com/moses-smt/vowpal_wabbit.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: b09333e93c74ec033b6cf22e7ae683716ae29bb8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
/*
Copyright (c) by respective owners including Yahoo!, Microsoft, and
individual contributors. All rights reserved.  Released under a BSD (revised)
license as described in the file LICENSE.
 */
#include <fstream>
#include <sstream>
#include <float.h>
#ifdef _WIN32
#include <WinSock2.h>
#else
#include <netdb.h>
#endif
#include <string.h>
#include <stdio.h>
#include <assert.h>

#if defined(__SSE2__) && !defined(VW_LDA_NO_SSE)
#include <xmmintrin.h>
#endif

#include "gd.h"
#include "simple_label.h"
#include "accumulate.h"
#include "reductions.h"
#include "vw.h"

using namespace std;
using namespace LEARNER;
//todo: 
//4. Factor various state out of vw&
namespace GD
{
  struct gd{
    //double normalized_sum_norm_x;
    double total_weight;
    size_t no_win_counter;
    size_t early_stop_thres;
    float initial_constant;
    float neg_norm_power;
    float neg_power_t;
    float update_multiplier;
    void (*predict)(gd&, base_learner&, example&);
    void (*learn)(gd&, base_learner&, example&);
    void (*update)(gd&, base_learner&, example&);

    vw* all;
  };

  void sync_weights(vw& all);

  float InvSqrt(float x){
    float xhalf = 0.5f * x;
    int i = *(int*)&x; // store floating-point bits in integer
    i = 0x5f3759d5 - (i >> 1); // initial guess for Newton's method
    x = *(float*)&i; // convert new bits into float
    x = x*(1.5f - xhalf*x*x); // One round of Newton's method
    return x;
  }
  
  template<bool sqrt_rate, bool feature_mask_off, size_t adaptive, size_t normalized, size_t spare>
  inline void update_feature(float& update, float x, float& fw)
  {
    weight* w = &fw;
    if(feature_mask_off || fw != 0.)
      {
	if (spare != 0)
	  x *= w[spare];
	w[0] += update * x;
      }
  }

  //this deals with few nonzero features vs. all nonzero features issues.  
  template<bool sqrt_rate, size_t adaptive, size_t normalized>
  float average_update(gd& g, float update)
  {
    if (normalized) {
      if (sqrt_rate) 
	{
	  float avg_norm = (float) g.total_weight / (float) g.all->normalized_sum_norm_x;
	  if (adaptive)
	    return sqrt(avg_norm);
	  else
	    return avg_norm;
	}
      else 
	return powf( (float) g.all->normalized_sum_norm_x / (float) g.total_weight, g.neg_norm_power);
    }
    return 1.f;
  }
  
  template<bool sqrt_rate, bool feature_mask_off, size_t adaptive, size_t normalized, size_t spare>
  void train(gd& g, example& ec, float update)
  {
    if (normalized)
      update *= g.update_multiplier;
    
    foreach_feature<float, update_feature<sqrt_rate, feature_mask_off, adaptive, normalized, spare> >(*g.all, ec, update);
  }

  void end_pass(gd& g)
  {
    vw& all = *g.all;
    
    sync_weights(all);
    if(all.span_server != "") {
      if(all.adaptive)
	accumulate_weighted_avg(all, all.span_server, all.reg);
      else 
        accumulate_avg(all, all.span_server, all.reg, 0);	      
    }
    
    all.eta *= all.eta_decay_rate;
    if (all.save_per_pass)
      save_predictor(all, all.final_regressor_name, all.current_pass);   
    
    all.current_pass++;
    
    if(!all.holdout_set_off)
      {
        if(summarize_holdout_set(all, g.no_win_counter))
          finalize_regressor(all, all.final_regressor_name);
        if((g.early_stop_thres == g.no_win_counter) &&
           ((all.check_holdout_every_n_passes <= 1) ||
            ((all.current_pass % all.check_holdout_every_n_passes) == 0)))
	  set_done(all);
      }
  }

struct string_value {
  float v;
  string s;
  friend bool operator<(const string_value& first, const string_value& second);
};

 inline float sign(float w){ if (w < 0.) return -1.; else  return 1.;}
 
 inline float trunc_weight(const float w, const float gravity){
   return (gravity < fabsf(w)) ? w - sign(w) * gravity : 0.f;
 }

bool operator<(const string_value& first, const string_value& second)
{
  return fabs(first.v) > fabs(second.v);
}

#include <algorithm>

  void audit_feature(vw& all, feature* f, audit_data* a, vector<string_value>& results, string prepend, string& ns_pre, size_t offset = 0, float mult = 1)
{ 
  ostringstream tempstream;
  size_t index = (f->weight_index + offset) & all.reg.weight_mask;
  weight* weights = all.reg.weight_vector;
  size_t stride_shift = all.reg.stride_shift;
  
  if(all.audit) tempstream << prepend;
  
  string tmp = "";
  
  if (a != NULL){
    tmp += a->space;
    tmp += '^';
    tmp += a->feature; 
  }
 
  if (a != NULL && all.audit){
    tempstream << tmp << ':';
  }
  else 	if ( index == ((( (constant << stride_shift) * all.wpp + offset)&all.reg.weight_mask)) && all.audit){
    tempstream << "Constant:";
  }  
  if(all.audit){
    tempstream << ((index >> stride_shift) & all.parse_mask) << ':' << mult*f->x;
    tempstream  << ':' << trunc_weight(weights[index], (float)all.sd->gravity) * (float)all.sd->contraction;
  }
  if(all.current_pass == 0 && all.inv_hash_regressor_name != ""){ //for invert_hash
    if ( index == (((constant << stride_shift) * all.wpp + offset )& all.reg.weight_mask))
      tmp = "Constant";
    
    ostringstream convert;
    convert << ((index >>stride_shift) & all.parse_mask);
    tmp = ns_pre + tmp + ":"+ convert.str();
    
    if(!all.name_index_map.count(tmp)){
      all.name_index_map.insert(std::map< std::string, size_t>::value_type(tmp, ((index >> stride_shift) & all.parse_mask)));
    }
  }

  if(all.adaptive && all.audit)
    tempstream << '@' << weights[index+1];
  string_value sv = {weights[index]*f->x, tempstream.str()};
  results.push_back(sv);
}

  void audit_features(vw& all, v_array<feature>& fs, v_array<audit_data>& as, vector<string_value>& results, string prepend, string& ns_pre, size_t offset = 0, float mult = 1)
{
  for (size_t j = 0; j< fs.size(); j++)
    if (as.begin != as.end)
      audit_feature(all, & fs[j], & as[j], results, prepend, ns_pre, offset, mult);
    else
      audit_feature(all, & fs[j], NULL, results, prepend, ns_pre, offset, mult);
}

void audit_quad(vw& all, feature& left_feature, audit_data* left_audit, v_array<feature> &right_features, v_array<audit_data> &audit_right, vector<string_value>& results, string& ns_pre, uint32_t offset = 0)
{
  size_t halfhash = quadratic_constant * (left_feature.weight_index + offset);

  ostringstream tempstream;
  if (audit_right.size() != 0 && left_audit && all.audit)
    tempstream << left_audit->space << '^' << left_audit->feature << '^';
  string prepend = tempstream.str();

  if(all.current_pass == 0 && audit_right.size() != 0 && left_audit)//for invert_hash
  {
    ns_pre = left_audit->space; 
    ns_pre = ns_pre + '^' + left_audit->feature + '^';
  }
 
  audit_features(all, right_features, audit_right, results, prepend, ns_pre, halfhash + offset, left_audit ? left_audit->x : 1);
}

void audit_triple(vw& all, feature& f0, audit_data* f0_audit, feature& f1, audit_data* f1_audit, 
		  v_array<feature> &right_features, v_array<audit_data> &audit_right, vector<string_value>& results, string& ns_pre, uint32_t offset = 0)
{
  size_t halfhash = cubic_constant2 * (cubic_constant * (f0.weight_index + offset) + f1.weight_index + offset);

  ostringstream tempstream;
  if (audit_right.size() > 0 && f0_audit && f1_audit && all.audit)
    tempstream << f0_audit->space << '^' << f0_audit->feature << '^' 
	       << f1_audit->space << '^' << f1_audit->feature << '^';
  string prepend = tempstream.str();

  if(all.current_pass == 0 && audit_right.size() != 0 && f0_audit && f1_audit)//for invert_hash
  {
    ns_pre = f0_audit->space;
    ns_pre = ns_pre + '^' + f0_audit->feature + '^' + f1_audit->space + '^' + f1_audit->feature + '^';
  }
  audit_features(all, right_features, audit_right, results, prepend, ns_pre, halfhash + offset);  
}

void print_features(vw& all, example& ec)
{
  weight* weights = all.reg.weight_vector;
  
  if (all.lda > 0)
    {
      size_t count = 0;
      for (unsigned char* i = ec.indices.begin; i != ec.indices.end; i++)
	count += ec.atomics[*i].size();
      for (unsigned char* i = ec.indices.begin; i != ec.indices.end; i++) 
	for (audit_data *f = ec.audit_features[*i].begin; f != ec.audit_features[*i].end; f++)
	  {
	    cout << '\t' << f->space << '^' << f->feature << ':' << ((f->weight_index >> all.reg.stride_shift) & all.parse_mask) << ':' << f->x;
	    for (size_t k = 0; k < all.lda; k++)
	      cout << ':' << weights[(f->weight_index+k) & all.reg.weight_mask];
	  }
      cout << " total of " << count << " features." << endl;
    }
  else
    {
      vector<string_value> features;
      string empty;
      string ns_pre;
      
      for (unsigned char* i = ec.indices.begin; i != ec.indices.end; i++){ 
        ns_pre = "";
	audit_features(all, ec.atomics[*i], ec.audit_features[*i], features, empty, ns_pre, ec.ft_offset);
        ns_pre = "";
      }
      for (vector<string>::iterator i = all.pairs.begin(); i != all.pairs.end();i++) 
	{
	  int fst = (*i)[0];
	  int snd = (*i)[1];
	  for (size_t j = 0; j < ec.atomics[fst].size(); j++)
	    {
	      audit_data* a = NULL;
	      if (ec.audit_features[fst].size() > 0)
		a = & ec.audit_features[fst][j];
	      audit_quad(all, ec.atomics[fst][j], a, ec.atomics[snd], ec.audit_features[snd], features, ns_pre);
	    }
	}

      for (vector<string>::iterator i = all.triples.begin(); i != all.triples.end();i++) 
	{
	  int fst = (*i)[0];
	  int snd = (*i)[1];
	  int trd = (*i)[2];
	  for (size_t j = 0; j < ec.atomics[fst].size(); j++)
	    {
	      audit_data* a1 = NULL;
	      if (ec.audit_features[fst].size() > 0)
		a1 = & ec.audit_features[fst][j];
	      for (size_t k = 0; k < ec.atomics[snd].size(); k++)
		{
		  audit_data* a2 = NULL;
		  if (ec.audit_features[snd].size() > 0)
		    a2 = & ec.audit_features[snd][k];
		  audit_triple(all, ec.atomics[fst][j], a1, ec.atomics[snd][k], a2, ec.atomics[trd], ec.audit_features[trd], features, ns_pre);
		}
	    }
	}

      sort(features.begin(),features.end());
      if(all.audit){
        for (vector<string_value>::iterator sv = features.begin(); sv!= features.end(); sv++)
	  cout << '\t' << (*sv).s;
        cout << endl;
      }
    }
}

void print_audit_features(vw& all, example& ec)
{
  if(all.audit)
    print_result(all.stdout_fileno,ec.pred.scalar,-1,ec.tag);
  fflush(stdout);
  print_features(all, ec);
}

float finalize_prediction(shared_data* sd, float ret) 
{
  if ( nanpattern(ret))
    {
      cerr << "NAN prediction in example " << sd->example_number + 1 << ", forcing 0.0" << endl;
      return 0.;
    }
  if ( ret > sd->max_label )
    return (float)sd->max_label;
  if (ret < sd->min_label)
    return (float)sd->min_label;
  return ret;
}

 struct trunc_data {
   float prediction;
   float gravity;
 };
 
 inline void vec_add_trunc(trunc_data& p, const float fx, float& fw) {
   p.prediction += trunc_weight(fw, p.gravity) * fx;
 }

 inline float trunc_predict(vw& all, example& ec, double gravity)
 {
   trunc_data temp = {ec.l.simple.initial, (float)gravity};
   foreach_feature<trunc_data, vec_add_trunc>(all, ec, temp);
   return temp.prediction;
 }

template<bool l1, bool audit>
void predict(gd& g, base_learner& base, example& ec)
{
  vw& all = *g.all;
  
  if (l1)
    ec.partial_prediction = trunc_predict(all, ec, all.sd->gravity);
  else
    ec.partial_prediction = inline_predict(all, ec);    
  
  ec.partial_prediction *= (float)all.sd->contraction;
  ec.pred.scalar = finalize_prediction(all.sd, ec.partial_prediction);
  
  if (audit)
    print_audit_features(all, ec);
}

  struct power_data {
    float minus_power_t;
    float neg_norm_power;
  };

  template<bool sqrt_rate, size_t adaptive, size_t normalized>
  inline float compute_rate_decay(power_data& s, float& fw)
  {
    weight* w = &fw;
    float rate_decay = 1.f;
    if(adaptive) {
      if (sqrt_rate)
	{  
#if defined(__SSE2__) && !defined(VW_LDA_NO_SSE)
	  __m128 eta = _mm_load_ss(&w[adaptive]);
	  eta = _mm_rsqrt_ss(eta);
	  _mm_store_ss(&rate_decay, eta);
#else
	  rate_decay = InvSqrt(w[adaptive]);
#endif
	}
      else
	rate_decay = powf(w[adaptive],s.minus_power_t);
    }
    if(normalized) {
      if (sqrt_rate)
	{
	  float inv_norm = 1.f / w[normalized];
	  if (adaptive)
	    rate_decay *= inv_norm;
	  else
	    rate_decay *= inv_norm*inv_norm;
	}
      else
	rate_decay *= powf(w[normalized]*w[normalized], s.neg_norm_power);
    }
    return rate_decay;
  }

  struct norm_data {
    float grad_squared;
    float pred_per_update;
    float norm_x;
    power_data pd;
  };

template<bool sqrt_rate, bool feature_mask_off, size_t adaptive, size_t normalized, size_t spare>
inline void pred_per_update_feature(norm_data& nd, float x, float& fw) {
  if(feature_mask_off || fw != 0.){
    weight* w = &fw;
    float x2 = x * x;
    if(adaptive)
      w[adaptive] += nd.grad_squared * x2;
    if(normalized) {
      float x_abs = fabsf(x);
      if( x_abs > w[normalized] ) {// new scale discovered
	if( w[normalized] > 0. ) {//If the normalizer is > 0 then rescale the weight so it's as if the new scale was the old scale.
	  if (sqrt_rate) {
	    float rescale = w[normalized]/x_abs;	    
	    w[0] *= (adaptive ? rescale : rescale*rescale);
	  }
	  else {
	    float rescale = x_abs/w[normalized];	    
	    w[0] *= powf(rescale*rescale, nd.pd.neg_norm_power);
	  }
	}
	w[normalized] = x_abs;
      }
      nd.norm_x += x2 / (w[normalized] * w[normalized]);
    }
    w[spare] = compute_rate_decay<sqrt_rate, adaptive, normalized>(nd.pd, fw);

    nd.pred_per_update += x2 * w[spare];
  }
}
  
template<bool sqrt_rate, bool feature_mask_off, size_t adaptive, size_t normalized, size_t spare>
  float get_pred_per_update(gd& g, example& ec)
  {//We must traverse the features in _precisely_ the same order as during training.
    label_data& ld = ec.l.simple;
    vw& all = *g.all;
    float grad_squared = all.loss->getSquareGrad(ec.pred.scalar, ld.label) * ld.weight;
    if (grad_squared == 0) return 1.;
    
    norm_data nd = {grad_squared, 0., 0., {g.neg_power_t, g.neg_norm_power}};
    
    foreach_feature<norm_data,pred_per_update_feature<sqrt_rate, feature_mask_off, adaptive, normalized, spare> >(all, ec, nd);
    
    if(normalized) {
      g.all->normalized_sum_norm_x += ld.weight * nd.norm_x;
      g.total_weight += ld.weight;

      g.update_multiplier = average_update<sqrt_rate, adaptive, normalized>(g, nd.pred_per_update);
      nd.pred_per_update *= g.update_multiplier;
    }
    
    return nd.pred_per_update;
  }

template<bool invariant, bool sqrt_rate, bool feature_mask_off, size_t adaptive, size_t normalized, size_t spare>
float compute_update(gd& g, example& ec)
{//invariant: not a test label, importance weight > 0
  label_data& ld = ec.l.simple;
  vw& all = *g.all;
  
  float ret = 0.;
  ec.updated_prediction = ec.pred.scalar;
  if (all.loss->getLoss(all.sd, ec.pred.scalar, ld.label) > 0.)
    {
      float pred_per_update;
      if(adaptive || normalized)
	pred_per_update = get_pred_per_update<sqrt_rate, feature_mask_off, adaptive, normalized, spare>(g,ec);
      else
	pred_per_update = ec.total_sum_feat_sq;
      
      float delta_pred = pred_per_update * all.eta * ld.weight;
      if(!adaptive) 
	{
	  float t = (float)(ec.example_t - all.sd->weighted_holdout_examples);
	  delta_pred *= powf(t, g.neg_power_t);
	}
      
      float update;
      if(invariant)
	update = all.loss->getUpdate(ec.pred.scalar, ld.label, delta_pred, pred_per_update);
      else
	update = all.loss->getUnsafeUpdate(ec.pred.scalar, ld.label, delta_pred, pred_per_update);
      
      // changed from ec.partial_prediction to ld.prediction
      ec.updated_prediction += pred_per_update * update;
      
      if (all.reg_mode && fabs(update) > 1e-8) {
	double dev1 = all.loss->first_derivative(all.sd, ec.pred.scalar, ld.label);
	double eta_bar = (fabs(dev1) > 1e-8) ? (-update / dev1) : 0.0;
	if (fabs(dev1) > 1e-8)
	  all.sd->contraction *= (1. - all.l2_lambda * eta_bar);
	update /= (float)all.sd->contraction;
	all.sd->gravity += eta_bar * all.l1_lambda;
      }
      ret = update;
    }
  
  return ret;
}

template<bool invariant, bool sqrt_rate, bool feature_mask_off, size_t adaptive, size_t normalized, size_t spare>
void update(gd& g, base_learner& base, example& ec)
{//invariant: not a test label, importance weight > 0
  float update;
  if ( (update = compute_update<invariant, sqrt_rate, feature_mask_off, adaptive, normalized, spare> (g, ec)) != 0.)
    train<sqrt_rate, feature_mask_off, adaptive, normalized, spare>(g, ec, update);
  
  if (g.all->sd->contraction < 1e-10)  // updating weights now to avoid numerical instability
    sync_weights(*g.all);
}

template<bool invariant, bool sqrt_rate, bool feature_mask_off, size_t adaptive, size_t normalized, size_t spare>
void learn(gd& g, base_learner& base, example& ec)
{//invariant: not a test label, importance weight > 0
  assert(ec.in_use);
  assert(ec.l.simple.label != FLT_MAX);
  assert(ec.l.simple.weight > 0.);

  g.predict(g,base,ec);
  update<invariant, sqrt_rate, feature_mask_off, adaptive, normalized, spare>(g,base,ec);
}

void sync_weights(vw& all) {
  if (all.sd->gravity == 0. && all.sd->contraction == 1.)  // to avoid unnecessary weight synchronization
    return;
  uint32_t length = 1 << all.num_bits;
  size_t stride = 1 << all.reg.stride_shift;
  for(uint32_t i = 0; i < length && all.reg_mode; i++)
    all.reg.weight_vector[stride*i] = trunc_weight(all.reg.weight_vector[stride*i], (float)all.sd->gravity) * (float)all.sd->contraction;
  all.sd->gravity = 0.;
  all.sd->contraction = 1.;
}

void save_load_regressor(vw& all, io_buf& model_file, bool read, bool text)
{
  uint32_t length = 1 << all.num_bits;
  uint32_t stride = 1 << all.reg.stride_shift;
  int c = 0;
  uint32_t i = 0;
  size_t brw = 1;

  if(all.print_invert){ //write readable model with feature names           
    weight* v;
    char buff[512];
    int text_len; 
    typedef std::map< std::string, size_t> str_int_map;  
        
    for(str_int_map::iterator it = all.name_index_map.begin(); it != all.name_index_map.end(); ++it){              
      v = &(all.reg.weight_vector[stride*(it->second)]);
      if(*v != 0.){
        text_len = sprintf(buff, "%s", (char*)it->first.c_str());
        brw = bin_text_write_fixed(model_file, (char*)it->first.c_str(), sizeof(*it->first.c_str()),
					 buff, text_len, true);
        text_len = sprintf(buff, ":%f\n", *v);
        brw+= bin_text_write_fixed(model_file,(char *)v, sizeof (*v),
					 buff, text_len, true);
      }	
    }
    return;
  } 

  do 
    {
      brw = 1;
      weight* v;
      if (read)
	{
	  c++;
	  brw = bin_read_fixed(model_file, (char*)&i, sizeof(i),"");
	  if (brw > 0)
	    {
	      assert (i< length);		
	      v = &(all.reg.weight_vector[stride*i]);
	      brw += bin_read_fixed(model_file, (char*)v, sizeof(*v), "");
	    }
	}
      else// write binary or text
	{
                      
         v = &(all.reg.weight_vector[stride*i]);
	 if (*v != 0.)
	    {
	      c++;
	      char buff[512];
	      int text_len;

	      text_len = sprintf(buff, "%d", i);
	      brw = bin_text_write_fixed(model_file,(char *)&i, sizeof (i),
					 buff, text_len, text);
	      
              text_len = sprintf(buff, ":%f\n", *v);
	      brw+= bin_text_write_fixed(model_file,(char *)v, sizeof (*v),
					 buff, text_len, text);
	    }
	}
 
      if (!read)
	i++;
    }
  while ((!read && i < length) || (read && brw >0));  
}

//void save_load_online_state(gd& g, io_buf& model_file, bool read, bool text)
void save_load_online_state(vw& all, io_buf& model_file, bool read, bool text)
{
  //vw& all = *g.all;
  
  char buff[512];
  
  uint32_t text_len = sprintf(buff, "initial_t %f\n", all.initial_t);
  bin_text_read_write_fixed(model_file,(char*)&all.initial_t, sizeof(all.initial_t), 
			    "", read, 
			    buff, text_len, text);

  text_len = sprintf(buff, "norm normalizer %f\n", all.normalized_sum_norm_x);
  bin_text_read_write_fixed(model_file,(char*)&all.normalized_sum_norm_x, sizeof(all.normalized_sum_norm_x), 
  			    "", read, 
  			    buff, text_len, text);

  text_len = sprintf(buff, "t %f\n", all.sd->t);
  bin_text_read_write_fixed(model_file,(char*)&all.sd->t, sizeof(all.sd->t), 
			    "", read, 
			    buff, text_len, text);

  text_len = sprintf(buff, "sum_loss %f\n", all.sd->sum_loss);
  bin_text_read_write_fixed(model_file,(char*)&all.sd->sum_loss, sizeof(all.sd->sum_loss), 
			    "", read, 
			    buff, text_len, text);

  text_len = sprintf(buff, "sum_loss_since_last_dump %f\n", all.sd->sum_loss_since_last_dump);
  bin_text_read_write_fixed(model_file,(char*)&all.sd->sum_loss_since_last_dump, sizeof(all.sd->sum_loss_since_last_dump), 
			    "", read, 
			    buff, text_len, text);

  text_len = sprintf(buff, "dump_interval %f\n", all.sd->dump_interval);
  bin_text_read_write_fixed(model_file,(char*)&all.sd->dump_interval, sizeof(all.sd->dump_interval), 
			    "", read, 
			    buff, text_len, text);

  text_len = sprintf(buff, "min_label %f\n", all.sd->min_label);
  bin_text_read_write_fixed(model_file,(char*)&all.sd->min_label, sizeof(all.sd->min_label), 
			    "", read, 
			    buff, text_len, text);

  text_len = sprintf(buff, "max_label %f\n", all.sd->max_label);
  bin_text_read_write_fixed(model_file,(char*)&all.sd->max_label, sizeof(all.sd->max_label), 
			    "", read, 
			    buff, text_len, text);

  text_len = sprintf(buff, "weighted_examples %f\n", all.sd->weighted_examples);
  bin_text_read_write_fixed(model_file,(char*)&all.sd->weighted_examples, sizeof(all.sd->weighted_examples), 
			    "", read, 
			    buff, text_len, text);

  text_len = sprintf(buff, "weighted_labels %f\n", all.sd->weighted_labels);
  bin_text_read_write_fixed(model_file,(char*)&all.sd->weighted_labels, sizeof(all.sd->weighted_labels), 
			    "", read, 
			    buff, text_len, text);

  text_len = sprintf(buff, "weighted_unlabeled_examples %f\n", all.sd->weighted_unlabeled_examples);
  bin_text_read_write_fixed(model_file,(char*)&all.sd->weighted_unlabeled_examples, sizeof(all.sd->weighted_unlabeled_examples), 
			    "", read, 
			    buff, text_len, text);
  
  text_len = sprintf(buff, "example_number %u\n", (uint32_t)all.sd->example_number);
  bin_text_read_write_fixed(model_file,(char*)&all.sd->example_number, sizeof(all.sd->example_number), 
			    "", read, 
			    buff, text_len, text);

  text_len = sprintf(buff, "total_features %u\n", (uint32_t)all.sd->total_features);
  bin_text_read_write_fixed(model_file,(char*)&all.sd->total_features, sizeof(all.sd->total_features), 
			    "", read, 
			    buff, text_len, text);
  if (!all.training) // reset various things so that we report test set performance properly
    {
      all.sd->sum_loss = 0;
      all.sd->sum_loss_since_last_dump = 0;
      all.sd->dump_interval = 1.;
      all.sd->weighted_examples = 0.;
      all.sd->weighted_labels = 0.;
      all.sd->weighted_unlabeled_examples = 0.;
      all.sd->example_number = 0;
      all.sd->total_features = 0;
    }
  
  uint32_t length = 1 << all.num_bits;
  uint32_t stride = 1 << all.reg.stride_shift;
  int c = 0;
  uint32_t i = 0;
  size_t brw = 1;
  do 
    {
      brw = 1;
      weight* v; 
      if (read)
	{
	  c++;
	  brw = bin_read_fixed(model_file, (char*)&i, sizeof(i),"");
	  if (brw > 0)
	    {
	      assert (i< length);		
	      v = &(all.reg.weight_vector[stride*i]);
	      if (stride == 2) //either adaptive or normalized
		brw += bin_read_fixed(model_file, (char*)v, sizeof(*v)*2, "");
	      else //adaptive and normalized
		brw += bin_read_fixed(model_file, (char*)v, sizeof(*v)*3, "");	
	      if (!all.training)
		v[1]=v[2]=0.;
	    }
	}
      else // write binary or text
	{
	  v = &(all.reg.weight_vector[stride*i]);
	  if (*v != 0.)
	    {
	      c++;
	      char buff[512];
	      int text_len = sprintf(buff, "%d", i);
	      brw = bin_text_write_fixed(model_file,(char *)&i, sizeof (i),
					 buff, text_len, text);
	      
	      if (stride == 2)
		{//either adaptive or normalized
		  text_len = sprintf(buff, ":%f %f\n", *v, *(v+1));
		  brw+= bin_text_write_fixed(model_file,(char *)v, 2*sizeof (*v),
					     buff, text_len, text);
		}
	      else
		{//adaptive and normalized
		  text_len = sprintf(buff, ":%f %f %f\n", *v, *(v+1), *(v+2));
		  brw+= bin_text_write_fixed(model_file,(char *)v, 3*sizeof (*v),
					     buff, text_len, text);
		}
	    }
	}
      if (!read)
	i++;
    }
  while ((!read && i < length) || (read && brw >0));  
}

void save_load(gd& g, io_buf& model_file, bool read, bool text)
{
  vw& all = *g.all;
  if(read)
    {
      initialize_regressor(all);

      if(all.adaptive && all.initial_t > 0)
	{
	  uint32_t length = 1 << all.num_bits;
	  uint32_t stride = 1 << all.reg.stride_shift;
	  for (size_t j = 1; j < stride*length; j+=stride)
	    {
	      all.reg.weight_vector[j] = all.initial_t;   //for adaptive update, we interpret initial_t as previously seeing initial_t fake datapoints, all with squared gradient=1
	      //NOTE: this is not invariant to the scaling of the data (i.e. when combined with normalized). Since scaling the data scales the gradient, this should ideally be 
	      //feature_range*initial_t, or something like that. We could potentially fix this by just adding this base quantity times the current range to the sum of gradients 
	      //stored in memory at each update, and always start sum of gradients to 0, at the price of additional additions and multiplications during the update...
	    }
	}
      
      if (g.initial_constant != 0.0)
        VW::set_weight(all, constant, 0, g.initial_constant);
    }

  if (model_file.files.size() > 0)
    {
      bool resume = all.save_resume;
      char buff[512];
      uint32_t text_len = sprintf(buff, ":%d\n", resume);
      bin_text_read_write_fixed(model_file,(char *)&resume, sizeof (resume),
				"", read,
				buff, text_len, text);
      if (resume)
	//save_load_online_state(g, model_file, read, text);
        save_load_online_state(all, model_file, read, text);
      else
	save_load_regressor(all, model_file, read, text);
    }
}

template<bool invariant, bool sqrt_rate, uint32_t adaptive, uint32_t normalized, uint32_t spare, uint32_t next>
uint32_t set_learn(vw& all, bool feature_mask_off, gd& g)
{
  all.normalized_idx = normalized;
  if (feature_mask_off)
    {
      g.learn = learn<invariant, sqrt_rate, true, adaptive, normalized, spare>;
      g.update = update<invariant, sqrt_rate, true, adaptive, normalized, spare>;
      return next;
    }
  else
    {
      g.learn = learn<invariant, sqrt_rate, false, adaptive, normalized, spare>;
      g.update = update<invariant, sqrt_rate, false, adaptive, normalized, spare>;
      return next;
    }
}

template<bool sqrt_rate, uint32_t adaptive, uint32_t normalized, uint32_t spare, uint32_t next>
uint32_t set_learn(vw& all, bool feature_mask_off, gd& g)
{
  if (all.invariant_updates)
    return set_learn<true, sqrt_rate, adaptive, normalized, spare, next>(all, feature_mask_off, g);
  else
    return set_learn<false, sqrt_rate, adaptive, normalized, spare, next>(all, feature_mask_off, g);
}

template<bool sqrt_rate, uint32_t adaptive, uint32_t spare>
uint32_t set_learn(vw& all, bool feature_mask_off, gd& g)
{
  // select the appropriate learn function based on adaptive, normalization, and feature mask
  if (all.normalized_updates)
    return set_learn<sqrt_rate, adaptive, adaptive+1, adaptive+2, adaptive+3>(all, feature_mask_off, g);
  else
    return set_learn<sqrt_rate, adaptive, 0, spare, spare+1>(all, feature_mask_off, g);
}

template<bool sqrt_rate>
uint32_t set_learn(vw& all, bool feature_mask_off, gd& g)
{
  if (all.adaptive)
    return set_learn<sqrt_rate, 1, 2>(all, feature_mask_off, g);
  else
    return set_learn<sqrt_rate, 0, 0>(all, feature_mask_off, g);
}

uint32_t ceil_log_2(uint32_t v)
{
  if (v==0)
    return 0;
  else 
    return 1 + ceil_log_2(v >> 1);
}

base_learner* setup(vw& all)
{
  po::options_description opts("Gradient Descent options");
  opts.add_options()
    ("sgd", "use regular stochastic gradient descent update.")
    ("adaptive", "use adaptive, individual learning rates.")
    ("invariant", "use safe/importance aware updates.")
    ("normalized", "use per feature normalized updates")
    ("exact_adaptive_norm", "use current default invariant normalized adaptive update rule");
  add_options(all, opts);
  po::variables_map& vm = all.vm;
  gd& g = calloc_or_die<gd>();
  g.all = &all;
  g.all->normalized_sum_norm_x = 0;
  g.no_win_counter = 0;
  g.total_weight = 0.;
  g.early_stop_thres = 3;
  g.neg_norm_power = (all.adaptive ? (all.power_t - 1.f) : -1.f);
  g.neg_power_t = - all.power_t;

  if(all.initial_t > 0)//for the normalized update: if initial_t is bigger than 1 we interpret this as if we had seen (all.initial_t) previous fake datapoints all with norm 1
    {
      g.all->normalized_sum_norm_x = all.initial_t;
      g.total_weight = all.initial_t;
    }

  bool feature_mask_off = true;
  if(vm.count("feature_mask"))
    feature_mask_off = false;

  if(!all.holdout_set_off)
  {
    all.sd->holdout_best_loss = FLT_MAX;
    if(vm.count("early_terminate"))      
      g.early_stop_thres = vm["early_terminate"].as< size_t>();     
  }

  if (vm.count("constant")) {
      g.initial_constant = vm["constant"].as<float>();     
  }

  if( !all.training || ( ( vm.count("sgd") || vm.count("adaptive") || vm.count("invariant") || vm.count("normalized") ) && !vm.count("exact_adaptive_norm")) )
    {//nondefault
      all.adaptive = all.training && vm.count("adaptive");
      all.invariant_updates = all.training && vm.count("invariant");
      all.normalized_updates = all.training && vm.count("normalized");
      
      if(!vm.count("learning_rate") && !vm.count("l") && !(all.adaptive && all.normalized_updates))
	all.eta = 10; //default learning rate to 10 for non default update rule
      
      //if not using normalized or adaptive, default initial_t to 1 instead of 0
      if(!all.adaptive && !all.normalized_updates){
	if (!vm.count("initial_t")) {
	  all.sd->t = 1.f;
	  all.sd->weighted_unlabeled_examples = 1.f;
	  all.initial_t = 1.f;
	}
	all.eta *= powf((float)(all.sd->t), all.power_t);
      }
    }
  
  if (pow((double)all.eta_decay_rate, (double)all.numpasses) < 0.0001 )
    cerr << "Warning: the learning rate for the last pass is multiplied by: " << pow((double)all.eta_decay_rate, (double)all.numpasses)
	 << " adjust --decay_learning_rate larger to avoid this." << endl;
  
  if (all.reg_mode % 2)
    if (all.audit || all.hash_inv)
      g.predict = predict<true, true>;
    else
      g.predict = predict<true, false>;
  else if (all.audit || all.hash_inv)
    g.predict = predict<false, true>;
  else
    g.predict = predict<false, false>;

  uint32_t stride;
  if (all.power_t == 0.5)
    stride = set_learn<true>(all, feature_mask_off, g);
  else
    stride = set_learn<false>(all, feature_mask_off, g);
  all.reg.stride_shift = ceil_log_2(stride-1);

  learner<gd>& ret = init_learner(&g, g.learn, ((uint64_t)1 << all.reg.stride_shift));
  ret.set_predict(g.predict);
  ret.set_update(g.update);
  ret.set_save_load(save_load);
  ret.set_end_pass(end_pass);
  return make_base(ret);
}
}