Welcome to mirror list, hosted at ThFree Co, Russian Federation.

rijndael.cpp « unrar « thirdparty « src - github.com/mpc-hc/mpc-hc.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: a091423fece08d4cfb28dee08f0f3bdb3ed78acb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
/***************************************************************************
 * This code is based on public domain Szymon Stefanek AES implementation: *
 * http://www.pragmaware.net/software/rijndael/index.php                   *
 *                                                                         *
 * Dynamic tables generation is based on the Brian Gladman work:           *
 * http://fp.gladman.plus.com/cryptography_technology/rijndael             *
 ***************************************************************************/
#include "rar.hpp"

#ifdef USE_SSE
#include <wmmintrin.h>
#endif

static byte S[256],S5[256],rcon[30];
static byte T1[256][4],T2[256][4],T3[256][4],T4[256][4];
static byte T5[256][4],T6[256][4],T7[256][4],T8[256][4];
static byte U1[256][4],U2[256][4],U3[256][4],U4[256][4];


inline void Xor128(void *dest,const void *arg1,const void *arg2)
{
#ifdef ALLOW_MISALIGNED
  ((uint32*)dest)[0]=((uint32*)arg1)[0]^((uint32*)arg2)[0];
  ((uint32*)dest)[1]=((uint32*)arg1)[1]^((uint32*)arg2)[1];
  ((uint32*)dest)[2]=((uint32*)arg1)[2]^((uint32*)arg2)[2];
  ((uint32*)dest)[3]=((uint32*)arg1)[3]^((uint32*)arg2)[3];
#else
  for (int I=0;I<16;I++)
    ((byte*)dest)[I]=((byte*)arg1)[I]^((byte*)arg2)[I];
#endif
}


inline void Xor128(byte *dest,const byte *arg1,const byte *arg2,
                   const byte *arg3,const byte *arg4)
{
#ifdef ALLOW_MISALIGNED
  (*(uint32*)dest)=(*(uint32*)arg1)^(*(uint32*)arg2)^(*(uint32*)arg3)^(*(uint32*)arg4);
#else
  for (int I=0;I<4;I++)
    dest[I]=arg1[I]^arg2[I]^arg3[I]^arg4[I];
#endif
}


inline void Copy128(byte *dest,const byte *src)
{
#ifdef ALLOW_MISALIGNED
  ((uint32*)dest)[0]=((uint32*)src)[0];
  ((uint32*)dest)[1]=((uint32*)src)[1];
  ((uint32*)dest)[2]=((uint32*)src)[2];
  ((uint32*)dest)[3]=((uint32*)src)[3];
#else
  for (int I=0;I<16;I++)
    dest[I]=src[I];
#endif
}


//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// API
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////

Rijndael::Rijndael()
{
  if (S[0]==0)
    GenerateTables();
  CBCMode = true; // Always true for RAR.
}


void Rijndael::Init(bool Encrypt,const byte *key,uint keyLen,const byte * initVector)
{
#ifdef USE_SSE
  // Check SSE here instead of constructor, so if object is a part of some
  // structure memset'ed before use, this variable is not lost.
  int CPUInfo[4];
  __cpuid(CPUInfo, 1);
  AES_NI=(CPUInfo[2] & 0x2000000)!=0;
#endif

  uint uKeyLenInBytes;
  switch(keyLen)
  {
    case 128:
      uKeyLenInBytes = 16;
      m_uRounds = 10;
      break;
    case 192:
      uKeyLenInBytes = 24;
      m_uRounds = 12;
      break;
    case 256:
      uKeyLenInBytes = 32;
      m_uRounds = 14;
      break;
  }

  byte keyMatrix[_MAX_KEY_COLUMNS][4];

  for(uint i = 0; i < uKeyLenInBytes; i++)
    keyMatrix[i >> 2][i & 3] = key[i]; 

  if (initVector==NULL)
    memset(m_initVector, 0, sizeof(m_initVector));
  else
    for(int i = 0; i < MAX_IV_SIZE; i++)
      m_initVector[i] = initVector[i];

  keySched(keyMatrix);

  if(!Encrypt)
    keyEncToDec();
}

void Rijndael::blockEncrypt(const byte *input,size_t inputLen,byte *outBuffer)
{
  if (inputLen <= 0)
    return;

  size_t numBlocks = inputLen/16;
#ifdef USE_SSE
  if (AES_NI)
  {
    blockEncryptSSE(input,numBlocks,outBuffer);
    return;
  }
#endif
  
  byte *prevBlock = m_initVector;
  for(size_t i = numBlocks;i > 0;i--)
  {
    byte block[16];
    if (CBCMode)
      Xor128(block,prevBlock,input);
    else
      Copy128(block,input);

    byte temp[4][4];

    Xor128(temp,block,m_expandedKey[0]);
    Xor128(outBuffer,   T1[temp[0][0]],T2[temp[1][1]],T3[temp[2][2]],T4[temp[3][3]]);
    Xor128(outBuffer+4, T1[temp[1][0]],T2[temp[2][1]],T3[temp[3][2]],T4[temp[0][3]]);
    Xor128(outBuffer+8, T1[temp[2][0]],T2[temp[3][1]],T3[temp[0][2]],T4[temp[1][3]]);
    Xor128(outBuffer+12,T1[temp[3][0]],T2[temp[0][1]],T3[temp[1][2]],T4[temp[2][3]]);

    for(int r = 1; r < m_uRounds-1; r++)
    {
      Xor128(temp,outBuffer,m_expandedKey[r]);
      Xor128(outBuffer,   T1[temp[0][0]],T2[temp[1][1]],T3[temp[2][2]],T4[temp[3][3]]);
      Xor128(outBuffer+4, T1[temp[1][0]],T2[temp[2][1]],T3[temp[3][2]],T4[temp[0][3]]);
      Xor128(outBuffer+8, T1[temp[2][0]],T2[temp[3][1]],T3[temp[0][2]],T4[temp[1][3]]);
      Xor128(outBuffer+12,T1[temp[3][0]],T2[temp[0][1]],T3[temp[1][2]],T4[temp[2][3]]);
    }
    Xor128(temp,outBuffer,m_expandedKey[m_uRounds-1]);
    outBuffer[ 0] = T1[temp[0][0]][1];
    outBuffer[ 1] = T1[temp[1][1]][1];
    outBuffer[ 2] = T1[temp[2][2]][1];
    outBuffer[ 3] = T1[temp[3][3]][1];
    outBuffer[ 4] = T1[temp[1][0]][1];
    outBuffer[ 5] = T1[temp[2][1]][1];
    outBuffer[ 6] = T1[temp[3][2]][1];
    outBuffer[ 7] = T1[temp[0][3]][1];
    outBuffer[ 8] = T1[temp[2][0]][1];
    outBuffer[ 9] = T1[temp[3][1]][1];
    outBuffer[10] = T1[temp[0][2]][1];
    outBuffer[11] = T1[temp[1][3]][1];
    outBuffer[12] = T1[temp[3][0]][1];
    outBuffer[13] = T1[temp[0][1]][1];
    outBuffer[14] = T1[temp[1][2]][1];
    outBuffer[15] = T1[temp[2][3]][1];
    Xor128(outBuffer,outBuffer,m_expandedKey[m_uRounds]);
    prevBlock=outBuffer;

    outBuffer += 16;
    input += 16;
  }
  Copy128(m_initVector,prevBlock);
}


#ifdef USE_SSE
void Rijndael::blockEncryptSSE(const byte *input,size_t numBlocks,byte *outBuffer)
{
  __m128i v = _mm_loadu_si128((__m128i*)m_initVector);
  __m128i *src=(__m128i*)input;
  __m128i *dest=(__m128i*)outBuffer;
  __m128i *rkey=(__m128i*)m_expandedKey;
  while (numBlocks > 0)
  {
    __m128i d = _mm_loadu_si128(src++);
    if (CBCMode)
      v = _mm_xor_si128(v, d);
    else
      v = d;
    __m128i r0 = _mm_loadu_si128(rkey);
    v = _mm_xor_si128(v, r0);
    
    for (int i=1; i<m_uRounds; i++)
    {
      __m128i ri = _mm_loadu_si128(rkey + i);
      v = _mm_aesenc_si128(v, ri);
    }

    __m128i rl = _mm_loadu_si128(rkey + m_uRounds);
    v = _mm_aesenclast_si128(v, rl);
    _mm_storeu_si128(dest++,v);
    numBlocks--;
  }
  _mm_storeu_si128((__m128i*)m_initVector,v);
}
#endif

  
void Rijndael::blockDecrypt(const byte *input, size_t inputLen, byte *outBuffer)
{
  if (inputLen <= 0)
    return;

  size_t numBlocks=inputLen/16;
#ifdef USE_SSE
  if (AES_NI)
  {
    blockDecryptSSE(input,numBlocks,outBuffer);
    return;
  }
#endif

  byte block[16], iv[4][4];
  memcpy(iv,m_initVector,16); 

  for (size_t i = numBlocks; i > 0; i--)
  {
    byte temp[4][4];
    
    Xor128(temp,input,m_expandedKey[m_uRounds]);

    Xor128(block,   T5[temp[0][0]],T6[temp[3][1]],T7[temp[2][2]],T8[temp[1][3]]);
    Xor128(block+4, T5[temp[1][0]],T6[temp[0][1]],T7[temp[3][2]],T8[temp[2][3]]);
    Xor128(block+8, T5[temp[2][0]],T6[temp[1][1]],T7[temp[0][2]],T8[temp[3][3]]);
    Xor128(block+12,T5[temp[3][0]],T6[temp[2][1]],T7[temp[1][2]],T8[temp[0][3]]);

    for(int r = m_uRounds-1; r > 1; r--)
    {
      Xor128(temp,block,m_expandedKey[r]);
      Xor128(block,   T5[temp[0][0]],T6[temp[3][1]],T7[temp[2][2]],T8[temp[1][3]]);
      Xor128(block+4, T5[temp[1][0]],T6[temp[0][1]],T7[temp[3][2]],T8[temp[2][3]]);
      Xor128(block+8, T5[temp[2][0]],T6[temp[1][1]],T7[temp[0][2]],T8[temp[3][3]]);
      Xor128(block+12,T5[temp[3][0]],T6[temp[2][1]],T7[temp[1][2]],T8[temp[0][3]]);
    }
   
    Xor128(temp,block,m_expandedKey[1]);
    block[ 0] = S5[temp[0][0]];
    block[ 1] = S5[temp[3][1]];
    block[ 2] = S5[temp[2][2]];
    block[ 3] = S5[temp[1][3]];
    block[ 4] = S5[temp[1][0]];
    block[ 5] = S5[temp[0][1]];
    block[ 6] = S5[temp[3][2]];
    block[ 7] = S5[temp[2][3]];
    block[ 8] = S5[temp[2][0]];
    block[ 9] = S5[temp[1][1]];
    block[10] = S5[temp[0][2]];
    block[11] = S5[temp[3][3]];
    block[12] = S5[temp[3][0]];
    block[13] = S5[temp[2][1]];
    block[14] = S5[temp[1][2]];
    block[15] = S5[temp[0][3]];
    Xor128(block,block,m_expandedKey[0]);

    if (CBCMode)
      Xor128(block,block,iv);

    Copy128((byte*)iv,input);
    Copy128(outBuffer,block);

    input += 16;
    outBuffer += 16;
  }

  memcpy(m_initVector,iv,16);
}


#ifdef USE_SSE
void Rijndael::blockDecryptSSE(const byte *input, size_t numBlocks, byte *outBuffer)
{
  __m128i initVector = _mm_loadu_si128((__m128i*)m_initVector);
  __m128i *src=(__m128i*)input;
  __m128i *dest=(__m128i*)outBuffer;
  __m128i *rkey=(__m128i*)m_expandedKey;
  while (numBlocks > 0)
  {
    __m128i rl = _mm_loadu_si128(rkey + m_uRounds);
    __m128i d = _mm_loadu_si128(src++);
    __m128i v = _mm_xor_si128(rl, d);

    for (int i=m_uRounds-1; i>0; i--)
    {
      __m128i ri = _mm_loadu_si128(rkey + i);
      v = _mm_aesdec_si128(v, ri);
    }
    
    __m128i r0 = _mm_loadu_si128(rkey);
    v = _mm_aesdeclast_si128(v, r0);

    if (CBCMode)
      v = _mm_xor_si128(v, initVector);
    initVector = d;
    _mm_storeu_si128(dest++,v);
    numBlocks--;
  }
  _mm_storeu_si128((__m128i*)m_initVector,initVector);
}
#endif


//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// ALGORITHM
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////


void Rijndael::keySched(byte key[_MAX_KEY_COLUMNS][4])
{
  int j,rconpointer = 0;

  // Calculate the necessary round keys
  // The number of calculations depends on keyBits and blockBits
  int uKeyColumns = m_uRounds - 6;

  byte tempKey[_MAX_KEY_COLUMNS][4];

  // Copy the input key to the temporary key matrix

  memcpy(tempKey,key,sizeof(tempKey));

  int r = 0;
  int t = 0;

  // copy values into round key array
  for(j = 0;(j < uKeyColumns) && (r <= m_uRounds); )
  {
    for(;(j < uKeyColumns) && (t < 4); j++, t++)
      for (int k=0;k<4;k++)
        m_expandedKey[r][t][k]=tempKey[j][k];

    if(t == 4)
    {
      r++;
      t = 0;
    }
  }
    
  while(r <= m_uRounds)
  {
    tempKey[0][0] ^= S[tempKey[uKeyColumns-1][1]];
    tempKey[0][1] ^= S[tempKey[uKeyColumns-1][2]];
    tempKey[0][2] ^= S[tempKey[uKeyColumns-1][3]];
    tempKey[0][3] ^= S[tempKey[uKeyColumns-1][0]];
    tempKey[0][0] ^= rcon[rconpointer++];

    if (uKeyColumns != 8)
      for(j = 1; j < uKeyColumns; j++)
        for (int k=0;k<4;k++)
          tempKey[j][k] ^= tempKey[j-1][k];
    else
    {
      for(j = 1; j < uKeyColumns/2; j++)
        for (int k=0;k<4;k++)
          tempKey[j][k] ^= tempKey[j-1][k];

      tempKey[uKeyColumns/2][0] ^= S[tempKey[uKeyColumns/2 - 1][0]];
      tempKey[uKeyColumns/2][1] ^= S[tempKey[uKeyColumns/2 - 1][1]];
      tempKey[uKeyColumns/2][2] ^= S[tempKey[uKeyColumns/2 - 1][2]];
      tempKey[uKeyColumns/2][3] ^= S[tempKey[uKeyColumns/2 - 1][3]];
      for(j = uKeyColumns/2 + 1; j < uKeyColumns; j++)
        for (int k=0;k<4;k++)
          tempKey[j][k] ^= tempKey[j-1][k];
    }
    for(j = 0; (j < uKeyColumns) && (r <= m_uRounds); )
    {
      for(; (j < uKeyColumns) && (t < 4); j++, t++)
        for (int k=0;k<4;k++)
          m_expandedKey[r][t][k] = tempKey[j][k];
      if(t == 4)
      {
        r++;
        t = 0;
      }
    }
  }   
}

void Rijndael::keyEncToDec()
{
  for(int r = 1; r < m_uRounds; r++)
  {
    byte n_expandedKey[4][4];
    for (int i = 0; i < 4; i++)
      for (int j = 0; j < 4; j++)
      {
        byte *w=m_expandedKey[r][j];
        n_expandedKey[j][i]=U1[w[0]][i]^U2[w[1]][i]^U3[w[2]][i]^U4[w[3]][i];
      }
    memcpy(m_expandedKey[r],n_expandedKey,sizeof(m_expandedKey[0]));
  }
} 


#define ff_poly 0x011b
#define ff_hi   0x80

#define FFinv(x)    ((x) ? pow[255 - log[x]]: 0)

#define FFmul02(x) (x ? pow[log[x] + 0x19] : 0)
#define FFmul03(x) (x ? pow[log[x] + 0x01] : 0)
#define FFmul09(x) (x ? pow[log[x] + 0xc7] : 0)
#define FFmul0b(x) (x ? pow[log[x] + 0x68] : 0)
#define FFmul0d(x) (x ? pow[log[x] + 0xee] : 0)
#define FFmul0e(x) (x ? pow[log[x] + 0xdf] : 0)
#define fwd_affine(x) \
    (w = (uint)x, w ^= (w<<1)^(w<<2)^(w<<3)^(w<<4), (byte)(0x63^(w^(w>>8))))

#define inv_affine(x) \
    (w = (uint)x, w = (w<<1)^(w<<3)^(w<<6), (byte)(0x05^(w^(w>>8))))

void Rijndael::GenerateTables()
{
  unsigned char pow[512],log[256];
  int i = 0, w = 1; 
  do
  {   
    pow[i] = (byte)w;
    pow[i + 255] = (byte)w;
    log[w] = (byte)i++;
    w ^=  (w << 1) ^ (w & ff_hi ? ff_poly : 0);
  } while (w != 1);
 
  for (int i = 0,w = 1; i < sizeof(rcon)/sizeof(rcon[0]); i++)
  {
    rcon[i] = w;
    w = (w << 1) ^ (w & ff_hi ? ff_poly : 0);
  }
  for(int i = 0; i < 256; ++i)
  {   
    unsigned char b=S[i]=fwd_affine(FFinv((byte)i));
    T1[i][1]=T1[i][2]=T2[i][2]=T2[i][3]=T3[i][0]=T3[i][3]=T4[i][0]=T4[i][1]=b;
    T1[i][0]=T2[i][1]=T3[i][2]=T4[i][3]=FFmul02(b);
    T1[i][3]=T2[i][0]=T3[i][1]=T4[i][2]=FFmul03(b);
    S5[i] = b = FFinv(inv_affine((byte)i));
    U1[b][3]=U2[b][0]=U3[b][1]=U4[b][2]=T5[i][3]=T6[i][0]=T7[i][1]=T8[i][2]=FFmul0b(b);
    U1[b][1]=U2[b][2]=U3[b][3]=U4[b][0]=T5[i][1]=T6[i][2]=T7[i][3]=T8[i][0]=FFmul09(b);
    U1[b][2]=U2[b][3]=U3[b][0]=U4[b][1]=T5[i][2]=T6[i][3]=T7[i][0]=T8[i][1]=FFmul0d(b);
    U1[b][0]=U2[b][1]=U3[b][2]=U4[b][3]=T5[i][0]=T6[i][1]=T7[i][2]=T8[i][3]=FFmul0e(b);
  }
}


#if 0
static void TestRijndael();
struct TestRij {TestRij() {TestRijndael();exit(0);}} GlobalTestRij;

// Test CBC encryption according to NIST 800-38A.
void TestRijndael()
{
  byte IV[16]={0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f};
  byte PT[64]={
    0x6b,0xc1,0xbe,0xe2,0x2e,0x40,0x9f,0x96,0xe9,0x3d,0x7e,0x11,0x73,0x93,0x17,0x2a,
    0xae,0x2d,0x8a,0x57,0x1e,0x03,0xac,0x9c,0x9e,0xb7,0x6f,0xac,0x45,0xaf,0x8e,0x51,
    0x30,0xc8,0x1c,0x46,0xa3,0x5c,0xe4,0x11,0xe5,0xfb,0xc1,0x19,0x1a,0x0a,0x52,0xef,
    0xf6,0x9f,0x24,0x45,0xdf,0x4f,0x9b,0x17,0xad,0x2b,0x41,0x7b,0xe6,0x6c,0x37,0x10,
  };

  byte Key128[16]={0x2b,0x7e,0x15,0x16,0x28,0xae,0xd2,0xa6,0xab,0xf7,0x15,0x88,0x09,0xcf,0x4f,0x3c};
  byte Chk128[16]={0x3f,0xf1,0xca,0xa1,0x68,0x1f,0xac,0x09,0x12,0x0e,0xca,0x30,0x75,0x86,0xe1,0xa7};
  byte Key192[24]={0x8e,0x73,0xb0,0xf7,0xda,0x0e,0x64,0x52,0xc8,0x10,0xf3,0x2b,0x80,0x90,0x79,0xe5,0x62,0xf8,0xea,0xd2,0x52,0x2c,0x6b,0x7b};
  byte Chk192[16]={0x08,0xb0,0xe2,0x79,0x88,0x59,0x88,0x81,0xd9,0x20,0xa9,0xe6,0x4f,0x56,0x15,0xcd};
  byte Key256[32]={0x60,0x3d,0xeb,0x10,0x15,0xca,0x71,0xbe,0x2b,0x73,0xae,0xf0,0x85,0x7d,0x77,0x81,0x1f,0x35,0x2c,0x07,0x3b,0x61,0x08,0xd7,0x2d,0x98,0x10,0xa3,0x09,0x14,0xdf,0xf4};
  byte Chk256[16]={0xb2,0xeb,0x05,0xe2,0xc3,0x9b,0xe9,0xfc,0xda,0x6c,0x19,0x07,0x8c,0x6a,0x9d,0x1b};
  byte *Key[3]={Key128,Key192,Key256};
  byte *Chk[3]={Chk128,Chk192,Chk256};

  Rijndael rij; // Declare outside of loop to test re-initialization.
  for (uint L=0;L<3;L++)
  {
    byte Out[16];
    wchar Str[sizeof(Out)*2+1];

    uint KeyLength=128+L*64;
    rij.Init(true,Key[L],KeyLength,IV);
    for (uint I=0;I<sizeof(PT);I+=16)
      rij.blockEncrypt(PT+I,16,Out);
    BinToHex(Chk[L],16,NULL,Str,ASIZE(Str));
    mprintf(L"\nAES-%d expected: %s",KeyLength,Str);
    BinToHex(Out,sizeof(Out),NULL,Str,ASIZE(Str));
    mprintf(L"\nAES-%d result:   %s",KeyLength,Str);
    if (memcmp(Out,Chk[L],16)==0)
      mprintf(L" OK");
    else
    {
      mprintf(L" FAILED");
      getchar();
    }
  }
}
#endif