Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/mpc-hc/sanear.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'dll/src/baseclasses/transip.cpp')
-rw-r--r--dll/src/baseclasses/transip.cpp974
1 files changed, 0 insertions, 974 deletions
diff --git a/dll/src/baseclasses/transip.cpp b/dll/src/baseclasses/transip.cpp
deleted file mode 100644
index e8e12eb..0000000
--- a/dll/src/baseclasses/transip.cpp
+++ /dev/null
@@ -1,974 +0,0 @@
-//------------------------------------------------------------------------------
-// File: TransIP.cpp
-//
-// Desc: DirectShow base classes - implements class for simple Transform-
-// In-Place filters such as audio.
-//
-// Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved.
-//------------------------------------------------------------------------------
-
-
-// How allocators are decided.
-//
-// An in-place transform tries to do its work in someone else's buffers.
-// It tries to persuade the filters on either side to use the same allocator
-// (and for that matter the same media type). In desperation, if the downstream
-// filter refuses to supply an allocator and the upstream filter offers only
-// a read-only one then it will provide an allocator.
-// if the upstream filter insists on a read-only allocator then the transform
-// filter will (reluctantly) copy the data before transforming it.
-//
-// In order to pass an allocator through it needs to remember the one it got
-// from the first connection to pass it on to the second one.
-//
-// It is good if we can avoid insisting on a particular order of connection
-// (There is a precedent for insisting on the input
-// being connected first. Insisting on the output being connected first is
-// not allowed. That would break RenderFile.)
-//
-// The base pin classes (CBaseOutputPin and CBaseInputPin) both have a
-// m_pAllocator member which is used in places like
-// CBaseOutputPin::GetDeliveryBuffer and CBaseInputPin::Inactive.
-// To avoid lots of extra overriding, we should keep these happy
-// by using these pointers.
-//
-// When each pin is connected, it will set the corresponding m_pAllocator
-// and will have a single ref-count on that allocator.
-//
-// Refcounts are acquired by GetAllocator calls which return AddReffed
-// allocators and are released in one of:
-// CBaseInputPin::Disconnect
-// CBaseOutputPin::BreakConect
-// In each case m_pAllocator is set to NULL after the release, so this
-// is the last chance to ever release it. If there should ever be
-// multiple refcounts associated with the same pointer, this had better
-// be cleared up before that happens. To avoid such problems, we'll
-// stick with one per pointer.
-
-
-
-// RECONNECTING and STATE CHANGES
-//
-// Each pin could be disconnected, connected with a read-only allocator,
-// connected with an upstream read/write allocator, connected with an
-// allocator from downstream or connected with its own allocator.
-// Five states for each pin gives a data space of 25 states.
-//
-// Notation:
-//
-// R/W == read/write
-// R-O == read-only
-//
-// <input pin state> <output pin state> <comments>
-//
-// 00 means an unconnected pin.
-// <- means using a R/W allocator from the upstream filter
-// <= means using a R-O allocator from an upstream filter
-// || means using our own (R/W) allocator.
-// -> means using a R/W allocator from a downstream filter
-// (a R-O allocator from downstream is nonsense, it can't ever work).
-//
-//
-// That makes 25 possible states. Some states are nonsense (two different
-// allocators from the same place). These are just an artifact of the notation.
-// <= <- Nonsense.
-// <- <= Nonsense
-// Some states are illegal (the output pin never accepts a R-O allocator):
-// 00 <= !! Error !!
-// <= <= !! Error !!
-// || <= !! Error !!
-// -> <= !! Error !!
-// Three states appears to be inaccessible:
-// -> || Inaccessible
-// || -> Inaccessible
-// || <- Inaccessible
-// Some states only ever occur as intermediates with a pending reconnect which
-// is guaranteed to finish in another state.
-// -> 00 ?? unstable goes to || 00
-// 00 <- ?? unstable goes to 00 ||
-// -> <- ?? unstable goes to -> ->
-// <- || ?? unstable goes to <- <-
-// <- -> ?? unstable goes to <- <-
-// And that leaves 11 possible resting states:
-// 1 00 00 Nothing connected.
-// 2 <- 00 Input pin connected.
-// 3 <= 00 Input pin connected using R-O allocator.
-// 4 || 00 Needs several state changes to get here.
-// 5 00 || Output pin connected using our allocator
-// 6 00 -> Downstream only connected
-// 7 || || Undesirable but can be forced upon us.
-// 8 <= || Copy forced. <= -> is preferable
-// 9 <= -> OK - forced to copy.
-// 10 <- <- Transform in place (ideal)
-// 11 -> -> Transform in place (ideal)
-//
-// The object of the exercise is to ensure that we finish up in states
-// 10 or 11 whenever possible. State 10 is only possible if the upstream
-// filter has a R/W allocator (the AVI splitter notoriously
-// doesn't) and state 11 is only possible if the downstream filter does
-// offer an allocator.
-//
-// The transition table (entries marked * go via a reconnect)
-//
-// There are 8 possible transitions:
-// A: Connect upstream to filter with R-O allocator that insists on using it.
-// B: Connect upstream to filter with R-O allocator but chooses not to use it.
-// C: Connect upstream to filter with R/W allocator and insists on using it.
-// D: Connect upstream to filter with R/W allocator but chooses not to use it.
-// E: Connect downstream to a filter that offers an allocator
-// F: Connect downstream to a filter that does not offer an allocator
-// G: disconnect upstream
-// H: Disconnect downstream
-//
-// A B C D E F G H
-// ---------------------------------------------------------
-// 00 00 1 | 3 3 2 2 6 5 . . |1 00 00
-// <- 00 2 | . . . . *10/11 10 1 . |2 <- 00
-// <= 00 3 | . . . . *9/11 *7/8 1 . |3 <= 00
-// || 00 4 | . . . . *8 *7 1 . |4 || 00
-// 00 || 5 | 8 7 *10 7 . . . 1 |5 00 ||
-// 00 -> 6 | 9 11 *10 11 . . . 1 |6 00 ->
-// || || 7 | . . . . . . 5 4 |7 || ||
-// <= || 8 | . . . . . . 5 3 |8 <= ||
-// <= -> 9 | . . . . . . 6 3 |9 <= ->
-// <- <- 10| . . . . . . *5/6 2 |10 <- <-
-// -> -> 11| . . . . . . 6 *2/3 |11 -> ->
-// ---------------------------------------------------------
-// A B C D E F G H
-//
-// All these states are accessible without requiring any filter to
-// change its behaviour but not all transitions are accessible, for
-// instance a transition from state 4 to anywhere other than
-// state 8 requires that the upstream filter first offer a R-O allocator
-// and then changes its mind and offer R/W. This is NOT allowable - it
-// leads to things like the output pin getting a R/W allocator from
-// upstream and then the input pin being told it can only have a R-O one.
-// Note that you CAN change (say) the upstream filter for a different one, but
-// only as a disconnect / connect, not as a Reconnect. (Exercise for
-// the reader is to see how you get into state 4).
-//
-// The reconnection stuff goes as follows (some of the cases shown here as
-// "no reconnect" may get one to finalise media type - an old story).
-// If there is a reconnect where it says "no reconnect" here then the
-// reconnection must not change the allocator choice.
-//
-// state 2: <- 00 transition E <- <- case C <- <- (no change)
-// case D -> <- and then to -> ->
-//
-// state 2: <- 00 transition F <- <- (no reconnect)
-//
-// state 3: <= 00 transition E <= -> case A <= -> (no change)
-// case B -> ->
-// transition F <= || case A <= || (no change)
-// case B || ||
-//
-// state 4: || 00 transition E || || case B -> || and then all cases to -> ->
-// F || || case B || || (no change)
-//
-// state 5: 00 || transition A <= || (no reconnect)
-// B || || (no reconnect)
-// C <- || all cases <- <-
-// D || || (unfortunate, but upstream's choice)
-//
-// state 6: 00 -> transition A <= -> (no reconnect)
-// B -> -> (no reconnect)
-// C <- -> all cases <- <-
-// D -> -> (no reconnect)
-//
-// state 10:<- <- transition G 00 <- case E 00 ->
-// case F 00 ||
-//
-// state 11:-> -> transition H -> 00 case A <= 00 (schizo)
-// case B <= 00
-// case C <- 00 (schizo)
-// case D <- 00
-//
-// The Rules:
-// To sort out media types:
-// The input is reconnected
-// if the input pin is connected and the output pin connects
-// The output is reconnected
-// If the output pin is connected
-// and the input pin connects to a different media type
-//
-// To sort out allocators:
-// The input is reconnected
-// if the output disconnects and the input was using a downstream allocator
-// The output pin calls SetAllocator to pass on a new allocator
-// if the output is connected and
-// if the input disconnects and the output was using an upstream allocator
-// if the input acquires an allocator different from the output one
-// and that new allocator is not R-O
-//
-// Data is copied (i.e. call getbuffer and copy the data before transforming it)
-// if the two allocators are different.
-
-
-
-// CHAINS of filters:
-//
-// We sit between two filters (call them A and Z). We should finish up
-// with the same allocator on both of our pins and that should be the
-// same one that A and Z would have agreed on if we hadn't been in the
-// way. Furthermore, it should not matter how many in-place transforms
-// are in the way. Let B, C, D... be in-place transforms ("us").
-// Here's how it goes:
-//
-// 1.
-// A connects to B. They agree on A's allocator.
-// A-a->B
-//
-// 2.
-// B connects to C. Same story. There is no point in a reconnect, but
-// B will request an input reconnect anyway.
-// A-a->B-a->C
-//
-// 3.
-// C connects to Z.
-// C insists on using A's allocator, but compromises by requesting a reconnect.
-// of C's input.
-// A-a->B-?->C-a->Z
-//
-// We now have pending reconnects on both A--->B and B--->C
-//
-// 4.
-// The A--->B link is reconnected.
-// A asks B for an allocator. B sees that it has a downstream connection so
-// asks its downstream input pin i.e. C's input pin for an allocator. C sees
-// that it too has a downstream connection so asks Z for an allocator.
-//
-// Even though Z's input pin is connected, it is being asked for an allocator.
-// It could refuse, in which case the chain is done and will use A's allocator
-// Alternatively, Z may supply one. A chooses either Z's or A's own one.
-// B's input pin gets NotifyAllocator called to tell it the decision and it
-// propagates this downstream by calling ReceiveAllocator on its output pin
-// which calls NotifyAllocator on the next input pin downstream etc.
-// If the choice is Z then it goes:
-// A-z->B-a->C-a->Z
-// A-z->B-z->C-a->Z
-// A-z->B-z->C-z->Z
-//
-// And that's IT!! Any further (essentially spurious) reconnects peter out
-// with no change in the chain.
-
-#include <streams.h>
-#include <measure.h>
-#include <transip.h>
-
-
-// =================================================================
-// Implements the CTransInPlaceFilter class
-// =================================================================
-
-CTransInPlaceFilter::CTransInPlaceFilter
- ( __in_opt LPCTSTR pName,
- __inout_opt LPUNKNOWN pUnk,
- REFCLSID clsid,
- __inout HRESULT *phr,
- bool bModifiesData
- )
- : CTransformFilter(pName, pUnk, clsid),
- m_bModifiesData(bModifiesData)
-{
-#ifdef PERF
- RegisterPerfId();
-#endif // PERF
-
-} // constructor
-
-#ifdef UNICODE
-CTransInPlaceFilter::CTransInPlaceFilter
- ( __in_opt LPCSTR pName,
- __inout_opt LPUNKNOWN pUnk,
- REFCLSID clsid,
- __inout HRESULT *phr,
- bool bModifiesData
- )
- : CTransformFilter(pName, pUnk, clsid),
- m_bModifiesData(bModifiesData)
-{
-#ifdef PERF
- RegisterPerfId();
-#endif // PERF
-
-} // constructor
-#endif
-
-// return a non-addrefed CBasePin * for the user to addref if he holds onto it
-// for longer than his pointer to us. We create the pins dynamically when they
-// are asked for rather than in the constructor. This is because we want to
-// give the derived class an oppportunity to return different pin objects
-
-// As soon as any pin is needed we create both (this is different from the
-// usual transform filter) because enumerators, allocators etc are passed
-// through from one pin to another and it becomes very painful if the other
-// pin isn't there. If we fail to create either pin we ensure we fail both.
-
-CBasePin *
-CTransInPlaceFilter::GetPin(int n)
-{
- HRESULT hr = S_OK;
-
- // Create an input pin if not already done
-
- if (m_pInput == NULL) {
-
- m_pInput = new CTransInPlaceInputPin( NAME("TransInPlace input pin")
- , this // Owner filter
- , &hr // Result code
- , L"Input" // Pin name
- );
-
- // Constructor for CTransInPlaceInputPin can't fail
- ASSERT(SUCCEEDED(hr));
- }
-
- // Create an output pin if not already done
-
- if (m_pInput!=NULL && m_pOutput == NULL) {
-
- m_pOutput = new CTransInPlaceOutputPin( NAME("TransInPlace output pin")
- , this // Owner filter
- , &hr // Result code
- , L"Output" // Pin name
- );
-
- // a failed return code should delete the object
-
- ASSERT(SUCCEEDED(hr));
- if (m_pOutput == NULL) {
- delete m_pInput;
- m_pInput = NULL;
- }
- }
-
- // Return the appropriate pin
-
- ASSERT (n>=0 && n<=1);
- if (n == 0) {
- return m_pInput;
- } else if (n==1) {
- return m_pOutput;
- } else {
- return NULL;
- }
-
-} // GetPin
-
-
-
-// dir is the direction of our pin.
-// pReceivePin is the pin we are connecting to.
-HRESULT CTransInPlaceFilter::CompleteConnect(PIN_DIRECTION dir, IPin *pReceivePin)
-{
- UNREFERENCED_PARAMETER(pReceivePin);
- ASSERT(m_pInput);
- ASSERT(m_pOutput);
-
- // if we are not part of a graph, then don't indirect the pointer
- // this probably prevents use of the filter without a filtergraph
- if (!m_pGraph) {
- return VFW_E_NOT_IN_GRAPH;
- }
-
- // Always reconnect the input to account for buffering changes
- //
- // Because we don't get to suggest a type on ReceiveConnection
- // we need another way of making sure the right type gets used.
- //
- // One way would be to have our EnumMediaTypes return our output
- // connection type first but more deterministic and simple is to
- // call ReconnectEx passing the type we want to reconnect with
- // via the base class ReconeectPin method.
-
- if (dir == PINDIR_OUTPUT) {
- if( m_pInput->IsConnected() ) {
- return ReconnectPin( m_pInput, &m_pOutput->CurrentMediaType() );
- }
- return NOERROR;
- }
-
- ASSERT(dir == PINDIR_INPUT);
-
- // Reconnect output if necessary
-
- if( m_pOutput->IsConnected() ) {
-
- if ( m_pInput->CurrentMediaType()
- != m_pOutput->CurrentMediaType()
- ) {
- return ReconnectPin( m_pOutput, &m_pInput->CurrentMediaType() );
- }
- }
- return NOERROR;
-
-} // ComnpleteConnect
-
-
-//
-// DecideBufferSize
-//
-// Tell the output pin's allocator what size buffers we require.
-// *pAlloc will be the allocator our output pin is using.
-//
-
-HRESULT CTransInPlaceFilter::DecideBufferSize
- ( IMemAllocator *pAlloc
- , __inout ALLOCATOR_PROPERTIES *pProperties
- )
-{
- ALLOCATOR_PROPERTIES Request, Actual;
- HRESULT hr;
-
- // If we are connected upstream, get his views
- if (m_pInput->IsConnected()) {
- // Get the input pin allocator, and get its size and count.
- // we don't care about his alignment and prefix.
-
- hr = InputPin()->PeekAllocator()->GetProperties(&Request);
- if (FAILED(hr)) {
- // Input connected but with a secretive allocator - enough!
- return hr;
- }
- } else {
- // Propose one byte
- // If this isn't enough then when the other pin does get connected
- // we can revise it.
- ZeroMemory(&Request, sizeof(Request));
- Request.cBuffers = 1;
- Request.cbBuffer = 1;
- }
-
-
- DbgLog((LOG_MEMORY,1,TEXT("Setting Allocator Requirements")));
- DbgLog((LOG_MEMORY,1,TEXT("Count %d, Size %d"),
- Request.cBuffers, Request.cbBuffer));
-
- // Pass the allocator requirements to our output side
- // but do a little sanity checking first or we'll just hit
- // asserts in the allocator.
-
- pProperties->cBuffers = Request.cBuffers;
- pProperties->cbBuffer = Request.cbBuffer;
- pProperties->cbAlign = Request.cbAlign;
- if (pProperties->cBuffers<=0) {pProperties->cBuffers = 1; }
- if (pProperties->cbBuffer<=0) {pProperties->cbBuffer = 1; }
- hr = pAlloc->SetProperties(pProperties, &Actual);
-
- if (FAILED(hr)) {
- return hr;
- }
-
- DbgLog((LOG_MEMORY,1,TEXT("Obtained Allocator Requirements")));
- DbgLog((LOG_MEMORY,1,TEXT("Count %d, Size %d, Alignment %d"),
- Actual.cBuffers, Actual.cbBuffer, Actual.cbAlign));
-
- // Make sure we got the right alignment and at least the minimum required
-
- if ( (Request.cBuffers > Actual.cBuffers)
- || (Request.cbBuffer > Actual.cbBuffer)
- || (Request.cbAlign > Actual.cbAlign)
- ) {
- return E_FAIL;
- }
- return NOERROR;
-
-} // DecideBufferSize
-
-//
-// Copy
-//
-// return a pointer to an identical copy of pSample
-__out_opt IMediaSample * CTransInPlaceFilter::Copy(IMediaSample *pSource)
-{
- IMediaSample * pDest;
-
- HRESULT hr;
- REFERENCE_TIME tStart, tStop;
- const BOOL bTime = S_OK == pSource->GetTime( &tStart, &tStop);
-
- // this may block for an indeterminate amount of time
- hr = OutputPin()->PeekAllocator()->GetBuffer(
- &pDest
- , bTime ? &tStart : NULL
- , bTime ? &tStop : NULL
- , m_bSampleSkipped ? AM_GBF_PREVFRAMESKIPPED : 0
- );
-
- if (FAILED(hr)) {
- return NULL;
- }
-
- ASSERT(pDest);
- IMediaSample2 *pSample2;
- if (SUCCEEDED(pDest->QueryInterface(IID_IMediaSample2, (void **)&pSample2))) {
- HRESULT hrProps = pSample2->SetProperties(
- FIELD_OFFSET(AM_SAMPLE2_PROPERTIES, pbBuffer),
- (PBYTE)m_pInput->SampleProps());
- pSample2->Release();
- if (FAILED(hrProps)) {
- pDest->Release();
- return NULL;
- }
- } else {
- if (bTime) {
- pDest->SetTime(&tStart, &tStop);
- }
-
- if (S_OK == pSource->IsSyncPoint()) {
- pDest->SetSyncPoint(TRUE);
- }
- if (S_OK == pSource->IsDiscontinuity() || m_bSampleSkipped) {
- pDest->SetDiscontinuity(TRUE);
- }
- if (S_OK == pSource->IsPreroll()) {
- pDest->SetPreroll(TRUE);
- }
-
- // Copy the media type
- AM_MEDIA_TYPE *pMediaType;
- if (S_OK == pSource->GetMediaType(&pMediaType)) {
- pDest->SetMediaType(pMediaType);
- DeleteMediaType( pMediaType );
- }
-
- }
-
- m_bSampleSkipped = FALSE;
-
- // Copy the sample media times
- REFERENCE_TIME TimeStart, TimeEnd;
- if (pSource->GetMediaTime(&TimeStart,&TimeEnd) == NOERROR) {
- pDest->SetMediaTime(&TimeStart,&TimeEnd);
- }
-
- // Copy the actual data length and the actual data.
- {
- const long lDataLength = pSource->GetActualDataLength();
- if (FAILED(pDest->SetActualDataLength(lDataLength))) {
- pDest->Release();
- return NULL;
- }
-
- // Copy the sample data
- {
- BYTE *pSourceBuffer, *pDestBuffer;
- long lSourceSize = pSource->GetSize();
- long lDestSize = pDest->GetSize();
-
- ASSERT(lDestSize >= lSourceSize && lDestSize >= lDataLength);
-
- if (FAILED(pSource->GetPointer(&pSourceBuffer)) ||
- FAILED(pDest->GetPointer(&pDestBuffer)) ||
- lDestSize < lDataLength ||
- lDataLength < 0) {
- pDest->Release();
- return NULL;
- }
- ASSERT(lDestSize == 0 || pSourceBuffer != NULL && pDestBuffer != NULL);
-
- CopyMemory( (PVOID) pDestBuffer, (PVOID) pSourceBuffer, lDataLength );
- }
- }
-
- return pDest;
-
-} // Copy
-
-
-// override this to customize the transform process
-
-HRESULT
-CTransInPlaceFilter::Receive(IMediaSample *pSample)
-{
- /* Check for other streams and pass them on */
- AM_SAMPLE2_PROPERTIES * const pProps = m_pInput->SampleProps();
- if (pProps->dwStreamId != AM_STREAM_MEDIA) {
- return m_pOutput->Deliver(pSample);
- }
- HRESULT hr;
-
- // Start timing the TransInPlace (if PERF is defined)
- MSR_START(m_idTransInPlace);
-
- if (UsingDifferentAllocators()) {
-
- // We have to copy the data.
-
- pSample = Copy(pSample);
-
- if (pSample==NULL) {
- MSR_STOP(m_idTransInPlace);
- return E_UNEXPECTED;
- }
- }
-
- // have the derived class transform the data
- hr = Transform(pSample);
-
- // Stop the clock and log it (if PERF is defined)
- MSR_STOP(m_idTransInPlace);
-
- if (FAILED(hr)) {
- DbgLog((LOG_TRACE, 1, TEXT("Error from TransInPlace")));
- if (UsingDifferentAllocators()) {
- pSample->Release();
- }
- return hr;
- }
-
- // the Transform() function can return S_FALSE to indicate that the
- // sample should not be delivered; we only deliver the sample if it's
- // really S_OK (same as NOERROR, of course.)
- if (hr == NOERROR) {
- hr = m_pOutput->Deliver(pSample);
- } else {
- // But it would be an error to return this private workaround
- // to the caller ...
- if (S_FALSE == hr) {
- // S_FALSE returned from Transform is a PRIVATE agreement
- // We should return NOERROR from Receive() in this cause because
- // returning S_FALSE from Receive() means that this is the end
- // of the stream and no more data should be sent.
- m_bSampleSkipped = TRUE;
- if (!m_bQualityChanged) {
- NotifyEvent(EC_QUALITY_CHANGE,0,0);
- m_bQualityChanged = TRUE;
- }
- hr = NOERROR;
- }
- }
-
- // release the output buffer. If the connected pin still needs it,
- // it will have addrefed it itself.
- if (UsingDifferentAllocators()) {
- pSample->Release();
- }
-
- return hr;
-
-} // Receive
-
-
-
-// =================================================================
-// Implements the CTransInPlaceInputPin class
-// =================================================================
-
-
-// constructor
-
-CTransInPlaceInputPin::CTransInPlaceInputPin
- ( __in_opt LPCTSTR pObjectName
- , __inout CTransInPlaceFilter *pFilter
- , __inout HRESULT *phr
- , __in_opt LPCWSTR pName
- )
- : CTransformInputPin(pObjectName,
- pFilter,
- phr,
- pName)
- , m_bReadOnly(FALSE)
- , m_pTIPFilter(pFilter)
-{
- DbgLog((LOG_TRACE, 2
- , TEXT("CTransInPlaceInputPin::CTransInPlaceInputPin")));
-
-} // constructor
-
-
-// =================================================================
-// Implements IMemInputPin interface
-// =================================================================
-
-
-// If the downstream filter has one then offer that (even if our own output
-// pin is not using it yet. If the upstream filter chooses it then we will
-// tell our output pin to ReceiveAllocator).
-// Else if our output pin is using an allocator then offer that.
-// ( This could mean offering the upstream filter his own allocator,
-// it could mean offerring our own
-// ) or it could mean offering the one from downstream
-// Else fail to offer any allocator at all.
-
-STDMETHODIMP CTransInPlaceInputPin::GetAllocator(__deref_out IMemAllocator ** ppAllocator)
-{
- CheckPointer(ppAllocator,E_POINTER);
- ValidateReadWritePtr(ppAllocator,sizeof(IMemAllocator *));
- CAutoLock cObjectLock(m_pLock);
-
- HRESULT hr;
-
- if ( m_pTIPFilter->m_pOutput->IsConnected() ) {
- // Store the allocator we got
- hr = m_pTIPFilter->OutputPin()->ConnectedIMemInputPin()
- ->GetAllocator( ppAllocator );
- if (SUCCEEDED(hr)) {
- m_pTIPFilter->OutputPin()->SetAllocator( *ppAllocator );
- }
- }
- else {
- // Help upstream filter (eg TIP filter which is having to do a copy)
- // by providing a temp allocator here - we'll never use
- // this allocator because when our output is connected we'll
- // reconnect this pin
- hr = CTransformInputPin::GetAllocator( ppAllocator );
- }
- return hr;
-
-} // GetAllocator
-
-
-
-/* Get told which allocator the upstream output pin is actually going to use */
-
-
-STDMETHODIMP
-CTransInPlaceInputPin::NotifyAllocator(
- IMemAllocator * pAllocator,
- BOOL bReadOnly)
-{
- HRESULT hr = S_OK;
- CheckPointer(pAllocator,E_POINTER);
- ValidateReadPtr(pAllocator,sizeof(IMemAllocator));
-
- CAutoLock cObjectLock(m_pLock);
-
- m_bReadOnly = bReadOnly;
- // If we modify data then don't accept the allocator if it's
- // the same as the output pin's allocator
-
- // If our output is not connected just accept the allocator
- // We're never going to use this allocator because when our
- // output pin is connected we'll reconnect this pin
- if (!m_pTIPFilter->OutputPin()->IsConnected()) {
- return CTransformInputPin::NotifyAllocator(pAllocator, bReadOnly);
- }
-
- // If the allocator is read-only and we're modifying data
- // and the allocator is the same as the output pin's
- // then reject
- if (bReadOnly && m_pTIPFilter->m_bModifiesData) {
- IMemAllocator *pOutputAllocator =
- m_pTIPFilter->OutputPin()->PeekAllocator();
-
- // Make sure we have an output allocator
- if (pOutputAllocator == NULL) {
- hr = m_pTIPFilter->OutputPin()->ConnectedIMemInputPin()->
- GetAllocator(&pOutputAllocator);
- if(FAILED(hr)) {
- hr = CreateMemoryAllocator(&pOutputAllocator);
- }
- if (SUCCEEDED(hr)) {
- m_pTIPFilter->OutputPin()->SetAllocator(pOutputAllocator);
- pOutputAllocator->Release();
- }
- }
- if (pAllocator == pOutputAllocator) {
- hr = E_FAIL;
- } else if(SUCCEEDED(hr)) {
- // Must copy so set the allocator properties on the output
- ALLOCATOR_PROPERTIES Props, Actual;
- hr = pAllocator->GetProperties(&Props);
- if (SUCCEEDED(hr)) {
- hr = pOutputAllocator->SetProperties(&Props, &Actual);
- }
- if (SUCCEEDED(hr)) {
- if ( (Props.cBuffers > Actual.cBuffers)
- || (Props.cbBuffer > Actual.cbBuffer)
- || (Props.cbAlign > Actual.cbAlign)
- ) {
- hr = E_FAIL;
- }
- }
-
- // Set the allocator on the output pin
- if (SUCCEEDED(hr)) {
- hr = m_pTIPFilter->OutputPin()->ConnectedIMemInputPin()
- ->NotifyAllocator( pOutputAllocator, FALSE );
- }
- }
- } else {
- hr = m_pTIPFilter->OutputPin()->ConnectedIMemInputPin()
- ->NotifyAllocator( pAllocator, bReadOnly );
- if (SUCCEEDED(hr)) {
- m_pTIPFilter->OutputPin()->SetAllocator( pAllocator );
- }
- }
-
- if (SUCCEEDED(hr)) {
-
- // It's possible that the old and the new are the same thing.
- // AddRef before release ensures that we don't unload it.
- pAllocator->AddRef();
-
- if( m_pAllocator != NULL )
- m_pAllocator->Release();
-
- m_pAllocator = pAllocator; // We have an allocator for the input pin
- }
-
- return hr;
-
-} // NotifyAllocator
-
-
-// EnumMediaTypes
-// - pass through to our downstream filter
-STDMETHODIMP CTransInPlaceInputPin::EnumMediaTypes( __deref_out IEnumMediaTypes **ppEnum )
-{
- // Can only pass through if connected
- if( !m_pTIPFilter->m_pOutput->IsConnected() )
- return VFW_E_NOT_CONNECTED;
-
- return m_pTIPFilter->m_pOutput->GetConnected()->EnumMediaTypes( ppEnum );
-
-} // EnumMediaTypes
-
-
-// CheckMediaType
-// - agree to anything if not connected,
-// otherwise pass through to the downstream filter.
-// This assumes that the filter does not change the media type.
-
-HRESULT CTransInPlaceInputPin::CheckMediaType(const CMediaType *pmt )
-{
- HRESULT hr = m_pTIPFilter->CheckInputType(pmt);
- if (hr!=S_OK) return hr;
-
- if( m_pTIPFilter->m_pOutput->IsConnected() )
- return m_pTIPFilter->m_pOutput->GetConnected()->QueryAccept( pmt );
- else
- return S_OK;
-
-} // CheckMediaType
-
-
-// If upstream asks us what our requirements are, we will try to ask downstream
-// if that doesn't work, we'll just take the defaults.
-STDMETHODIMP
-CTransInPlaceInputPin::GetAllocatorRequirements(__out ALLOCATOR_PROPERTIES *pProps)
-{
-
- if( m_pTIPFilter->m_pOutput->IsConnected() )
- return m_pTIPFilter->OutputPin()
- ->ConnectedIMemInputPin()->GetAllocatorRequirements( pProps );
- else
- return E_NOTIMPL;
-
-} // GetAllocatorRequirements
-
-
-// CTransInPlaceInputPin::CompleteConnect() calls CBaseInputPin::CompleteConnect()
-// and then calls CTransInPlaceFilter::CompleteConnect(). It does this because
-// CTransInPlaceFilter::CompleteConnect() can reconnect a pin and we do not
-// want to reconnect a pin if CBaseInputPin::CompleteConnect() fails.
-HRESULT
-CTransInPlaceInputPin::CompleteConnect(IPin *pReceivePin)
-{
- HRESULT hr = CBaseInputPin::CompleteConnect(pReceivePin);
- if (FAILED(hr)) {
- return hr;
- }
-
- return m_pTransformFilter->CompleteConnect(PINDIR_INPUT,pReceivePin);
-} // CompleteConnect
-
-
-// =================================================================
-// Implements the CTransInPlaceOutputPin class
-// =================================================================
-
-
-// constructor
-
-CTransInPlaceOutputPin::CTransInPlaceOutputPin(
- __in_opt LPCTSTR pObjectName,
- __inout CTransInPlaceFilter *pFilter,
- __inout HRESULT * phr,
- __in_opt LPCWSTR pPinName)
- : CTransformOutputPin( pObjectName
- , pFilter
- , phr
- , pPinName),
- m_pTIPFilter(pFilter)
-{
- DbgLog(( LOG_TRACE, 2
- , TEXT("CTransInPlaceOutputPin::CTransInPlaceOutputPin")));
-
-} // constructor
-
-
-// EnumMediaTypes
-// - pass through to our upstream filter
-STDMETHODIMP CTransInPlaceOutputPin::EnumMediaTypes( __deref_out IEnumMediaTypes **ppEnum )
-{
- // Can only pass through if connected.
- if( ! m_pTIPFilter->m_pInput->IsConnected() )
- return VFW_E_NOT_CONNECTED;
-
- return m_pTIPFilter->m_pInput->GetConnected()->EnumMediaTypes( ppEnum );
-
-} // EnumMediaTypes
-
-
-
-// CheckMediaType
-// - agree to anything if not connected,
-// otherwise pass through to the upstream filter.
-
-HRESULT CTransInPlaceOutputPin::CheckMediaType(const CMediaType *pmt )
-{
- // Don't accept any output pin type changes if we're copying
- // between allocators - it's too late to change the input
- // allocator size.
- if (m_pTIPFilter->UsingDifferentAllocators() && !m_pFilter->IsStopped()) {
- if (*pmt == m_mt) {
- return S_OK;
- } else {
- return VFW_E_TYPE_NOT_ACCEPTED;
- }
- }
-
- // Assumes the type does not change. That's why we're calling
- // CheckINPUTType here on the OUTPUT pin.
- HRESULT hr = m_pTIPFilter->CheckInputType(pmt);
- if (hr!=S_OK) return hr;
-
- if( m_pTIPFilter->m_pInput->IsConnected() )
- return m_pTIPFilter->m_pInput->GetConnected()->QueryAccept( pmt );
- else
- return S_OK;
-
-} // CheckMediaType
-
-
-/* Save the allocator pointer in the output pin
-*/
-void
-CTransInPlaceOutputPin::SetAllocator(IMemAllocator * pAllocator)
-{
- pAllocator->AddRef();
- if (m_pAllocator) {
- m_pAllocator->Release();
- }
- m_pAllocator = pAllocator;
-} // SetAllocator
-
-
-// CTransInPlaceOutputPin::CompleteConnect() calls CBaseOutputPin::CompleteConnect()
-// and then calls CTransInPlaceFilter::CompleteConnect(). It does this because
-// CTransInPlaceFilter::CompleteConnect() can reconnect a pin and we do not want to
-// reconnect a pin if CBaseOutputPin::CompleteConnect() fails.
-// CBaseOutputPin::CompleteConnect() often fails when our output pin is being connected
-// to the Video Mixing Renderer.
-HRESULT
-CTransInPlaceOutputPin::CompleteConnect(IPin *pReceivePin)
-{
- HRESULT hr = CBaseOutputPin::CompleteConnect(pReceivePin);
- if (FAILED(hr)) {
- return hr;
- }
-
- return m_pTransformFilter->CompleteConnect(PINDIR_OUTPUT,pReceivePin);
-} // CompleteConnect