Welcome to mirror list, hosted at ThFree Co, Russian Federation.

denoise.c « src - github.com/mumble-voip/rnnoise.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 68f7afc3867052d1f8ecb00da43fb6dad22c882c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include "kiss_fft.h"
#include "common.h"
#include <math.h>
#include "pitch.h"
#include "rnn.h"
#include "rnn_data.h"

#define FRAME_SIZE_SHIFT 2
#define FRAME_SIZE (120<<FRAME_SIZE_SHIFT)
#define WINDOW_SIZE (2*FRAME_SIZE)
#define FREQ_SIZE (FRAME_SIZE + 1)

#define PITCH_MIN_PERIOD 60
#define PITCH_MAX_PERIOD 768
#define PITCH_FRAME_SIZE 960
#define PITCH_BUF_SIZE (PITCH_MAX_PERIOD+PITCH_FRAME_SIZE)

#define SQUARE(x) ((x)*(x))

#define SMOOTH_BANDS 1

#if SMOOTH_BANDS
#define NB_BANDS 22
#else
#define NB_BANDS 21
#endif

#define CEPS_MEM 8
#define NB_DELTA_CEPS 6

#define NB_FEATURES (NB_BANDS+3*NB_DELTA_CEPS+2)


#define TRAINING 0


static const opus_int16 eband5ms[] = {
/*0  200 400 600 800  1k 1.2 1.4 1.6  2k 2.4 2.8 3.2  4k 4.8 5.6 6.8  8k 9.6 12k 15.6 20k*/
  0,  1,  2,  3,  4,  5,  6,  7,  8, 10, 12, 14, 16, 20, 24, 28, 34, 40, 48, 60, 78, 100
};


typedef struct {
  int init;
  kiss_fft_state *kfft;
  float half_window[FRAME_SIZE];
  float dct_table[NB_BANDS*NB_BANDS];
} CommonState;

typedef struct {
  float analysis_mem[FRAME_SIZE];
  float cepstral_mem[CEPS_MEM][NB_BANDS];
  int memid;
  float synthesis_mem[FRAME_SIZE];
  float pitch_buf[PITCH_BUF_SIZE];
  float pitch_enh_buf[PITCH_BUF_SIZE];
  float last_gain;
  int last_period;
  float mem_hp_x[2];
  RNNState rnn;
} DenoiseState;

#if SMOOTH_BANDS
void compute_band_energy(float *bandE, const kiss_fft_cpx *X) {
  int i;
  float sum[NB_BANDS] = {0};
  for (i=0;i<NB_BANDS-1;i++)
  {
    int j;
    int band_size;
    band_size = (eband5ms[i+1]-eband5ms[i])<<FRAME_SIZE_SHIFT;
    for (j=0;j<band_size;j++) {
      float tmp;
      float frac = (float)j/band_size;
      tmp = SQUARE(X[(eband5ms[i]<<FRAME_SIZE_SHIFT) + j].r);
      tmp += SQUARE(X[(eband5ms[i]<<FRAME_SIZE_SHIFT) + j].i);
      sum[i] += (1-frac)*tmp;
      sum[i+1] += frac*tmp;
    }
  }
  sum[0] *= 2;
  sum[NB_BANDS-1] *= 2;
  for (i=0;i<NB_BANDS;i++)
  {
    bandE[i] = sum[i];
  }
}

void compute_band_corr(float *bandE, const kiss_fft_cpx *X, const kiss_fft_cpx *P) {
  int i;
  float sum[NB_BANDS] = {0};
  for (i=0;i<NB_BANDS-1;i++)
  {
    int j;
    int band_size;
    band_size = (eband5ms[i+1]-eband5ms[i])<<FRAME_SIZE_SHIFT;
    for (j=0;j<band_size;j++) {
      float tmp;
      float frac = (float)j/band_size;
      tmp = X[(eband5ms[i]<<FRAME_SIZE_SHIFT) + j].r * P[(eband5ms[i]<<FRAME_SIZE_SHIFT) + j].r;
      tmp += X[(eband5ms[i]<<FRAME_SIZE_SHIFT) + j].i * P[(eband5ms[i]<<FRAME_SIZE_SHIFT) + j].i;
      sum[i] += (1-frac)*tmp;
      sum[i+1] += frac*tmp;
    }
  }
  sum[0] *= 2;
  sum[NB_BANDS-1] *= 2;
  for (i=0;i<NB_BANDS;i++)
  {
    bandE[i] = sum[i];
  }
}

void interp_band_gain(float *g, const float *bandE) {
  int i;
  memset(g, 0, FREQ_SIZE);
  for (i=0;i<NB_BANDS-1;i++)
  {
    int j;
    int band_size;
    band_size = (eband5ms[i+1]-eband5ms[i])<<FRAME_SIZE_SHIFT;
    for (j=0;j<band_size;j++) {
      float frac = (float)j/band_size;
      g[(eband5ms[i]<<FRAME_SIZE_SHIFT) + j] = (1-frac)*bandE[i] + frac*bandE[i+1];
    }
  }
}
#else
void compute_band_energy(float *bandE, const kiss_fft_cpx *X) {
  int i;
  for (i=0;i<NB_BANDS;i++)
  {
    int j;
    opus_val32 sum = 0;
    for (j=0;j<(eband5ms[i+1]-eband5ms[i])<<FRAME_SIZE_SHIFT;j++) {
      sum += SQUARE(X[(eband5ms[i]<<FRAME_SIZE_SHIFT) + j].r);
      sum += SQUARE(X[(eband5ms[i]<<FRAME_SIZE_SHIFT) + j].i);
    }
    bandE[i] = sum;
  }
}

void interp_band_gain(float *g, const float *bandE) {
  int i;
  memset(g, 0, FREQ_SIZE);
  for (i=0;i<NB_BANDS;i++)
  {
    int j;
    for (j=0;j<(eband5ms[i+1]-eband5ms[i])<<FRAME_SIZE_SHIFT;j++)
      g[(eband5ms[i]<<FRAME_SIZE_SHIFT) + j] = bandE[i];
  }
}
#endif


CommonState common;

static void check_init() {
  int i;
  if (common.init) return;
  common.kfft = opus_fft_alloc_twiddles(2*FRAME_SIZE, NULL, NULL, NULL, 0);
  for (i=0;i<FRAME_SIZE;i++)
    common.half_window[i] = sin(.5*M_PI*sin(.5*M_PI*(i+.5)/FRAME_SIZE) * sin(.5*M_PI*(i+.5)/FRAME_SIZE));
  for (i=0;i<NB_BANDS;i++) {
    int j;
    for (j=0;j<NB_BANDS;j++) {
      common.dct_table[i*NB_BANDS + j] = cos((i+.5)*j*M_PI/NB_BANDS);
      if (j==0) common.dct_table[i*NB_BANDS + j] *= sqrt(.5);
    }
  }
  common.init = 1;
}

static void dct(float *out, const float *in) {
  int i;
  check_init();
  for (i=0;i<NB_BANDS;i++) {
    int j;
    float sum = 0;
    for (j=0;j<NB_BANDS;j++) {
      sum += in[j] * common.dct_table[j*NB_BANDS + i];
    }
    out[i] = sum*sqrt(2./22);
  }
}

#if 0
static void idct(float *out, const float *in) {
  int i;
  check_init();
  for (i=0;i<NB_BANDS;i++) {
    int j;
    float sum = 0;
    for (j=0;j<NB_BANDS;j++) {
      sum += in[j] * common.dct_table[i*NB_BANDS + j];
    }
    out[i] = sum*sqrt(2./22);
  }
}
#endif

static void forward_transform(kiss_fft_cpx *out, const float *in) {
  int i;
  kiss_fft_cpx x[WINDOW_SIZE];
  kiss_fft_cpx y[WINDOW_SIZE];
  check_init();
  for (i=0;i<WINDOW_SIZE;i++) {
    x[i].r = in[i];
    x[i].i = 0;
  }
  opus_fft(common.kfft, x, y, 0);
  for (i=0;i<FREQ_SIZE;i++) {
    out[i] = y[i];
  }
}

static void inverse_transform(float *out, const kiss_fft_cpx *in) {
  int i;
  kiss_fft_cpx x[WINDOW_SIZE];
  kiss_fft_cpx y[WINDOW_SIZE];
  check_init();
  for (i=0;i<FREQ_SIZE;i++) {
    x[i] = in[i];
  }
  for (;i<WINDOW_SIZE;i++) {
    x[i].r = x[WINDOW_SIZE - i].r;
    x[i].i = -x[WINDOW_SIZE - i].i;
  }
  opus_fft(common.kfft, x, y, 0);
  /* output in reverse order for IFFT. */
  out[0] = WINDOW_SIZE*y[0].r;
  for (i=1;i<WINDOW_SIZE;i++) {
    out[i] = WINDOW_SIZE*y[WINDOW_SIZE - i].r;
  }
}

static void apply_window(float *x) {
  int i;
  check_init();
  for (i=0;i<FRAME_SIZE;i++) {
    x[i] *= common.half_window[i];
    x[WINDOW_SIZE - 1 - i] *= common.half_window[i];
  }
}

int rnnoise_init(DenoiseState *st) {
  memset(st, 0, sizeof(*st));
  return 0;
}

DenoiseState *rnnoise_create() {
  DenoiseState *st;
  st = malloc(sizeof(DenoiseState));
  rnnoise_init(st);
  return st;
}


static int frame_analysis(DenoiseState *st, kiss_fft_cpx *y, float *Ey, float *features, const float *in) {
  float x[WINDOW_SIZE];
  int i;
  RNN_COPY(x, st->analysis_mem, FRAME_SIZE);
  for (i=0;i<FRAME_SIZE;i++) x[FRAME_SIZE + i] = in[i];
  RNN_COPY(st->analysis_mem, in, FRAME_SIZE);
  apply_window(x);
  forward_transform(y, x);
  compute_band_energy(Ey, y);
  if (1) {
    float p[WINDOW_SIZE];
    kiss_fft_cpx P[WINDOW_SIZE];
    float Ep[NB_BANDS], Exp[NB_BANDS];
    float pitch_buf[PITCH_BUF_SIZE>>1];
    int pitch_index;
    float gain;
    float *(pre[1]);
    RNN_MOVE(st->pitch_buf, &st->pitch_buf[FRAME_SIZE], PITCH_BUF_SIZE-FRAME_SIZE);
    RNN_COPY(&st->pitch_buf[PITCH_BUF_SIZE-FRAME_SIZE], in, FRAME_SIZE);
    pre[0] = &st->pitch_buf[0];
    pitch_downsample(pre, pitch_buf, PITCH_BUF_SIZE, 1);
    pitch_search(pitch_buf+(PITCH_MAX_PERIOD>>1), pitch_buf, PITCH_FRAME_SIZE,
                 PITCH_MAX_PERIOD-3*PITCH_MIN_PERIOD, &pitch_index);
    pitch_index = PITCH_MAX_PERIOD-pitch_index;

    gain = remove_doubling(pitch_buf, PITCH_MAX_PERIOD, PITCH_MIN_PERIOD,
            PITCH_FRAME_SIZE, &pitch_index, st->last_period, st->last_gain);
    st->last_period = pitch_index;
    st->last_gain = gain;
    for (i=0;i<WINDOW_SIZE;i++)
      p[i] = st->pitch_buf[PITCH_BUF_SIZE-WINDOW_SIZE-pitch_index+i];
    apply_window(p);
    forward_transform(P, p);
    compute_band_energy(Ep, P);
    compute_band_corr(Exp, y, P);
    for (i=0;i<NB_BANDS;i++) Exp[i] = Exp[i]/sqrt(.001+Ey[i]*Ep[i]);
    if (features) {
      float tmp[NB_BANDS];
      dct(tmp, Exp);
      for (i=0;i<NB_DELTA_CEPS;i++) features[NB_BANDS+2*NB_DELTA_CEPS+i] = tmp[i];
      features[NB_BANDS+2*NB_DELTA_CEPS] -= 1.3;
      features[NB_BANDS+2*NB_DELTA_CEPS+1] -= 0.9;
      features[NB_BANDS+3*NB_DELTA_CEPS] = .01*(pitch_index-300);
    }
  }
  float E = 0;
  {
    if (features != NULL) {
      float *ceps_0, *ceps_1, *ceps_2;
      float spec_variability = 0;
      float Ly[NB_BANDS];
      E = 0;
      for (i=0;i<NB_BANDS;i++) {
        Ly[i] = log10(1e-2+Ey[i]);
        E += Ey[i];
      }
      if (!TRAINING && E < 0.04) {
        /* If there's no audio, avoid messing up the state. */
        RNN_CLEAR(features, NB_FEATURES);
        return 1;
      }
      dct(features, Ly);
      features[0] -= 12;
      features[1] -= 4;
      ceps_0 = st->cepstral_mem[st->memid];
      ceps_1 = (st->memid < 1) ? st->cepstral_mem[CEPS_MEM+st->memid-1] : st->cepstral_mem[st->memid-1];
      ceps_2 = (st->memid < 2) ? st->cepstral_mem[CEPS_MEM+st->memid-2] : st->cepstral_mem[st->memid-2];
      for (i=0;i<NB_BANDS;i++) ceps_0[i] = features[i];
      st->memid++;
      for (i=0;i<NB_DELTA_CEPS;i++) {
        features[i] = ceps_0[i] + ceps_1[i] + ceps_2[i];
        features[NB_BANDS+i] = ceps_0[i] - ceps_2[i];
        features[NB_BANDS+NB_DELTA_CEPS+i] =  ceps_0[i] - 2*ceps_1[i] + ceps_2[i];
      }
      /* Spectral variability features. */
      if (st->memid == CEPS_MEM) st->memid = 0;
      for (i=0;i<CEPS_MEM;i++)
      {
        int j;
        float mindist = 1e15f;
        for (j=0;j<CEPS_MEM;j++)
        {
          int k;
          float dist=0;
          for (k=0;k<NB_BANDS;k++)
          {
            float tmp;
            tmp = st->cepstral_mem[i][k] - st->cepstral_mem[j][k];
            dist += tmp*tmp;
          }
          if (j!=i)
            mindist = MIN32(mindist, dist);
        }
        spec_variability += mindist;
      }
      features[NB_BANDS+3*NB_DELTA_CEPS+1] = spec_variability/CEPS_MEM-2.1;
    }
  }
  return TRAINING && E < 0.1;
}

static void frame_synthesis(DenoiseState *st, float *out, const kiss_fft_cpx *y) {
  float x[WINDOW_SIZE];
  int i;
  inverse_transform(x, y);
  apply_window(x);
  for (i=0;i<FRAME_SIZE;i++) out[i] = x[i] + st->synthesis_mem[i];
  RNN_COPY(st->synthesis_mem, &x[FRAME_SIZE], FRAME_SIZE);
}

static void biquad(float *y, float mem[2], const float *x, const float *b, const float *a, int N) {
  int i;
  for (i=0;i<N;i++) {
    float xi, yi;
    xi = x[i];
    yi = x[i] + mem[0];
    mem[0] = mem[1] + (b[0]*(double)xi - a[0]*(double)yi);
    mem[1] = (b[1]*(double)xi - a[1]*(double)yi);
    y[i] = yi;
  }
}


void rnnoise_process_frame(DenoiseState *st, float *out, const float *in) {
  int i;
  kiss_fft_cpx Y[FREQ_SIZE];
  float x[FRAME_SIZE];
  float Ey[NB_BANDS];
  float features[NB_FEATURES];
  float g[NB_BANDS];
  float gf[FREQ_SIZE]={1};
  float vad_prob;
  int silence;
  static const float a_hp[2] = {-1.99599, 0.99600};
  static const float b_hp[2] = {-2, 1};
  biquad(x, st->mem_hp_x, in, b_hp, a_hp, FRAME_SIZE);
  silence = frame_analysis(st, Y, Ey, features, x);

  if (!silence) {
    compute_rnn(&st->rnn, g, &vad_prob, features);
    interp_band_gain(gf, g);
#if 1
    for (i=0;i<FREQ_SIZE;i++) {
      Y[i].r *= gf[i];
      Y[i].i *= gf[i];
    }
#endif
  }

  frame_synthesis(st, out, Y);
}

#if TRAINING

static float uni_rand() {
  return rand()/(double)RAND_MAX-.5;
}

static void rand_resp(float *a, float *b) {
  a[0] = .75*uni_rand();
  a[1] = .75*uni_rand();
  b[0] = .75*uni_rand();
  b[1] = .75*uni_rand();
}

int main(int argc, char **argv) {
  int i;
  int count=0;
  static const float a_hp[2] = {-1.99599, 0.99600};
  static const float b_hp[2] = {-2, 1};
  float a_noise[2] = {0};
  float b_noise[2] = {0};
  float a_sig[2] = {0};
  float b_sig[2] = {0};
  float mem_hp_x[2]={0};
  float mem_hp_n[2]={0};
  float mem_resp_x[2]={0};
  float mem_resp_n[2]={0};
  float x[FRAME_SIZE];
  float n[FRAME_SIZE];
  float xn[FRAME_SIZE];
  int vad_cnt=0;
  int gain_change_count=0;
  float speech_gain = 1, noise_gain = 1;
  FILE *f1, *f2, *fout;
  DenoiseState *st;
  DenoiseState *noise_state;
  DenoiseState *noisy;
  st = rnnoise_create();
  noise_state = rnnoise_create();
  noisy = rnnoise_create();
  if (argc!=4) {
    fprintf(stderr, "usage: %s <speech> <noise> <output denoised>\n", argv[0]);
    return 1;
  }
  f1 = fopen(argv[1], "r");
  f2 = fopen(argv[2], "r");
  fout = fopen(argv[3], "w");
  for(i=0;i<150;i++) {
    short tmp[FRAME_SIZE];
    fread(tmp, sizeof(short), FRAME_SIZE, f2);
  }
  while (1) {
    kiss_fft_cpx X[FREQ_SIZE], Y[FREQ_SIZE], N[FREQ_SIZE];
    float Ex[NB_BANDS], Ey[NB_BANDS], En[NB_BANDS];
    float Ln[NB_BANDS];
    float features[NB_FEATURES];
    float g[NB_BANDS];
    float gf[FREQ_SIZE]={1};
    short tmp[FRAME_SIZE];
    float vad=0;
    float vad_prob;
    float E=0;
    if (++gain_change_count > 101*300) {
      speech_gain = pow(10., (-40+(rand()%60))/20.);
      noise_gain = pow(10., (-30+(rand()%40))/20.);
      if (rand()%10==0) noise_gain = 0;
      noise_gain *= speech_gain;
      if (rand()%10==0) speech_gain = 0;
      gain_change_count = 0;
      rand_resp(a_noise, b_noise);
      rand_resp(a_sig, b_sig);
    }
    fread(tmp, sizeof(short), FRAME_SIZE, f1);
    if (feof(f1)) break;
    for (i=0;i<FRAME_SIZE;i++) x[i] = speech_gain*tmp[i];
    fread(tmp, sizeof(short), FRAME_SIZE, f2);
    if (feof(f2)) break;
    for (i=0;i<FRAME_SIZE;i++) n[i] = noise_gain*tmp[i];
    biquad(x, mem_hp_x, x, b_hp, a_hp, FRAME_SIZE);
    biquad(x, mem_resp_x, x, b_sig, a_sig, FRAME_SIZE);
    biquad(n, mem_hp_n, n, b_hp, a_hp, FRAME_SIZE);
    biquad(n, mem_resp_n, n, b_noise, a_noise, FRAME_SIZE);
    for (i=0;i<FRAME_SIZE;i++) xn[i] = x[i] + n[i];
    for (i=0;i<FRAME_SIZE;i++) E += x[i]*(float)x[i];
    if (E > 1e9f*speech_gain*speech_gain) {
      vad_cnt=0;
    } else if (E > 1e8f*speech_gain*speech_gain) {
      vad_cnt -= 5;
      if (vad_cnt < 0) vad_cnt = 0;
    } else {
      vad_cnt++;
      if (vad_cnt > 15) vad_cnt = 15;
    }
    if (vad_cnt >= 10) vad = 0;
    else if (vad_cnt > 0) vad = 0.5f;
    else vad = 1.f;

    frame_analysis(st, X, Ex, NULL, x);
    frame_analysis(noise_state, N, En, NULL, n);
    for (i=0;i<NB_BANDS;i++) Ln[i] = log10(1e-2+En[i]);
    int silence = frame_analysis(noisy, Y, Ey, features, xn);
    //printf("%f %d\n", noisy->last_gain, noisy->last_period);
    for (i=0;i<NB_BANDS;i++) {
      g[i] = sqrt((Ex[i]+1e-2)/(Ey[i]+1e-2));
      if (g[i] > 1) g[i] = 1;
      if (silence) g[i] = -1;
    }
    count++;
#if 0
    for (i=0;i<NB_FEATURES;i++) printf("%f ", features[i]);
    for (i=0;i<NB_BANDS;i++) printf("%f ", g[i]);
    for (i=0;i<NB_BANDS;i++) printf("%f ", Ln[i]);
    printf("%f\n", vad);
#endif
#if 1
    fwrite(features, sizeof(float), NB_FEATURES, stdout);
    fwrite(g, sizeof(float), NB_BANDS, stdout);
    fwrite(Ln, sizeof(float), NB_BANDS, stdout);
    fwrite(&vad, sizeof(float), 1, stdout);
#endif
#if 0
    compute_rnn(&noisy->rnn, g, &vad_prob, features);
    //for (i=0;i<NB_BANDS;i++) scanf("%f", &g[i]);
    interp_band_gain(gf, g);
#if 1
    for (i=0;i<FREQ_SIZE;i++) {
      Y[i].r *= gf[i];
      Y[i].i *= gf[i];
    }
#endif
    frame_synthesis(noisy, xn, Y);

    for (i=0;i<FRAME_SIZE;i++) tmp[i] = xn[i];
    fwrite(tmp, sizeof(short), FRAME_SIZE, fout);
#endif
  }
  fprintf(stderr, "matrix size: %d x %d\n", count, NB_FEATURES + 2*NB_BANDS + 1);
  fclose(f1);
  fclose(f2);
  fclose(fout);
  return 0;
}

#else

int main(int argc, char **argv) {
  int i;
  float x[FRAME_SIZE];
  FILE *f1, *fout;
  DenoiseState *st;
  st = rnnoise_create();
  if (argc!=3) {
    fprintf(stderr, "usage: %s <noisy speech> <output denoised>\n", argv[0]);
    return 1;
  }
  f1 = fopen(argv[1], "r");
  fout = fopen(argv[2], "w");
  while (1) {
    short tmp[FRAME_SIZE];
    fread(tmp, sizeof(short), FRAME_SIZE, f1);
    if (feof(f1)) break;
    for (i=0;i<FRAME_SIZE;i++) x[i] = tmp[i];
    rnnoise_process_frame(st, x, x);
    for (i=0;i<FRAME_SIZE;i++) tmp[i] = x[i];
    fwrite(tmp, sizeof(short), FRAME_SIZE, fout);
  }
  fclose(f1);
  fclose(fout);
  return 0;
}

#endif