Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorPavelSindler <pavel@prusa3d.cz>2017-10-30 12:59:40 +0300
committerGitHub <noreply@github.com>2017-10-30 12:59:40 +0300
commit32ee171a492a0dca1d514306ffd59ca213f00459 (patch)
tree8dc16fee3a94a7d25448b4c5cd07cca02b1fecb7
parentf579c4d5f738ee7071e4b9e632735a29ecafdbae (diff)
parent5cea6aee37a50ca4644c4416cae2143431047f89 (diff)
Merge pull request #258 from PavelSindler/snmm_cleanupv3.1.0-RC2
SNMM: Dont use different verbosity levels in xyz/z cal. and mesh bed leveling
-rw-r--r--Firmware/Marlin_main.cpp22
-rw-r--r--Firmware/mesh_bed_calibration.cpp182
-rw-r--r--Firmware/variants/1_75mm_MK2-MultiMaterial-RAMBo10a-E3Dv6full.h4
-rw-r--r--Firmware/variants/1_75mm_MK2-MultiMaterial-RAMBo13a-E3Dv6full.h4
-rw-r--r--Firmware/variants/1_75mm_MK2-RAMBo10a-E3Dv6full.h4
-rw-r--r--Firmware/variants/1_75mm_MK2-RAMBo13a-E3Dv6full.h4
6 files changed, 178 insertions, 42 deletions
diff --git a/Firmware/Marlin_main.cpp b/Firmware/Marlin_main.cpp
index f6885d756..dda630d98 100644
--- a/Firmware/Marlin_main.cpp
+++ b/Firmware/Marlin_main.cpp
@@ -3365,9 +3365,11 @@ void process_commands()
current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 1) {
clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
}
+ #endif // SUPPORT_VERBOSITY
// mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
// Wait until the move is finished.
@@ -3381,13 +3383,17 @@ void process_commands()
int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 1) {
has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
}
+ #endif // SUPPORT_VERBOSITY
setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
const char *kill_message = NULL;
while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
+ #endif // SUPPORT_VERBOSITY
// Get coords of a measuring point.
ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
@@ -3396,7 +3402,7 @@ void process_commands()
if (has_z && mesh_point > 0) {
uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
- //#if 0
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 1) {
SERIAL_ECHOPGM("Bed leveling, point: ");
MYSERIAL.print(mesh_point);
@@ -3404,7 +3410,7 @@ void process_commands()
MYSERIAL.print(z0, 5);
SERIAL_ECHOLNPGM("");
}
- //#endif
+ #endif // SUPPORT_VERBOSITY
}
// Move Z up to MESH_HOME_Z_SEARCH.
@@ -3419,11 +3425,13 @@ void process_commands()
world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 1) {
SERIAL_PROTOCOL(mesh_point);
clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
}
+ #endif // SUPPORT_VERBOSITY
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
@@ -3443,7 +3451,7 @@ void process_commands()
kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
break;
}
-
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 10) {
SERIAL_ECHOPGM("X: ");
MYSERIAL.print(current_position[X_AXIS], 5);
@@ -3452,24 +3460,26 @@ void process_commands()
MYSERIAL.print(current_position[Y_AXIS], 5);
SERIAL_PROTOCOLPGM("\n");
}
-
if (verbosity_level >= 1) {
SERIAL_ECHOPGM("mesh bed leveling: ");
MYSERIAL.print(current_position[Z_AXIS], 5);
SERIAL_ECHOLNPGM("");
}
+ #endif // SUPPORT_VERBOSITY
mbl.set_z(ix, iy, current_position[Z_AXIS]); //store measured z values z_values[iy][ix] = z;
custom_message_state--;
mesh_point++;
lcd_update(1);
}
- if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 20) {
+ SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
MYSERIAL.print(current_position[Z_AXIS], 5);
}
+ #endif // SUPPORT_VERBOSITY
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
st_synchronize();
if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
@@ -3483,9 +3493,11 @@ void process_commands()
SERIAL_ECHOLNPGM("babystep applied");
bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 1) {
eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
}
+ #endif // SUPPORT_VERBOSITY
for (uint8_t i = 0; i < 4; ++i) {
unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
diff --git a/Firmware/mesh_bed_calibration.cpp b/Firmware/mesh_bed_calibration.cpp
index 98bf918f8..1c00651a8 100644
--- a/Firmware/mesh_bed_calibration.cpp
+++ b/Firmware/mesh_bed_calibration.cpp
@@ -144,6 +144,7 @@ BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
)
{
float angleDiff;
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 10) {
SERIAL_ECHOLNPGM("calculate machine skew and offset LS");
@@ -185,6 +186,7 @@ BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
}
delay_keep_alive(100);
}
+ #endif // SUPPORT_VERBOSITY
// Run some iterations of the Gauss-Newton method of non-linear least squares.
// Initial set of parameters:
@@ -284,7 +286,7 @@ BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
cntr[1] += h[1];
a1 += h[2];
a2 += h[3];
-
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 20) {
SERIAL_ECHOPGM("iteration: ");
MYSERIAL.print(int(iter));
@@ -308,6 +310,7 @@ BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
MYSERIAL.print(180.f * a2 / M_PI, 5);
SERIAL_ECHOLNPGM("");
}
+ #endif // SUPPORT_VERBOSITY
}
vec_x[0] = cos(a1) * MACHINE_AXIS_SCALE_X;
@@ -328,7 +331,7 @@ BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
fabs(a2) > bed_skew_angle_extreme)
result = BED_SKEW_OFFSET_DETECTION_SKEW_EXTREME;
}
-
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 1) {
SERIAL_ECHOPGM("correction angles: ");
MYSERIAL.print(180.f * a1 / M_PI, 5);
@@ -360,6 +363,7 @@ BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
SERIAL_ECHOLNPGM("Error after correction: ");
}
+ #endif // SUPPORT_VERBOSITY
// Measure the error after correction.
for (uint8_t i = 0; i < npts; ++i) {
@@ -368,33 +372,44 @@ BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
float errX = sqr(pgm_read_float(true_pts + i * 2) - x);
float errY = sqr(pgm_read_float(true_pts + i * 2 + 1) - y);
float err = sqrt(errX + errY);
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 10) {
SERIAL_ECHOPGM("point #");
MYSERIAL.print(int(i));
SERIAL_ECHOLNPGM(":");
}
+ #endif // SUPPORT_VERBOSITY
if (point_on_1st_row(i, npts)) {
- if(verbosity_level >= 20) SERIAL_ECHOPGM("Point on first row");
+ #ifdef SUPPORT_VERBOSITY
+ if (verbosity_level >= 20) SERIAL_ECHOPGM("Point on first row");
+ #endif // SUPPORT_VERBOSITY
float w = point_weight_y(i, npts, measured_pts[2 * i + 1]);
if (sqrt(errX) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X ||
(w != 0.f && sqrt(errY) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_Y)) {
result = BED_SKEW_OFFSET_DETECTION_FITTING_FAILED;
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 20) {
SERIAL_ECHOPGM(", weigth Y: ");
MYSERIAL.print(w);
if (sqrt(errX) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_X) SERIAL_ECHOPGM(", error X > max. error X");
if (w != 0.f && sqrt(errY) > BED_CALIBRATION_POINT_OFFSET_MAX_1ST_ROW_Y) SERIAL_ECHOPGM(", error Y > max. error Y");
}
+ #endif // SUPPORT_VERBOSITY
}
}
else {
- if(verbosity_level >=20 ) SERIAL_ECHOPGM("Point not on first row");
+ #ifdef SUPPORT_VERBOSITY
+ if (verbosity_level >=20 ) SERIAL_ECHOPGM("Point not on first row");
+ #endif // SUPPORT_VERBOSITY
if (err > BED_CALIBRATION_POINT_OFFSET_MAX_EUCLIDIAN) {
result = BED_SKEW_OFFSET_DETECTION_FITTING_FAILED;
- if(verbosity_level >= 20) SERIAL_ECHOPGM(", error > max. error euclidian");
+ #ifdef SUPPORT_VERBOSITY
+ if (verbosity_level >= 20) SERIAL_ECHOPGM(", error > max. error euclidian");
+ #endif // SUPPORT_VERBOSITY
}
}
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 10) {
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("measured: (");
@@ -419,7 +434,9 @@ BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
SERIAL_ECHOLNPGM("");
SERIAL_ECHOLNPGM("");
}
+ #endif // SUPPORT_VERBOSITY
}
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 20) {
SERIAL_ECHOLNPGM("Max. errors:");
SERIAL_ECHOPGM("Max. error X:");
@@ -430,6 +447,7 @@ BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
MYSERIAL.println(BED_CALIBRATION_POINT_OFFSET_MAX_EUCLIDIAN);
SERIAL_ECHOLNPGM("");
}
+ #endif // SUPPORT_VERBOSITY
#if 0
if (result == BED_SKEW_OFFSET_DETECTION_PERFECT && fabs(a1) < bed_skew_angle_mild && fabs(a2) < bed_skew_angle_mild) {
@@ -443,9 +461,11 @@ BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
}
#else
if (result == BED_SKEW_OFFSET_DETECTION_PERFECT) {
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level > 0)
SERIAL_ECHOLNPGM("Very little skew detected. Orthogonalizing the axes.");
- // Orthogonalize the axes.
+ #endif // SUPPORT_VERBOSITY
+ // Orthogonalize the axes.
a1 = 0.5f * (a1 + a2);
vec_x[0] = cos(a1) * MACHINE_AXIS_SCALE_X;
vec_x[1] = sin(a1) * MACHINE_AXIS_SCALE_X;
@@ -462,6 +482,7 @@ BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
float w = point_weight_x(i, npts, y);
cntr[0] += w * (pgm_read_float(true_pts + i * 2) - x);
wx += w;
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 20) {
MYSERIAL.print(i);
SERIAL_ECHOLNPGM("");
@@ -474,10 +495,12 @@ BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
SERIAL_ECHOLNPGM("wx:");
MYSERIAL.print(wx);
}
+ #endif // SUPPORT_VERBOSITY
w = point_weight_y(i, npts, y);
cntr[1] += w * (pgm_read_float(true_pts + i * 2 + 1) - y);
wy += w;
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 20) {
SERIAL_ECHOLNPGM("");
SERIAL_ECHOLNPGM("Weight_y:");
@@ -491,9 +514,11 @@ BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
SERIAL_ECHOLNPGM("");
SERIAL_ECHOLNPGM("");
}
+ #endif // SUPPORT_VERBOSITY
}
cntr[0] /= wx;
cntr[1] /= wy;
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 20) {
SERIAL_ECHOLNPGM("");
SERIAL_ECHOLNPGM("Final cntr values:");
@@ -504,6 +529,7 @@ BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
MYSERIAL.print(cntr[1]);
SERIAL_ECHOLNPGM("");
}
+ #endif // SUPPORT_VERBOSITY
}
#endif
@@ -527,7 +553,8 @@ BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
cntr[1] = cntrInv[1];
}
- if (verbosity_level >= 1) {
+ #ifdef SUPPORT_VERBOSITY
+ if (verbosity_level >= 1) {
// Show the adjusted state, before the fitting.
SERIAL_ECHOPGM("X vector, adjusted: ");
MYSERIAL.print(vec_x[0], 5);
@@ -581,6 +608,7 @@ BedSkewOffsetDetectionResultType calculate_machine_skew_and_offset_LS(
}
delay_keep_alive(100);
}
+ #endif // SUPPORT_VERBOSITY
return result;
}
@@ -793,8 +821,10 @@ static inline void update_current_position_z()
// At the current position, find the Z stop.
inline bool find_bed_induction_sensor_point_z(float minimum_z, uint8_t n_iter, int verbosity_level)
{
+ #ifdef SUPPORT_VERBOSITY
if(verbosity_level >= 10) SERIAL_ECHOLNPGM("find bed induction sensor point z");
- bool endstops_enabled = enable_endstops(true);
+ #endif // SUPPORT_VERBOSITY
+ bool endstops_enabled = enable_endstops(true);
bool endstop_z_enabled = enable_z_endstop(false);
float z = 0.f;
endstop_z_hit_on_purpose();
@@ -848,8 +878,10 @@ error:
#define FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP (0.2f)
inline bool find_bed_induction_sensor_point_xy(int verbosity_level)
{
- if(verbosity_level >= 10) MYSERIAL.println("find bed induction sensor point xy");
- float feedrate = homing_feedrate[X_AXIS] / 60.f;
+ #ifdef SUPPORT_VERBOSITY
+ if (verbosity_level >= 10) MYSERIAL.println("find bed induction sensor point xy");
+ #endif // SUPPORT_VERBOSITY
+ float feedrate = homing_feedrate[X_AXIS] / 60.f;
bool found = false;
{
@@ -861,19 +893,27 @@ inline bool find_bed_induction_sensor_point_xy(int verbosity_level)
uint8_t i;
if (x0 < X_MIN_POS) {
x0 = X_MIN_POS;
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 20) SERIAL_ECHOLNPGM("X searching radius lower than X_MIN. Clamping was done.");
+ #endif // SUPPORT_VERBOSITY
}
if (x1 > X_MAX_POS) {
x1 = X_MAX_POS;
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 20) SERIAL_ECHOLNPGM("X searching radius higher than X_MAX. Clamping was done.");
+ #endif // SUPPORT_VERBOSITY
}
if (y0 < Y_MIN_POS_FOR_BED_CALIBRATION) {
y0 = Y_MIN_POS_FOR_BED_CALIBRATION;
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Y searching radius lower than Y_MIN. Clamping was done.");
+ #endif // SUPPORT_VERBOSITY
}
if (y1 > Y_MAX_POS) {
y1 = Y_MAX_POS;
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Y searching radius higher than X_MAX. Clamping was done.");
+ #endif // SUPPORT_VERBOSITY
}
nsteps_y = int(ceil((y1 - y0) / FIND_BED_INDUCTION_SENSOR_POINT_XY_STEP));
@@ -1178,11 +1218,13 @@ inline bool improve_bed_induction_sensor_point2(bool lift_z_on_min_y, int8_t ver
}
b = current_position[X_AXIS];
if (b - a < MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
- if (verbosity_level >= 5) {
+ #ifdef SUPPORT_VERBOSITY
+ if (verbosity_level >= 5) {
SERIAL_ECHOPGM("Point width too small: ");
SERIAL_ECHO(b - a);
SERIAL_ECHOLNPGM("");
}
+ #endif // SUPPORT_VERBOSITY
// We force the calibration routine to move the Z axis slightly down to make the response more pronounced.
if (b - a < 0.5f * MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
// Don't use the new X value.
@@ -1193,10 +1235,12 @@ inline bool improve_bed_induction_sensor_point2(bool lift_z_on_min_y, int8_t ver
point_small = true;
}
}
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 5) {
debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
}
+ #endif // SUPPORT_VERBOSITY
// Go to the center.
enable_z_endstop(false);
@@ -1249,11 +1293,13 @@ inline bool improve_bed_induction_sensor_point2(bool lift_z_on_min_y, int8_t ver
b = current_position[Y_AXIS];
if (b - a < MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
// We force the calibration routine to move the Z axis slightly down to make the response more pronounced.
- if (verbosity_level >= 5) {
+ #ifdef SUPPORT_VERBOSITY
+ if (verbosity_level >= 5) {
SERIAL_ECHOPGM("Point height too small: ");
SERIAL_ECHO(b - a);
SERIAL_ECHOLNPGM("");
}
+ #endif // SUPPORT_VERBOSITY
if (b - a < 0.5f * MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
// Don't use the new Y value.
current_position[Y_AXIS] = center_old_y;
@@ -1263,10 +1309,12 @@ inline bool improve_bed_induction_sensor_point2(bool lift_z_on_min_y, int8_t ver
point_small = true;
}
}
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 5) {
debug_output_point(PSTR("top" ), current_position[X_AXIS], a, current_position[Z_AXIS]);
debug_output_point(PSTR("bottom"), current_position[X_AXIS], b, current_position[Z_AXIS]);
}
+ #endif // SUPPORT_VERBOSITY
// Go to the center.
enable_z_endstop(false);
@@ -1300,8 +1348,10 @@ inline bool improve_bed_induction_sensor_point3(int verbosity_level)
float a, b;
bool result = true;
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 20) MYSERIAL.println("Improve bed induction sensor point3");
- // Was the sensor point detected too far in the minus Y axis?
+ #endif // SUPPORT_VERBOSITY
+ // Was the sensor point detected too far in the minus Y axis?
// If yes, the center of the induction point cannot be reached by the machine.
{
float x0 = center_old_x - IMPROVE_BED_INDUCTION_SENSOR_POINT3_SEARCH_RADIUS;
@@ -1319,6 +1369,7 @@ inline bool improve_bed_induction_sensor_point3(int verbosity_level)
if (y1 > Y_MAX_POS)
y1 = Y_MAX_POS;
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 20) {
SERIAL_ECHOPGM("Initial position: ");
SERIAL_ECHO(center_old_x);
@@ -1326,7 +1377,7 @@ inline bool improve_bed_induction_sensor_point3(int verbosity_level)
SERIAL_ECHO(center_old_y);
SERIAL_ECHOLNPGM("");
}
-
+ #endif // SUPPORT_VERBOSITY
// Search in the positive Y direction, until a maximum diameter is found.
// (the next diameter is smaller than the current one.)
float dmax = 0.f;
@@ -1357,10 +1408,12 @@ inline bool improve_bed_induction_sensor_point3(int verbosity_level)
// goto canceled;
}
b = current_position[X_AXIS];
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 5) {
debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
}
+ #endif // SUPPORT_VERBOSITY
float d = b - a;
if (d > dmax) {
xmax1 = 0.5f * (a + b);
@@ -1371,8 +1424,10 @@ inline bool improve_bed_induction_sensor_point3(int verbosity_level)
}
}
if (dmax == 0.) {
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level > 0)
SERIAL_PROTOCOLPGM("failed - not found\n");
+ #endif // SUPPORT_VERBOSITY
current_position[X_AXIS] = center_old_x;
current_position[Y_AXIS] = center_old_y;
goto canceled;
@@ -1389,9 +1444,11 @@ inline bool improve_bed_induction_sensor_point3(int verbosity_level)
current_position[Y_AXIS] = center_old_y;
goto canceled;
}
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 5)
debug_output_point(PSTR("top" ), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
- y1 = current_position[Y_AXIS];
+ #endif // SUPPORT_VERBOSITY
+ y1 = current_position[Y_AXIS];
}
if (y1 <= y0) {
@@ -1433,10 +1490,12 @@ inline bool improve_bed_induction_sensor_point3(int verbosity_level)
*/
}
b = current_position[X_AXIS];
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 5) {
debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
}
+ #endif // SUPPORT_VERBOSITY
float d = b - a;
if (d > dmax) {
xmax2 = 0.5f * (a + b);
@@ -1484,10 +1543,12 @@ inline bool improve_bed_induction_sensor_point3(int verbosity_level)
*/
}
b = current_position[X_AXIS];
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 5) {
debug_output_point(PSTR("left" ), a, current_position[Y_AXIS], current_position[Z_AXIS]);
debug_output_point(PSTR("right"), b, current_position[Y_AXIS], current_position[Z_AXIS]);
}
+ #endif // SUPPORT_VERBOSITY
float d = b - a;
if (d > dmax) {
xmax = 0.5f * (a + b);
@@ -1509,24 +1570,29 @@ inline bool improve_bed_induction_sensor_point3(int verbosity_level)
current_position[Y_AXIS] = center_old_y;
goto canceled;
}
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 5)
debug_output_point(PSTR("top" ), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
- if (current_position[Y_AXIS] - Y_MIN_POS_FOR_BED_CALIBRATION < 0.5f * dmax) {
+ #endif // SUPPORT_VERBOSITY
+ if (current_position[Y_AXIS] - Y_MIN_POS_FOR_BED_CALIBRATION < 0.5f * dmax) {
// Probably not even a half circle was detected. The induction point is likely too far in the minus Y direction.
// First verify, if the measurement has been done at a sufficient height. If no, lower the Z axis a bit.
if (current_position[Y_AXIS] < ymax || dmax < 0.5f * MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
- if (verbosity_level >= 5) {
+ #ifdef SUPPORT_VERBOSITY
+ if (verbosity_level >= 5) {
SERIAL_ECHOPGM("Partial point diameter too small: ");
SERIAL_ECHO(dmax);
SERIAL_ECHOLNPGM("");
}
+ #endif // SUPPORT_VERBOSITY
result = false;
} else {
// Estimate the circle radius from the maximum diameter and height:
float h = current_position[Y_AXIS] - ymax;
float r = dmax * dmax / (8.f * h) + 0.5f * h;
if (r < 0.8f * MIN_BED_SENSOR_POINT_RESPONSE_DMR) {
- if (verbosity_level >= 5) {
+ #ifdef SUPPORT_VERBOSITY
+ if (verbosity_level >= 5) {
SERIAL_ECHOPGM("Partial point estimated radius too small: ");
SERIAL_ECHO(r);
SERIAL_ECHOPGM(", dmax:");
@@ -1535,6 +1601,7 @@ inline bool improve_bed_induction_sensor_point3(int verbosity_level)
SERIAL_ECHO(h);
SERIAL_ECHOLNPGM("");
}
+ #endif // SUPPORT_VERBOSITY
result = false;
} else {
// The point may end up outside of the machine working space.
@@ -1561,13 +1628,15 @@ inline bool improve_bed_induction_sensor_point3(int verbosity_level)
enable_z_endstop(false);
current_position[X_AXIS] = xmax;
current_position[Y_AXIS] = ymax;
- if (verbosity_level >= 20) {
+ #ifdef SUPPORT_VERBOSITY
+ if (verbosity_level >= 20) {
SERIAL_ECHOPGM("Adjusted position: ");
SERIAL_ECHO(current_position[X_AXIS]);
SERIAL_ECHOPGM(", ");
SERIAL_ECHO(current_position[Y_AXIS]);
SERIAL_ECHOLNPGM("");
}
+ #endif // SUPPORT_VERBOSITY
// Don't clamp current_position[Y_AXIS], because the out-of-reach Y coordinate may actually be true.
// Only clamp the coordinate to go.
@@ -1657,6 +1726,7 @@ BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level
SERIAL_ECHOPGM("Iteration: ");
MYSERIAL.println(int(iteration + 1));
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 20) {
SERIAL_ECHOLNPGM("Vectors: ");
@@ -1679,6 +1749,7 @@ BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level
MYSERIAL.print(cntr[1], 5);
SERIAL_ECHOLNPGM("");
}
+ #endif // SUPPORT_VERBOSITY
#ifdef MESH_BED_CALIBRATION_SHOW_LCD
uint8_t next_line;
lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1, next_line);
@@ -1704,6 +1775,7 @@ BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level
// Go up to z_initial.
go_to_current(homing_feedrate[Z_AXIS] / 60.f);
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 20) {
// Go to Y0, wait, then go to Y-4.
current_position[Y_AXIS] = 0.f;
@@ -1715,6 +1787,7 @@ BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level
SERIAL_ECHOLNPGM("At Y-4");
delay_keep_alive(5000);
}
+ #endif // SUPPORT_VERBOSITY
// Go to the measurement point position.
//if (iteration == 0) {
current_position[X_AXIS] = pgm_read_float(bed_ref_points_4 + k * 2);
@@ -1732,6 +1805,7 @@ BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level
current_position[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;
}*/
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 20) {
SERIAL_ECHOPGM("current_position[X_AXIS]:");
MYSERIAL.print(current_position[X_AXIS], 5);
@@ -1743,11 +1817,13 @@ BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level
MYSERIAL.print(current_position[Z_AXIS], 5);
SERIAL_ECHOLNPGM("");
}
-
+ #endif // SUPPORT_VERBOSITY
go_to_current(homing_feedrate[X_AXIS] / 60.f);
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 10)
delay_keep_alive(3000);
+ #endif // SUPPORT_VERBOSITY
if (!find_bed_induction_sensor_point_xy(verbosity_level))
return BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;
#if 1
@@ -1772,6 +1848,7 @@ BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level
return BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;
}
#endif
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 10)
delay_keep_alive(3000);
// Save the detected point position and then clamp the Y coordinate, which may have been estimated
@@ -1781,6 +1858,7 @@ BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level
MYSERIAL.println(current_position[X_AXIS]);
MYSERIAL.println(current_position[Y_AXIS]);
}
+ #endif // SUPPORT_VERBOSITY
pt[0] = (pt[0] * iteration) / (iteration + 1);
pt[0] += (current_position[X_AXIS]/(iteration + 1)); //count average
pt[1] = (pt[1] * iteration) / (iteration + 1);
@@ -1792,7 +1870,7 @@ BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level
//pt[1] += current_position[Y_AXIS];
//if (iteration > 0) pt[1] = pt[1] / 2;
-
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 20) {
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("pt[0]:");
@@ -1800,6 +1878,7 @@ BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level
SERIAL_ECHOPGM("pt[1]:");
MYSERIAL.println(pt[1]);
}
+ #endif // SUPPORT_VERBOSITY
if (current_position[Y_AXIS] < Y_MIN_POS)
current_position[Y_AXIS] = Y_MIN_POS;
@@ -1807,14 +1886,16 @@ BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level
current_position[Z_AXIS] += 3.f + FIND_BED_INDUCTION_SENSOR_POINT_Z_STEP * iteration * 0.3;
//cntr[0] += pt[0];
//cntr[1] += pt[1];
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 10 && k == 0) {
// Show the zero. Test, whether the Y motor skipped steps.
current_position[Y_AXIS] = MANUAL_Y_HOME_POS;
go_to_current(homing_feedrate[X_AXIS] / 60.f);
delay_keep_alive(3000);
}
+ #endif // SUPPORT_VERBOSITY
}
-
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 20) {
// Test the positions. Are the positions reproducible? Now the calibration is active in the planner.
delay_keep_alive(3000);
@@ -1829,6 +1910,7 @@ BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level
delay_keep_alive(3000);
}
}
+ #endif // SUPPORT_VERBOSITY
if (pts[1] < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH) {
too_far_mask |= 1 << 1; //front center point is out of reach
@@ -1851,6 +1933,7 @@ BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y + 0), vec_y[0]);
eeprom_update_float((float*)(EEPROM_BED_CALIBRATION_VEC_Y + 4), vec_y[1]);
#endif
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 10) {
// Length of the vec_x
float l = sqrt(vec_x[0] * vec_x[0] + vec_x[1] * vec_x[1]);
@@ -1872,10 +1955,11 @@ BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level
MYSERIAL.println(fabs(l));
SERIAL_ECHOLNPGM("Saving bed calibration vectors to EEPROM");
}
+ #endif // SUPPORT_VERBOSITY
// Correct the current_position to match the transformed coordinate system after world2machine_rotation_and_skew and world2machine_shift were set.
world2machine_update_current();
-
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 20) {
// Test the positions. Are the positions reproducible? Now the calibration is active in the planner.
delay_keep_alive(3000);
@@ -1890,6 +1974,7 @@ BedSkewOffsetDetectionResultType find_bed_offset_and_skew(int8_t verbosity_level
delay_keep_alive(3000);
}
}
+ #endif // SUPPORT_VERBOSITY
return result;
}
if (result == BED_SKEW_OFFSET_DETECTION_FITTING_FAILED && too_far_mask == 2) return result; //if fitting failed and front center point is out of reach, terminate calibration and inform user
@@ -1914,9 +1999,11 @@ BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8
float *cntr = vec_y + 2;
memset(pts, 0, sizeof(float) * 7 * 7);
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 10) SERIAL_ECHOLNPGM("Improving bed offset and skew");
-
- // Cache the current correction matrix.
+ #endif // SUPPORT_VERBOSITY
+
+ // Cache the current correction matrix.
world2machine_initialize();
vec_x[0] = world2machine_rotation_and_skew[0][0];
vec_x[1] = world2machine_rotation_and_skew[1][0];
@@ -1953,7 +2040,8 @@ BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8
enable_endstops(false);
enable_z_endstop(false);
go_to_current(homing_feedrate[Z_AXIS]/60);
- if (verbosity_level >= 20) {
+ #ifdef SUPPORT_VERBOSITY
+ if (verbosity_level >= 20) {
// Go to Y0, wait, then go to Y-4.
current_position[Y_AXIS] = 0.f;
go_to_current(homing_feedrate[X_AXIS] / 60.f);
@@ -1964,6 +2052,7 @@ BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8
SERIAL_ECHOLNPGM("At Y_MIN_POS");
delay_keep_alive(5000);
}
+ #endif // SUPPORT_VERBOSITY
// Go to the measurement point.
// Use the coorrected coordinate, which is a result of find_bed_offset_and_skew().
current_position[X_AXIS] = vec_x[0] * pgm_read_float(bed_ref_points+mesh_point*2) + vec_y[0] * pgm_read_float(bed_ref_points+mesh_point*2+1) + cntr[0];
@@ -1971,26 +2060,33 @@ BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8
// The calibration points are very close to the min Y.
if (current_position[Y_AXIS] < Y_MIN_POS_FOR_BED_CALIBRATION){
current_position[Y_AXIS] = Y_MIN_POS_FOR_BED_CALIBRATION;
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 20) {
SERIAL_ECHOPGM("Calibration point ");
SERIAL_ECHO(mesh_point);
SERIAL_ECHOPGM("lower than Ymin. Y coordinate clamping was used.");
SERIAL_ECHOLNPGM("");
- }
+ }
+ #endif // SUPPORT_VERBOSITY
}
go_to_current(homing_feedrate[X_AXIS]/60);
// Find its Z position by running the normal vertical search.
- if (verbosity_level >= 10)
+ #ifdef SUPPORT_VERBOSITY
+ if (verbosity_level >= 10)
delay_keep_alive(3000);
- find_bed_induction_sensor_point_z();
- if (verbosity_level >= 10)
+ #endif // SUPPORT_VERBOSITY
+ find_bed_induction_sensor_point_z();
+ #ifdef SUPPORT_VERBOSITY
+ if (verbosity_level >= 10)
delay_keep_alive(3000);
- // Try to move the Z axis down a bit to increase a chance of the sensor to trigger.
+ #endif // SUPPORT_VERBOSITY
+ // Try to move the Z axis down a bit to increase a chance of the sensor to trigger.
current_position[Z_AXIS] -= 0.025f;
// Improve the point position by searching its center in a current plane.
int8_t n_errors = 3;
for (int8_t iter = 0; iter < 8; ) {
- if (verbosity_level > 20) {
+ #ifdef SUPPORT_VERBOSITY
+ if (verbosity_level > 20) {
SERIAL_ECHOPGM("Improving bed point ");
SERIAL_ECHO(mesh_point);
SERIAL_ECHOPGM(", iteration ");
@@ -1999,6 +2095,7 @@ BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8
MYSERIAL.print(current_position[Z_AXIS], 5);
SERIAL_ECHOLNPGM("");
}
+ #endif // SUPPORT_VERBOSITY
bool found = false;
if (mesh_point < 3) {
// Because the sensor cannot move in front of the first row
@@ -2032,7 +2129,8 @@ BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8
enable_endstops(false);
enable_z_endstop(false);
go_to_current(homing_feedrate[Z_AXIS]);
- if (verbosity_level >= 5) {
+ #ifdef SUPPORT_VERBOSITY
+ if (verbosity_level >= 5) {
SERIAL_ECHOPGM("Improving bed point ");
SERIAL_ECHO(mesh_point);
SERIAL_ECHOPGM(", iteration ");
@@ -2041,10 +2139,13 @@ BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8
MYSERIAL.print(current_position[Z_AXIS], 5);
SERIAL_ECHOLNPGM("");
}
+ #endif // SUPPORT_VERBOSITY
}
}
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 10)
delay_keep_alive(3000);
+ #endif // SUPPORT_VERBOSITY
}
// Don't let the manage_inactivity() function remove power from the motors.
refresh_cmd_timeout();
@@ -2056,6 +2157,7 @@ BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8
enable_endstops(false);
enable_z_endstop(false);
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 5) {
// Test the positions. Are the positions reproducible?
current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
@@ -2079,17 +2181,19 @@ BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8
SERIAL_ECHOLNPGM("");
}
}
+ #endif // SUPPORT_VERBOSITY
{
// First fill in the too_far_mask from the measured points.
for (uint8_t mesh_point = 0; mesh_point < 3; ++ mesh_point)
if (pts[mesh_point * 2 + 1] < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH)
too_far_mask |= 1 << mesh_point;
-
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 20) {
SERIAL_ECHOPGM("Distance from min before calculate_machine skew and offset LS:");
MYSERIAL.print(int(too_far_mask));
}
+ #endif // SUPPORT_VERBOSITY
result = calculate_machine_skew_and_offset_LS(pts, 9, bed_ref_points, vec_x, vec_y, cntr, verbosity_level);
if (result < 0) {
@@ -2098,11 +2202,13 @@ BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8
}
// In case of success, update the too_far_mask from the calculated points.
too_far_mask = 0;
- if(verbosity_level >= 20) SERIAL_ECHOPGM("Reseting too far mask.");
-
+ #ifdef SUPPORT_VERBOSITY
+ if (verbosity_level >= 20) SERIAL_ECHOPGM("Reseting too far mask.");
+ #endif // SUPPORT_VERBOSITY
for (uint8_t mesh_point = 0; mesh_point < 3; ++ mesh_point) {
float y = vec_x[1] * pgm_read_float(bed_ref_points+mesh_point*2) + vec_y[1] * pgm_read_float(bed_ref_points+mesh_point*2+1) + cntr[1];
distance_from_min[mesh_point] = (y - Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH);
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 20) {
SERIAL_ECHOLNPGM("");
SERIAL_ECHOPGM("Distance from min:");
@@ -2112,6 +2218,7 @@ BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8
MYSERIAL.print(y);
SERIAL_ECHOLNPGM("");
}
+ #endif // SUPPORT_VERBOSITY
if (y < Y_MIN_POS_CALIBRATION_POINT_OUT_OF_REACH)
too_far_mask |= 1 << mesh_point;
}
@@ -2133,7 +2240,7 @@ BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8
enable_endstops(false);
enable_z_endstop(false);
-
+ #ifdef SUPPORT_VERBOSITY
if (verbosity_level >= 5) {
// Test the positions. Are the positions reproducible? Now the calibration is active in the planner.
delay_keep_alive(3000);
@@ -2162,6 +2269,7 @@ BedSkewOffsetDetectionResultType improve_bed_offset_and_skew(int8_t method, int8
}
}
}
+ #endif // SUPPORT_VERBOSITY
// Sample Z heights for the mesh bed leveling.
// In addition, store the results into an eeprom, to be used later for verification of the bed leveling process.
diff --git a/Firmware/variants/1_75mm_MK2-MultiMaterial-RAMBo10a-E3Dv6full.h b/Firmware/variants/1_75mm_MK2-MultiMaterial-RAMBo10a-E3Dv6full.h
index 8bb138888..2f4836c49 100644
--- a/Firmware/variants/1_75mm_MK2-MultiMaterial-RAMBo10a-E3Dv6full.h
+++ b/Firmware/variants/1_75mm_MK2-MultiMaterial-RAMBo10a-E3Dv6full.h
@@ -405,4 +405,8 @@ THERMISTORS SETTINGS
#define END_FILE_SECTION 10000 //number of bytes from end of file used for checking if file is complete
+#ifndef SNMM
+#define SUPPORT_VERBOSITY
+#endif
+
#endif //__CONFIGURATION_PRUSA_H
diff --git a/Firmware/variants/1_75mm_MK2-MultiMaterial-RAMBo13a-E3Dv6full.h b/Firmware/variants/1_75mm_MK2-MultiMaterial-RAMBo13a-E3Dv6full.h
index 24e1edd29..c31ad1267 100644
--- a/Firmware/variants/1_75mm_MK2-MultiMaterial-RAMBo13a-E3Dv6full.h
+++ b/Firmware/variants/1_75mm_MK2-MultiMaterial-RAMBo13a-E3Dv6full.h
@@ -407,4 +407,8 @@ THERMISTORS SETTINGS
#define END_FILE_SECTION 10000 //number of bytes from end of file used for checking if file is complete
+#ifndef SNMM
+#define SUPPORT_VERBOSITY
+#endif
+
#endif //__CONFIGURATION_PRUSA_H
diff --git a/Firmware/variants/1_75mm_MK2-RAMBo10a-E3Dv6full.h b/Firmware/variants/1_75mm_MK2-RAMBo10a-E3Dv6full.h
index 3c9631253..043ddb81a 100644
--- a/Firmware/variants/1_75mm_MK2-RAMBo10a-E3Dv6full.h
+++ b/Firmware/variants/1_75mm_MK2-RAMBo10a-E3Dv6full.h
@@ -405,4 +405,8 @@ THERMISTORS SETTINGS
#define END_FILE_SECTION 10000 //number of bytes from end of file used for checking if file is complete
+#ifndef SNMM
+#define SUPPORT_VERBOSITY
+#endif
+
#endif //__CONFIGURATION_PRUSA_H
diff --git a/Firmware/variants/1_75mm_MK2-RAMBo13a-E3Dv6full.h b/Firmware/variants/1_75mm_MK2-RAMBo13a-E3Dv6full.h
index bf262e2bf..773085c92 100644
--- a/Firmware/variants/1_75mm_MK2-RAMBo13a-E3Dv6full.h
+++ b/Firmware/variants/1_75mm_MK2-RAMBo13a-E3Dv6full.h
@@ -407,4 +407,8 @@ THERMISTORS SETTINGS
#define END_FILE_SECTION 10000 //number of bytes from end of file used for checking if file is complete
+#ifndef SNMM
+#define SUPPORT_VERBOSITY
+#endif
+
#endif //__CONFIGURATION_PRUSA_H