Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authortamasmeszaros <meszaros.q@gmail.com>2019-07-02 13:15:53 +0300
committertamasmeszaros <meszaros.q@gmail.com>2019-07-02 13:15:53 +0300
commit914bf632288f036b2b7cb509eb5ba843cdc3b7ed (patch)
treed6646996256eb021d89492f07b4337b2591dd597 /src/libslic3r/Arrange.cpp
parentba82cbe007caf8b17b0507b5681c8b3c0f8e7a77 (diff)
Unify AutoArranger subclasses
Diffstat (limited to 'src/libslic3r/Arrange.cpp')
-rw-r--r--src/libslic3r/Arrange.cpp577
1 files changed, 305 insertions, 272 deletions
diff --git a/src/libslic3r/Arrange.cpp b/src/libslic3r/Arrange.cpp
index 87289d968..debd29024 100644
--- a/src/libslic3r/Arrange.cpp
+++ b/src/libslic3r/Arrange.cpp
@@ -171,142 +171,6 @@ Box boundingBox(const Box& pilebb, const Box& ibb ) {
return Box(minc, maxc);
}
-// This is "the" object function which is evaluated many times for each vertex
-// (decimated with the accuracy parameter) of each object. Therefore it is
-// upmost crucial for this function to be as efficient as it possibly can be but
-// at the same time, it has to provide reasonable results.
-std::tuple<double /*score*/, Box /*farthest point from bin center*/>
-objfunc(const PointImpl& bincenter,
- const MultiPolygon& merged_pile,
- const Box& pilebb,
- const ItemGroup& items,
- const Item &item,
- double bin_area,
- double norm, // A norming factor for physical dimensions
- // a spatial index to quickly get neighbors of the candidate item
- const SpatIndex& spatindex,
- const SpatIndex& smalls_spatindex,
- const ItemGroup& remaining
- )
-{
- // We will treat big items (compared to the print bed) differently
- auto isBig = [bin_area](double a) {
- return a/bin_area > BIG_ITEM_TRESHOLD ;
- };
-
- // Candidate item bounding box
- auto ibb = sl::boundingBox(item.transformedShape());
-
- // Calculate the full bounding box of the pile with the candidate item
- auto fullbb = boundingBox(pilebb, ibb);
-
- // The bounding box of the big items (they will accumulate in the center
- // of the pile
- Box bigbb;
- if(spatindex.empty()) bigbb = fullbb;
- else {
- auto boostbb = spatindex.bounds();
- boost::geometry::convert(boostbb, bigbb);
- }
-
- // Will hold the resulting score
- double score = 0;
-
- if(isBig(item.area()) || spatindex.empty()) {
- // This branch is for the bigger items..
-
- auto minc = ibb.minCorner(); // bottom left corner
- auto maxc = ibb.maxCorner(); // top right corner
-
- // top left and bottom right corners
- auto top_left = PointImpl{getX(minc), getY(maxc)};
- auto bottom_right = PointImpl{getX(maxc), getY(minc)};
-
- // Now the distance of the gravity center will be calculated to the
- // five anchor points and the smallest will be chosen.
- std::array<double, 5> dists;
- auto cc = fullbb.center(); // The gravity center
- dists[0] = pl::distance(minc, cc);
- dists[1] = pl::distance(maxc, cc);
- dists[2] = pl::distance(ibb.center(), cc);
- dists[3] = pl::distance(top_left, cc);
- dists[4] = pl::distance(bottom_right, cc);
-
- // The smalles distance from the arranged pile center:
- auto dist = *(std::min_element(dists.begin(), dists.end())) / norm;
- auto bindist = pl::distance(ibb.center(), bincenter) / norm;
- dist = 0.8*dist + 0.2*bindist;
-
- // Density is the pack density: how big is the arranged pile
- double density = 0;
-
- if(remaining.empty()) {
-
- auto mp = merged_pile;
- mp.emplace_back(item.transformedShape());
- auto chull = sl::convexHull(mp);
-
- placers::EdgeCache<clppr::Polygon> ec(chull);
-
- double circ = ec.circumference() / norm;
- double bcirc = 2.0*(fullbb.width() + fullbb.height()) / norm;
- score = 0.5*circ + 0.5*bcirc;
-
- } else {
- // Prepare a variable for the alignment score.
- // This will indicate: how well is the candidate item aligned with
- // its neighbors. We will check the alignment with all neighbors and
- // return the score for the best alignment. So it is enough for the
- // candidate to be aligned with only one item.
- auto alignment_score = 1.0;
-
- density = std::sqrt((fullbb.width() / norm )*
- (fullbb.height() / norm));
- auto querybb = item.boundingBox();
-
- // Query the spatial index for the neighbors
- std::vector<SpatElement> result;
- result.reserve(spatindex.size());
- if(isBig(item.area())) {
- spatindex.query(bgi::intersects(querybb),
- std::back_inserter(result));
- } else {
- smalls_spatindex.query(bgi::intersects(querybb),
- std::back_inserter(result));
- }
-
- for(auto& e : result) { // now get the score for the best alignment
- auto idx = e.second;
- Item& p = items[idx];
- auto parea = p.area();
- if(std::abs(1.0 - parea/item.area()) < 1e-6) {
- auto bb = boundingBox(p.boundingBox(), ibb);
- auto bbarea = bb.area();
- auto ascore = 1.0 - (item.area() + parea)/bbarea;
-
- if(ascore < alignment_score) alignment_score = ascore;
- }
- }
-
- // The final mix of the score is the balance between the distance
- // from the full pile center, the pack density and the
- // alignment with the neighbors
- if(result.empty())
- score = 0.5 * dist + 0.5 * density;
- else
- score = 0.40 * dist + 0.40 * density + 0.2 * alignment_score;
- }
- } else {
- // Here there are the small items that should be placed around the
- // already processed bigger items.
- // No need to play around with the anchor points, the center will be
- // just fine for small items
- score = pl::distance(ibb.center(), bigbb.center()) / norm;
- }
-
- return std::make_tuple(score, fullbb);
-}
-
// Fill in the placer algorithm configuration with values carefully chosen for
// Slic3r.
template<class PConf>
@@ -332,13 +196,16 @@ void fillConfig(PConf& pcfg) {
// Type trait for an arranger class for different bin types (box, circle,
// polygon, etc...)
-template<class TBin>
-class AutoArranger {};
+//template<class TBin>
+//class AutoArranger {};
+
+template<class Bin> clppr::IntPoint center(const Bin& bin) { return bin.center(); }
+template<> clppr::IntPoint center(const clppr::Polygon &bin) { return sl::boundingBox(bin).center(); }
// A class encapsulating the libnest2d Nester class and extending it with other
// management and spatial index structures for acceleration.
template<class TBin>
-class _ArrBase {
+class AutoArranger {
public:
// Useful type shortcuts...
using Placer = typename placers::_NofitPolyPlacer<clppr::Polygon, TBin>;
@@ -350,7 +217,9 @@ public:
protected:
Packer m_pck;
PConfig m_pconf; // Placement configuration
- double m_bin_area;
+ TBin m_bin;
+ double m_bin_area; // caching
+ PointImpl m_bincenter; // caching
SpatIndex m_rtree; // spatial index for the normal (bigger) objects
SpatIndex m_smallsrtree; // spatial index for only the smaller items
double m_norm; // A coefficient to scale distances
@@ -358,13 +227,152 @@ protected:
Box m_pilebb; // The bounding box of the merged pile.
ItemGroup m_remaining; // Remaining items (m_items at the beginning)
ItemGroup m_items; // The items to be packed
+
+ // This is "the" object function which is evaluated many times for each
+ // vertex (decimated with the accuracy parameter) of each object.
+ // Therefore it is upmost crucial for this function to be as efficient
+ // as it possibly can be but at the same time, it has to provide
+ // reasonable results.
+ std::tuple<double /*score*/, Box /*farthest point from bin center*/>
+ objfunc(const Item &item )
+ {
+ const double bin_area = m_bin_area;
+ const SpatIndex& spatindex = m_rtree;
+ const SpatIndex& smalls_spatindex = m_smallsrtree;
+ const ItemGroup& remaining = m_remaining;
+
+ // We will treat big items (compared to the print bed) differently
+ auto isBig = [bin_area](double a) {
+ return a/bin_area > BIG_ITEM_TRESHOLD ;
+ };
+
+ // Candidate item bounding box
+ auto ibb = sl::boundingBox(item.transformedShape());
+
+ // Calculate the full bounding box of the pile with the candidate item
+ auto fullbb = boundingBox(m_pilebb, ibb);
+
+ // The bounding box of the big items (they will accumulate in the center
+ // of the pile
+ Box bigbb;
+ if(spatindex.empty()) bigbb = fullbb;
+ else {
+ auto boostbb = spatindex.bounds();
+ boost::geometry::convert(boostbb, bigbb);
+ }
+
+ // Will hold the resulting score
+ double score = 0;
+
+ if(isBig(item.area()) || spatindex.empty()) {
+ // This branch is for the bigger items..
+
+ auto minc = ibb.minCorner(); // bottom left corner
+ auto maxc = ibb.maxCorner(); // top right corner
+
+ // top left and bottom right corners
+ auto top_left = PointImpl{getX(minc), getY(maxc)};
+ auto bottom_right = PointImpl{getX(maxc), getY(minc)};
+
+ // Now the distance of the gravity center will be calculated to the
+ // five anchor points and the smallest will be chosen.
+ std::array<double, 5> dists;
+ auto cc = fullbb.center(); // The gravity center
+ dists[0] = pl::distance(minc, cc);
+ dists[1] = pl::distance(maxc, cc);
+ dists[2] = pl::distance(ibb.center(), cc);
+ dists[3] = pl::distance(top_left, cc);
+ dists[4] = pl::distance(bottom_right, cc);
+
+ // The smalles distance from the arranged pile center:
+ double dist = *(std::min_element(dists.begin(), dists.end())) / m_norm;
+ double bindist = pl::distance(ibb.center(), m_bincenter) / m_norm;
+ dist = 0.8*dist + 0.2*bindist;
+
+ // Density is the pack density: how big is the arranged pile
+ double density = 0;
+
+ if(remaining.empty()) {
+
+ auto mp = m_merged_pile;
+ mp.emplace_back(item.transformedShape());
+ auto chull = sl::convexHull(mp);
+
+ placers::EdgeCache<clppr::Polygon> ec(chull);
+
+ double circ = ec.circumference() / m_norm;
+ double bcirc = 2.0*(fullbb.width() + fullbb.height()) / m_norm;
+ score = 0.5*circ + 0.5*bcirc;
+
+ } else {
+ // Prepare a variable for the alignment score.
+ // This will indicate: how well is the candidate item
+ // aligned with its neighbors. We will check the alignment
+ // with all neighbors and return the score for the best
+ // alignment. So it is enough for the candidate to be
+ // aligned with only one item.
+ auto alignment_score = 1.0;
+
+ auto querybb = item.boundingBox();
+ density = std::sqrt((fullbb.width() / m_norm )*
+ (fullbb.height() / m_norm));
+
+ // Query the spatial index for the neighbors
+ std::vector<SpatElement> result;
+ result.reserve(spatindex.size());
+ if(isBig(item.area())) {
+ spatindex.query(bgi::intersects(querybb),
+ std::back_inserter(result));
+ } else {
+ smalls_spatindex.query(bgi::intersects(querybb),
+ std::back_inserter(result));
+ }
+
+ // now get the score for the best alignment
+ for(auto& e : result) {
+ auto idx = e.second;
+ Item& p = m_items[idx];
+ auto parea = p.area();
+ if(std::abs(1.0 - parea/item.area()) < 1e-6) {
+ auto bb = boundingBox(p.boundingBox(), ibb);
+ auto bbarea = bb.area();
+ auto ascore = 1.0 - (item.area() + parea)/bbarea;
+
+ if(ascore < alignment_score) alignment_score = ascore;
+ }
+ }
+
+ // The final mix of the score is the balance between the
+ // distance from the full pile center, the pack density and
+ // the alignment with the neighbors
+ if (result.empty())
+ score = 0.5 * dist + 0.5 * density;
+ else
+ score = 0.40 * dist + 0.40 * density + 0.2 * alignment_score;
+ }
+ } else {
+ // Here there are the small items that should be placed around the
+ // already processed bigger items.
+ // No need to play around with the anchor points, the center will be
+ // just fine for small items
+ score = pl::distance(ibb.center(), bigbb.center()) / m_norm;
+ }
+
+ return std::make_tuple(score, fullbb);
+ }
+
+ std::function<double(const Item&)> get_objfn();
public:
- _ArrBase(const TBin& bin, Distance dist,
- std::function<void(unsigned)> progressind,
- std::function<bool(void)> stopcond):
- m_pck(bin, dist), m_bin_area(sl::area(bin)),
- m_norm(std::sqrt(m_bin_area))
+ AutoArranger(const TBin & bin,
+ Distance dist,
+ std::function<void(unsigned)> progressind,
+ std::function<bool(void)> stopcond)
+ : m_pck(bin, dist)
+ , m_bin(bin)
+ , m_bin_area(sl::area(bin))
+ , m_bincenter(center(bin))
+ , m_norm(std::sqrt(m_bin_area))
{
fillConfig(m_pconf);
@@ -396,8 +404,12 @@ public:
}
};
+ m_pconf.object_function = get_objfn();
+
if (progressind) m_pck.progressIndicator(progressind);
if (stopcond) m_pck.stopCondition(stopcond);
+
+ m_pck.configure(m_pconf);
}
template<class...Args> inline PackGroup operator()(Args&&...args) {
@@ -405,15 +417,16 @@ public:
return m_pck.execute(std::forward<Args>(args)...);
}
- inline void preload(const PackGroup& pg) {
+ inline void preload(std::vector<Item>& fixeditems) {
m_pconf.alignment = PConfig::Alignment::DONT_ALIGN;
- m_pconf.object_function = nullptr; // drop the special objectfunction
- m_pck.preload(pg);
+// m_pconf.object_function = nullptr; // drop the special objectfunction
+// m_pck.preload(pg);
// Build the rtree for queries to work
- for(const ItemGroup& grp : pg)
- for(unsigned idx = 0; idx < grp.size(); ++idx) {
- Item& itm = grp[idx];
+
+ for(unsigned idx = 0; idx < fixeditems.size(); ++idx) {
+ Item& itm = fixeditems[idx];
+ itm.markAsFixed();
m_rtree.insert({itm.boundingBox(), idx});
}
@@ -429,125 +442,144 @@ public:
}
};
-// Arranger specialization for a Box shaped bin.
-template<> class AutoArranger<Box>: public _ArrBase<Box> {
-public:
+template<> std::function<double(const Item&)> AutoArranger<Box>::get_objfn()
+{
+ return [this](const Item &itm) {
+ auto result = objfunc(itm);
+
+ double score = std::get<0>(result);
+ auto& fullbb = std::get<1>(result);
- AutoArranger(const Box& bin, Distance dist,
- std::function<void(unsigned)> progressind = [](unsigned){},
- std::function<bool(void)> stopcond = [](){return false;}):
- _ArrBase<Box>(bin, dist, progressind, stopcond)
- {
+ double miss = Placer::overfit(fullbb, m_bin);
+ miss = miss > 0? miss : 0;
+ score += miss*miss;
- // Here we set up the actual object function that calls the common
- // object function for all bin shapes than does an additional inside
- // check for the arranged pile.
- m_pconf.object_function = [this, bin] (const Item &item) {
-
- auto result = objfunc(bin.center(),
- m_merged_pile,
- m_pilebb,
- m_items,
- item,
- m_bin_area,
- m_norm,
- m_rtree,
- m_smallsrtree,
- m_remaining);
-
- double score = std::get<0>(result);
- auto& fullbb = std::get<1>(result);
-
- double miss = Placer::overfit(fullbb, bin);
- miss = miss > 0? miss : 0;
- score += miss*miss;
+ return score;
+ };
+}
- return score;
+template<> std::function<double(const Item&)> AutoArranger<Circle>::get_objfn()
+{
+ return [this](const Item &item) {
+
+ auto result = objfunc(item);
+
+ double score = std::get<0>(result);
+
+ auto isBig = [this](const Item& itm) {
+ return itm.area()/m_bin_area > BIG_ITEM_TRESHOLD ;
};
- m_pck.configure(m_pconf);
- }
-};
+ if(isBig(item)) {
+ auto mp = m_merged_pile;
+ mp.push_back(item.transformedShape());
+ auto chull = sl::convexHull(mp);
+ double miss = Placer::overfit(chull, m_bin);
+ if(miss < 0) miss = 0;
+ score += miss*miss;
+ }
+
+ return score;
+ };
+}
+
+template<> std::function<double(const Item&)> AutoArranger<clppr::Polygon>::get_objfn()
+{
+ return [this] (const Item &item) { return std::get<0>(objfunc(item)); };
+}
+
+// Arranger specialization for a Box shaped bin.
+//template<> class AutoArranger<Box>: public _ArrBase<Box> {
+//public:
+
+// AutoArranger(const Box& bin, Distance dist,
+// std::function<void(unsigned)> progressind = [](unsigned){},
+// std::function<bool(void)> stopcond = [](){return false;}):
+// _ArrBase<Box>(bin, dist, progressind, stopcond)
+// {
+
+// // Here we set up the actual object function that calls the common
+// // object function for all bin shapes than does an additional inside
+// // check for the arranged pile.
+// m_pconf.object_function = [this, bin](const Item &item) {
+
+// auto result = objfunc(bin.center(), item);
+
+// double score = std::get<0>(result);
+// auto& fullbb = std::get<1>(result);
+
+// double miss = Placer::overfit(fullbb, bin);
+// miss = miss > 0? miss : 0;
+// score += miss*miss;
+
+// return score;
+// };
+
+// m_pck.configure(m_pconf);
+// }
+//};
inline Circle to_lnCircle(const CircleBed& circ) {
return Circle({circ.center()(0), circ.center()(1)}, circ.radius());
}
-// Arranger specialization for circle shaped bin.
-template<> class AutoArranger<Circle>: public _ArrBase<Circle> {
-public:
+//// Arranger specialization for circle shaped bin.
+//template<> class AutoArranger<Circle>: public _ArrBase<Circle> {
+//public:
- AutoArranger(const Circle& bin, Distance dist,
- std::function<void(unsigned)> progressind = [](unsigned){},
- std::function<bool(void)> stopcond = [](){return false;}):
- _ArrBase<Circle>(bin, dist, progressind, stopcond) {
-
- // As with the box, only the inside check is different.
- m_pconf.object_function = [this, &bin] (const Item &item) {
-
- auto result = objfunc(bin.center(),
- m_merged_pile,
- m_pilebb,
- m_items,
- item,
- m_bin_area,
- m_norm,
- m_rtree,
- m_smallsrtree,
- m_remaining);
-
- double score = std::get<0>(result);
-
- auto isBig = [this](const Item& itm) {
- return itm.area()/m_bin_area > BIG_ITEM_TRESHOLD ;
- };
+// AutoArranger(const Circle& bin, Distance dist,
+// std::function<void(unsigned)> progressind = [](unsigned){},
+// std::function<bool(void)> stopcond = [](){return false;}):
+// _ArrBase<Circle>(bin, dist, progressind, stopcond) {
- if(isBig(item)) {
- auto mp = m_merged_pile;
- mp.push_back(item.transformedShape());
- auto chull = sl::convexHull(mp);
- double miss = Placer::overfit(chull, bin);
- if(miss < 0) miss = 0;
- score += miss*miss;
- }
+// // As with the box, only the inside check is different.
+// m_pconf.object_function = [this, &bin](const Item &item) {
+
+// auto result = objfunc(bin.center(), item);
- return score;
- };
+// double score = std::get<0>(result);
- m_pck.configure(m_pconf);
- }
-};
+// auto isBig = [this](const Item& itm) {
+// return itm.area()/m_bin_area > BIG_ITEM_TRESHOLD ;
+// };
+
+// if(isBig(item)) {
+// auto mp = m_merged_pile;
+// mp.push_back(item.transformedShape());
+// auto chull = sl::convexHull(mp);
+// double miss = Placer::overfit(chull, bin);
+// if(miss < 0) miss = 0;
+// score += miss*miss;
+// }
+
+// return score;
+// };
+
+// m_pck.configure(m_pconf);
+// }
+//};
// Arranger specialization for a generalized polygon.
// Warning: this is unfinished business. It may or may not work.
-template<> class AutoArranger<PolygonImpl>: public _ArrBase<PolygonImpl> {
-public:
- AutoArranger(const PolygonImpl& bin, Distance dist,
- std::function<void(unsigned)> progressind = [](unsigned){},
- std::function<bool(void)> stopcond = [](){return false;}):
- _ArrBase<PolygonImpl>(bin, dist, progressind, stopcond)
- {
- m_pconf.object_function = [this, &bin] (const Item &item) {
-
- auto binbb = sl::boundingBox(bin);
- auto result = objfunc(binbb.center(),
- m_merged_pile,
- m_pilebb,
- m_items,
- item,
- m_bin_area,
- m_norm,
- m_rtree,
- m_smallsrtree,
- m_remaining);
- double score = std::get<0>(result);
-
- return score;
- };
-
- m_pck.configure(m_pconf);
- }
-};
+//template<> class AutoArranger<PolygonImpl>: public _ArrBase<PolygonImpl> {
+//public:
+// AutoArranger(const PolygonImpl& bin, Distance dist,
+// std::function<void(unsigned)> progressind = [](unsigned){},
+// std::function<bool(void)> stopcond = [](){return false;}):
+// _ArrBase<PolygonImpl>(bin, dist, progressind, stopcond)
+// {
+// m_pconf.object_function = [this, &bin] (const Item &item) {
+
+// auto binbb = sl::boundingBox(bin);
+// auto result = objfunc(binbb.center(), item);
+// double score = std::get<0>(result);
+
+// return score;
+// };
+
+// m_pck.configure(m_pconf);
+// }
+//};
// Get the type of bed geometry from a simple vector of points.
BedShapeHint bedShape(const Polyline &bed) {
@@ -628,9 +660,9 @@ BedShapeHint bedShape(const Polyline &bed) {
return ret;
}
-template<class BinT>
+template<class BinT> // Arrange for arbitrary bin type
PackGroup _arrange(std::vector<Item> & shapes,
- const PackGroup & preshapes,
+ std::vector<Item> & excludes,
const BinT & bin,
coord_t minobjd,
std::function<void(unsigned)> prind,
@@ -638,9 +670,13 @@ PackGroup _arrange(std::vector<Item> & shapes,
{
AutoArranger<BinT> arranger{bin, minobjd, prind, stopfn};
+ for(auto it = excludes.begin(); it != excludes.end(); ++it)
+ if (!sl::isInside(it->transformedShape(), bin))
+ it = excludes.erase(it);
+
// If there is something on the plate
- if(!preshapes.empty() && !preshapes.front().empty()) {
- arranger.preload(preshapes);
+ if(!excludes.empty()) {
+// arranger.preload(preshapes);
auto binbb = sl::boundingBox(bin);
// Try to put the first item to the center, as the arranger will not
@@ -652,7 +688,8 @@ PackGroup _arrange(std::vector<Item> & shapes,
itm.translate(d);
if (!arranger.is_colliding(itm)) {
- arranger.preload({{itm}});
+ itm.markAsFixed();
+// arranger.preload({{itm}});
// Write the transformation data into the item. The callback
// was set on the instantiation of Item and calls the
@@ -674,8 +711,8 @@ inline SLIC3R_CONSTEXPR coord_t stride_padding(coord_t w)
return w + w / 5;
}
-//// The final client function to arrange the Model. A progress indicator and
-//// a stop predicate can be also be passed to control the process.
+// The final client function for arrangement. A progress indicator and
+// a stop predicate can be also be passed to control the process.
bool arrange(ArrangeablePtrs & arrangables,
const ArrangeablePtrs & excludes,
coord_t min_obj_distance,
@@ -686,11 +723,9 @@ bool arrange(ArrangeablePtrs & arrangables,
bool ret = true;
namespace clppr = ClipperLib;
- std::vector<Item> items, excluded_items;
+ std::vector<Item> items, fixeditems;
items.reserve(arrangables.size());
coord_t binwidth = 0;
-
- PackGroup preshapes{ {} }; // pack group with one initial bin for preloading
auto process_arrangeable =
[](const Arrangeable * arrangeable,
@@ -733,9 +768,7 @@ bool arrange(ArrangeablePtrs & arrangables,
}
for (const Arrangeable * fixed: excludes)
- process_arrangeable(fixed, excluded_items, nullptr);
-
- for(Item& excl : excluded_items) preshapes.front().emplace_back(excl);
+ process_arrangeable(fixed, fixeditems, nullptr);
// Integer ceiling the min distance from the bed perimeters
coord_t md = min_obj_distance - SCALED_EPSILON;
@@ -751,7 +784,7 @@ bool arrange(ArrangeablePtrs & arrangables,
Box binbb{{bbb.min(X), bbb.min(Y)}, {bbb.max(X), bbb.max(Y)}};
binwidth = coord_t(binbb.width());
- _arrange(items, preshapes, binbb, min_obj_distance, progressind, cfn);
+ _arrange(items, fixeditems, binbb, min_obj_distance, progressind, cfn);
break;
}
case BedShapeType::CIRCLE: {
@@ -759,7 +792,7 @@ bool arrange(ArrangeablePtrs & arrangables,
auto cc = to_lnCircle(c);
binwidth = scaled(c.radius());
- _arrange(items, preshapes, cc, min_obj_distance, progressind, cfn);
+ _arrange(items, fixeditems, cc, min_obj_distance, progressind, cfn);
break;
}
case BedShapeType::IRREGULAR: {
@@ -768,7 +801,7 @@ bool arrange(ArrangeablePtrs & arrangables,
BoundingBox polybb(bedhint.shape.polygon);
binwidth = (polybb.max(X) - polybb.min(X));
- _arrange(items, preshapes, irrbed, min_obj_distance, progressind, cfn);
+ _arrange(items, fixeditems, irrbed, min_obj_distance, progressind, cfn);
break;
}
case BedShapeType::INFINITE: {
@@ -776,12 +809,12 @@ bool arrange(ArrangeablePtrs & arrangables,
//Box infbb{{nobin.center.x(), nobin.center.y()}};
Box infbb;
- _arrange(items, preshapes, infbb, min_obj_distance, progressind, cfn);
+ _arrange(items, fixeditems, infbb, min_obj_distance, progressind, cfn);
break;
}
case BedShapeType::UNKNOWN: {
// We know nothing about the bed, let it be infinite and zero centered
- _arrange(items, preshapes, Box{}, min_obj_distance, progressind, cfn);
+ _arrange(items, fixeditems, Box{}, min_obj_distance, progressind, cfn);
break;
}
};
@@ -791,7 +824,7 @@ bool arrange(ArrangeablePtrs & arrangables,
return ret;
}
-/// Arrange, without the fixed items (excludes)
+// Arrange, without the fixed items (excludes)
bool arrange(ArrangeablePtrs & inp,
coord_t min_d,
const BedShapeHint & bedhint,