Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorbubnikv <bubnikv@gmail.com>2017-08-02 15:24:32 +0300
committerbubnikv <bubnikv@gmail.com>2017-08-02 15:24:32 +0300
commit777023c7a8f09754d158df39bf79c23e44b90a2f (patch)
treeff0e1deaaac3bf2fc872393f62aae2e44bd0e94f /xs/src/libslic3r/PrintObject.cpp
parent933d5b261aa97d4ab530bcdefbe726526c7c118c (diff)
Ported PrintObject::prepare_infill & combine_infill from Perl to C++.version_1.37.0
Diffstat (limited to 'xs/src/libslic3r/PrintObject.cpp')
-rw-r--r--xs/src/libslic3r/PrintObject.cpp517
1 files changed, 499 insertions, 18 deletions
diff --git a/xs/src/libslic3r/PrintObject.cpp b/xs/src/libslic3r/PrintObject.cpp
index 26f6c50a0..9bf74bee7 100644
--- a/xs/src/libslic3r/PrintObject.cpp
+++ b/xs/src/libslic3r/PrintObject.cpp
@@ -3,6 +3,7 @@
#include "ClipperUtils.hpp"
#include "Geometry.hpp"
#include "SupportMaterial.hpp"
+#include "Surface.hpp"
#include <utility>
#include <boost/log/trivial.hpp>
@@ -32,8 +33,8 @@
namespace Slic3r {
-PrintObject::PrintObject(Print* print, ModelObject* model_object, const BoundingBoxf3 &modobj_bbox)
-: typed_slices(false),
+PrintObject::PrintObject(Print* print, ModelObject* model_object, const BoundingBoxf3 &modobj_bbox) :
+ typed_slices(false),
_print(print),
_model_object(model_object),
layer_height_profile_valid(false)
@@ -46,12 +47,10 @@ PrintObject::PrintObject(Print* print, ModelObject* model_object, const Bounding
// don't assume it's already aligned and we don't alter the original position in model.
// We store the XY translation so that we can place copies correctly in the output G-code
// (copies are expressed in G-code coordinates and this translation is not publicly exposed).
- this->_copies_shift = Point(
- scale_(modobj_bbox.min.x), scale_(modobj_bbox.min.y));
-
+ this->_copies_shift = Point::new_scale(modobj_bbox.min.x, modobj_bbox.min.y);
// Scale the object size and store it
Pointf3 size = modobj_bbox.size();
- this->size = Point3(scale_(size.x), scale_(size.y), scale_(size.z));
+ this->size = Point3::new_scale(size.x, size.y, size.z);
}
this->reload_model_instances();
@@ -283,6 +282,105 @@ bool PrintObject::has_support_material() const
|| this->config.support_material_enforce_layers > 0;
}
+void PrintObject::_prepare_infill()
+{
+ // This will assign a type (top/bottom/internal) to $layerm->slices.
+ // Then the classifcation of $layerm->slices is transfered onto
+ // the $layerm->fill_surfaces by clipping $layerm->fill_surfaces
+ // by the cummulative area of the previous $layerm->fill_surfaces.
+ this->detect_surfaces_type();
+
+ // Decide what surfaces are to be filled.
+ // Here the S_TYPE_TOP / S_TYPE_BOTTOMBRIDGE / S_TYPE_BOTTOM infill is turned to just S_TYPE_INTERNAL if zero top / bottom infill layers are configured.
+ // Also tiny S_TYPE_INTERNAL surfaces are turned to S_TYPE_INTERNAL_SOLID.
+ BOOST_LOG_TRIVIAL(info) << "Preparing fill surfaces...";
+ for (auto *layer : this->layers)
+ for (auto *region : layer->regions)
+ region->prepare_fill_surfaces();
+
+ // this will detect bridges and reverse bridges
+ // and rearrange top/bottom/internal surfaces
+ // It produces enlarged overlapping bridging areas.
+ //
+ // 1) S_TYPE_BOTTOMBRIDGE / S_TYPE_BOTTOM infill is grown by 3mm and clipped by the total infill area. Bridges are detected. The areas may overlap.
+ // 2) S_TYPE_TOP is grown by 3mm and clipped by the grown bottom areas. The areas may overlap.
+ // 3) Clip the internal surfaces by the grown top/bottom surfaces.
+ // 4) Merge surfaces with the same style. This will mostly get rid of the overlaps.
+ //FIXME This does not likely merge surfaces, which are supported by a material with different colors, but same properties.
+ this->process_external_surfaces();
+
+ // Add solid fills to ensure the shell vertical thickness.
+ this->discover_vertical_shells();
+
+ // Debugging output.
+#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
+ for (size_t region_id = 0; region_id < this->print()->regions.size(); ++ region_id)
+ for (const Layer *layer : this->layers) {
+ LayerRegion *layerm = layer->regions[region_id];
+ layerm->export_region_slices_to_svg_debug("6_discover_vertical_shells-final");
+ layerm->export_region_fill_surfaces_to_svg_debug("6_discover_vertical_shells-final");
+ } // for each layer
+ } // for each region
+#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
+
+ // Detect, which fill surfaces are near external layers.
+ // They will be split in internal and internal-solid surfaces.
+ // The purpose is to add a configurable number of solid layers to support the TOP surfaces
+ // and to add a configurable number of solid layers above the BOTTOM / BOTTOMBRIDGE surfaces
+ // to close these surfaces reliably.
+ //FIXME Vojtech: Is this a good place to add supporting infills below sloping perimeters?
+ this->discover_horizontal_shells();
+
+#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
+ for (size_t region_id = 0; region_id < this->print()->regions.size(); ++ region_id)
+ for (const Layer *layer : this->layers) {
+ LayerRegion *layerm = layer->regions[region_id];
+ layerm->export_region_slices_to_svg_debug("7_discover_horizontal_shells-final");
+ layerm->export_region_fill_surfaces_to_svg_debug("7_discover_horizontal_shells-final");
+ } // for each layer
+ } // for each region
+#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
+
+ // Only active if config->infill_only_where_needed. This step trims the sparse infill,
+ // so it acts as an internal support. It maintains all other infill types intact.
+ // Here the internal surfaces and perimeters have to be supported by the sparse infill.
+ //FIXME The surfaces are supported by a sparse infill, but the sparse infill is only as large as the area to support.
+ // Likely the sparse infill will not be anchored correctly, so it will not work as intended.
+ // Also one wishes the perimeters to be supported by a full infill.
+ this->clip_fill_surfaces();
+
+#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
+ for (size_t region_id = 0; region_id < this->print()->regions.size(); ++ region_id)
+ for (const Layer *layer : this->layers) {
+ LayerRegion *layerm = layer->regions[region_id];
+ layerm->export_region_slices_to_svg_debug("8_clip_surfaces-final");
+ layerm->export_region_fill_surfaces_to_svg_debug("8_clip_surfaces-final");
+ } // for each layer
+ } // for each region
+#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
+
+ // the following step needs to be done before combination because it may need
+ // to remove only half of the combined infill
+ this->bridge_over_infill();
+
+ // combine fill surfaces to honor the "infill every N layers" option
+ this->combine_infill();
+
+#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
+ for (size_t region_id = 0; region_id < this->print()->regions.size(); ++ region_id)
+ for (const Layer *layer : this->layers) {
+ LayerRegion *layerm = layer->regions[region_id];
+ layerm->export_region_slices_to_svg_debug("9_prepare_infill-final");
+ layerm->export_region_fill_surfaces_to_svg_debug("9_prepare_infill-final");
+ } // for each layer
+ } // for each region
+ for (const Layer *layer : this->layers) {
+ layer->export_region_slices_to_svg_debug("9_prepare_infill-final");
+ layer->export_region_fill_surfaces_to_svg_debug("9_prepare_infill-final");
+ } // for each layer
+#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
+}
+
// This function analyzes slices of a region (SurfaceCollection slices).
// Each region slice (instance of Surface) is analyzed, whether it is supported or whether it is the top surface.
// Initially all slices are of type stInternal.
@@ -334,8 +432,8 @@ void PrintObject::detect_surfaces_type()
LayerRegion *layerm = layer->get_region(idx_region);
// comparison happens against the *full* slices (considering all regions)
// unless internal shells are requested
- Layer *upper_layer = idx_layer + 1 < this->layer_count() ? this->get_layer(idx_layer + 1) : nullptr;
- Layer *lower_layer = idx_layer > 0 ? this->get_layer(idx_layer - 1) : nullptr;
+ Layer *upper_layer = (idx_layer + 1 < this->layer_count()) ? this->layers[idx_layer + 1] : nullptr;
+ Layer *lower_layer = (idx_layer > 0) ? this->layers[idx_layer - 1] : nullptr;
// collapse very narrow parts (using the safety offset in the diff is not enough)
float offset = layerm->flow(frExternalPerimeter).scaled_width() / 10.f;
@@ -473,7 +571,10 @@ void PrintObject::detect_surfaces_type()
} // for each layer of a region
});
BOOST_LOG_TRIVIAL(debug) << "Detecting solid surfaces for region " << idx_region << " - clipping in parallel - end";
- } // for each $self->print->region_count
+ } // for each this->print->region_count
+
+ // Mark the object to have the region slices classified (typed, which also means they are split based on whether they are supported, bridging, top layers etc.)
+ this->typed_slices = true;
}
void PrintObject::process_external_surfaces()
@@ -669,7 +770,6 @@ void PrintObject::discover_vertical_shells()
ExPolygons shell_ex;
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
float min_perimeter_infill_spacing = float(infill_line_spacing) * 1.05f;
- if (1)
{
PROFILE_BLOCK(discover_vertical_shells_region_layer_collect);
#if 0
@@ -698,8 +798,7 @@ void PrintObject::discover_vertical_shells()
bool hole_first = true;
for (int n = (int)idx_layer - n_extra_bottom_layers; n <= (int)idx_layer + n_extra_top_layers; ++ n)
if (n >= 0 && n < (int)this->layers.size()) {
- Layer &neighbor_layer = *this->layers[n];
- LayerRegion &neighbor_region = *neighbor_layer.get_region(int(idx_region));
+ Layer &neighbor_layer = *this->layers[n];
const DiscoverVerticalShellsCacheEntry &cache = cache_top_botom_regions[n];
if (hole_first) {
hole_first = false;
@@ -880,8 +979,7 @@ void PrintObject::discover_vertical_shells()
/* This method applies bridge flow to the first internal solid layer above
sparse infill */
-void
-PrintObject::bridge_over_infill()
+void PrintObject::bridge_over_infill()
{
BOOST_LOG_TRIVIAL(info) << "Bridge over infill...";
@@ -906,7 +1004,7 @@ PrintObject::bridge_over_infill()
if (layer_it == this->layers.begin()) continue;
Layer* layer = *layer_it;
- LayerRegion* layerm = layer->get_region(region_id);
+ LayerRegion* layerm = layer->regions[region_id];
// extract the stInternalSolid surfaces that might be transformed into bridges
Polygons internal_solid;
@@ -921,7 +1019,7 @@ PrintObject::bridge_over_infill()
// iterate through lower layers spanned by bridge_flow
double bottom_z = layer->print_z - bridge_flow.height;
- for (int i = (layer_it - this->layers.begin()) - 1; i >= 0; --i) {
+ for (int i = int(layer_it - this->layers.begin()) - 1; i >= 0; --i) {
const Layer* lower_layer = this->layers[i];
// stop iterating if layer is lower than bottom_z
@@ -941,7 +1039,7 @@ PrintObject::bridge_over_infill()
// therefore it may create 1) gaps, and 2) sharp corners, which are outside the original contour.
// The gaps will be filled by a separate region, which makes the infill less stable and it takes longer.
{
- double min_width = bridge_flow.scaled_width() * 3;
+ float min_width = float(bridge_flow.scaled_width()) * 3.f;
to_bridge_pp = offset2(to_bridge_pp, -min_width, +min_width);
}
@@ -1069,6 +1167,8 @@ void PrintObject::_slice()
{
BOOST_LOG_TRIVIAL(info) << "Slicing objects...";
+ this->typed_slices = false;
+
#if 0
// Disable parallelization for debugging purposes.
static tbb::task_scheduler_init *tbb_init = nullptr;
@@ -1221,7 +1321,7 @@ std::vector<ExPolygons> PrintObject::_slice_region(size_t region_id, const std::
// consider the first one
this->model_object()->instances.front()->transform_mesh(&mesh, true);
// align mesh to Z = 0 (it should be already aligned actually) and apply XY shift
- mesh.translate(- unscale(this->_copies_shift.x), - unscale(this->_copies_shift.y), -this->model_object()->bounding_box().min.z);
+ mesh.translate(- float(unscale(this->_copies_shift.x)), - float(unscale(this->_copies_shift.y)), -float(this->model_object()->bounding_box().min.z));
// perform actual slicing
TriangleMeshSlicer mslicer(&mesh);
mslicer.slice(z, &layers);
@@ -1462,6 +1562,387 @@ void PrintObject::_infill()
this->state.set_done(posInfill);
}
+// Only active if config->infill_only_where_needed. This step trims the sparse infill,
+// so it acts as an internal support. It maintains all other infill types intact.
+// Here the internal surfaces and perimeters have to be supported by the sparse infill.
+//FIXME The surfaces are supported by a sparse infill, but the sparse infill is only as large as the area to support.
+// Likely the sparse infill will not be anchored correctly, so it will not work as intended.
+// Also one wishes the perimeters to be supported by a full infill.
+// Idempotence of this method is guaranteed by the fact that we don't remove things from
+// fill_surfaces but we only turn them into VOID surfaces, thus preserving the boundaries.
+void PrintObject::clip_fill_surfaces()
+{
+ if (! this->config.infill_only_where_needed.value ||
+ ! std::any_of(this->print()->regions.begin(), this->print()->regions.end(),
+ [](const PrintRegion *region) { return region->config.fill_density > 0; }))
+ return;
+
+ // We only want infill under ceilings; this is almost like an
+ // internal support material.
+ // Proceed top-down, skipping the bottom layer.
+ Polygons upper_internal;
+ for (int layer_id = int(this->layers.size()) - 1; layer_id > 0; -- layer_id) {
+ Layer *layer = this->layers[layer_id];
+ Layer *lower_layer = this->layers[layer_id - 1];
+ // Detect things that we need to support.
+ // Cummulative slices.
+ Polygons slices;
+ for (const ExPolygon &expoly : layer->slices.expolygons)
+ polygons_append(slices, to_polygons(expoly));
+ // Cummulative fill surfaces.
+ Polygons fill_surfaces;
+ // Solid surfaces to be supported.
+ Polygons overhangs;
+ for (const LayerRegion *layerm : layer->regions)
+ for (const Surface &surface : layerm->fill_surfaces.surfaces) {
+ Polygons polygons = to_polygons(surface.expolygon);
+ if (surface.is_solid())
+ polygons_append(overhangs, polygons);
+ polygons_append(fill_surfaces, std::move(polygons));
+ }
+ Polygons lower_layer_fill_surfaces;
+ Polygons lower_layer_internal_surfaces;
+ for (const LayerRegion *layerm : lower_layer->regions)
+ for (const Surface &surface : layerm->fill_surfaces.surfaces) {
+ Polygons polygons = to_polygons(surface.expolygon);
+ if (surface.surface_type == stInternal || surface.surface_type == stInternalVoid)
+ polygons_append(lower_layer_internal_surfaces, polygons);
+ polygons_append(lower_layer_fill_surfaces, std::move(polygons));
+ }
+ // We also need to support perimeters when there's at least one full unsupported loop
+ {
+ // Get perimeters area as the difference between slices and fill_surfaces
+ // Only consider the area that is not supported by lower perimeters
+ Polygons perimeters = intersection(diff(slices, fill_surfaces), lower_layer_fill_surfaces);
+ // Only consider perimeter areas that are at least one extrusion width thick.
+ //FIXME Offset2 eats out from both sides, while the perimeters are create outside in.
+ //Should the pw not be half of the current value?
+ float pw = FLT_MAX;
+ for (const LayerRegion *layerm : layer->regions)
+ pw = std::min<float>(pw, layerm->flow(frPerimeter).scaled_width());
+ // Append such thick perimeters to the areas that need support
+ polygons_append(overhangs, offset2(perimeters, -pw, +pw));
+ }
+ // Find new internal infill.
+ polygons_append(overhangs, std::move(upper_internal));
+ upper_internal = intersection(overhangs, lower_layer_internal_surfaces);
+ // Apply new internal infill to regions.
+ for (LayerRegion *layerm : lower_layer->regions) {
+ if (layerm->region()->config.fill_density.value == 0)
+ continue;
+ SurfaceType internal_surface_types[] = { stInternal, stInternalVoid };
+ Polygons internal;
+ for (Surface &surface : layerm->fill_surfaces.surfaces)
+ if (surface.surface_type == stInternal || surface.surface_type == stInternalVoid)
+ polygons_append(internal, std::move(surface.expolygon));
+ layerm->fill_surfaces.remove_types(internal_surface_types, 2);
+ layerm->fill_surfaces.append(intersection_ex(internal, upper_internal, true), stInternal);
+ layerm->fill_surfaces.append(diff_ex (internal, upper_internal, true), stInternalVoid);
+ // If there are voids it means that our internal infill is not adjacent to
+ // perimeters. In this case it would be nice to add a loop around infill to
+ // make it more robust and nicer. TODO.
+#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
+ layerm->export_region_fill_surfaces_to_svg_debug("6_clip_fill_surfaces");
+#endif
+ }
+ }
+}
+
+void PrintObject::discover_horizontal_shells()
+{
+ BOOST_LOG_TRIVIAL(trace) << "discover_horizontal_shells()";
+
+ for (size_t region_id = 0; region_id < this->print()->regions.size(); ++ region_id) {
+ for (int i = 0; i < int(this->layers.size()); ++ i) {
+ LayerRegion *layerm = this->layers[i]->regions[region_id];
+ PrintRegionConfig &region_config = layerm->region()->config;
+ if (region_config.solid_infill_every_layers.value > 0 && region_config.fill_density.value > 0 &&
+ (i % region_config.solid_infill_every_layers) == 0) {
+ // Insert a solid internal layer. Mark stInternal surfaces as stInternalSolid or stInternalBridge.
+ SurfaceType type = (region_config.fill_density == 100) ? stInternalSolid : stInternalBridge;
+ for (Surface &surface : layerm->fill_surfaces.surfaces)
+ if (surface.surface_type == stInternal)
+ surface.surface_type = type;
+ }
+
+ // If ensure_vertical_shell_thickness, then the rest has already been performed by discover_vertical_shells().
+ if (region_config.ensure_vertical_shell_thickness.value)
+ continue;
+
+ for (int idx_surface_type = 0; idx_surface_type < 3; ++ idx_surface_type) {
+ SurfaceType type = (idx_surface_type == 0) ? stTop : (idx_surface_type == 1) ? stBottom : stBottomBridge;
+ // Find slices of current type for current layer.
+ // Use slices instead of fill_surfaces, because they also include the perimeter area,
+ // which needs to be propagated in shells; we need to grow slices like we did for
+ // fill_surfaces though. Using both ungrown slices and grown fill_surfaces will
+ // not work in some situations, as there won't be any grown region in the perimeter
+ // area (this was seen in a model where the top layer had one extra perimeter, thus
+ // its fill_surfaces were thinner than the lower layer's infill), however it's the best
+ // solution so far. Growing the external slices by EXTERNAL_INFILL_MARGIN will put
+ // too much solid infill inside nearly-vertical slopes.
+
+ // Surfaces including the area of perimeters. Everything, that is visible from the top / bottom
+ // (not covered by a layer above / below).
+ // This does not contain the areas covered by perimeters!
+ Polygons solid;
+ for (const Surface &surface : layerm->slices.surfaces)
+ if (surface.surface_type == type)
+ polygons_append(solid, to_polygons(surface.expolygon));
+ // Infill areas (slices without the perimeters).
+ for (const Surface &surface : layerm->fill_surfaces.surfaces)
+ if (surface.surface_type == type)
+ polygons_append(solid, to_polygons(surface.expolygon));
+ if (solid.empty())
+ continue;
+// Slic3r::debugf "Layer %d has %s surfaces\n", $i, ($type == S_TYPE_TOP) ? 'top' : 'bottom';
+
+ size_t solid_layers = (type == stTop) ? region_config.top_solid_layers.value : region_config.bottom_solid_layers.value;
+ for (int n = (type == stTop) ? i-1 : i+1; std::abs(n - i) < solid_layers; (type == stTop) ? -- n : ++ n) {
+ if (n < 0 || n >= int(this->layers.size()))
+ continue;
+// Slic3r::debugf " looking for neighbors on layer %d...\n", $n;
+ // Reference to the lower layer of a TOP surface, or an upper layer of a BOTTOM surface.
+ LayerRegion *neighbor_layerm = this->layers[n]->regions[region_id];
+
+ // find intersection between neighbor and current layer's surfaces
+ // intersections have contours and holes
+ // we update $solid so that we limit the next neighbor layer to the areas that were
+ // found on this one - in other words, solid shells on one layer (for a given external surface)
+ // are always a subset of the shells found on the previous shell layer
+ // this approach allows for DWIM in hollow sloping vases, where we want bottom
+ // shells to be generated in the base but not in the walls (where there are many
+ // narrow bottom surfaces): reassigning $solid will consider the 'shadow' of the
+ // upper perimeter as an obstacle and shell will not be propagated to more upper layers
+ //FIXME How does it work for S_TYPE_INTERNALBRIDGE? This is set for sparse infill. Likely this does not work.
+ Polygons new_internal_solid;
+ {
+ Polygons internal;
+ for (const Surface &surface : neighbor_layerm->fill_surfaces.surfaces)
+ if (surface.surface_type == stInternal || surface.surface_type == stInternalSolid)
+ polygons_append(internal, to_polygons(surface.expolygon));
+ new_internal_solid = intersection(solid, internal, true);
+ }
+ if (new_internal_solid.empty()) {
+ // No internal solid needed on this layer. In order to decide whether to continue
+ // searching on the next neighbor (thus enforcing the configured number of solid
+ // layers, use different strategies according to configured infill density:
+ if (region_config.fill_density.value == 0) {
+ // If user expects the object to be void (for example a hollow sloping vase),
+ // don't continue the search. In this case, we only generate the external solid
+ // shell if the object would otherwise show a hole (gap between perimeters of
+ // the two layers), and internal solid shells are a subset of the shells found
+ // on each previous layer.
+ goto EXTERNAL;
+ } else {
+ // If we have internal infill, we can generate internal solid shells freely.
+ continue;
+ }
+ }
+
+ if (region_config.fill_density.value == 0) {
+ // if we're printing a hollow object we discard any solid shell thinner
+ // than a perimeter width, since it's probably just crossing a sloping wall
+ // and it's not wanted in a hollow print even if it would make sense when
+ // obeying the solid shell count option strictly (DWIM!)
+ float margin = float(neighbor_layerm->flow(frExternalPerimeter).scaled_width());
+ Polygons too_narrow = diff(
+ new_internal_solid,
+ offset2(new_internal_solid, -margin, +margin, jtMiter, 5),
+ true);
+ // Trim the regularized region by the original region.
+ if (! too_narrow.empty())
+ new_internal_solid = solid = diff(new_internal_solid, too_narrow);
+ }
+
+ // make sure the new internal solid is wide enough, as it might get collapsed
+ // when spacing is added in Fill.pm
+ {
+ //FIXME Vojtech: Disable this and you will be sorry.
+ // https://github.com/prusa3d/Slic3r/issues/26 bottom
+ float margin = 3.f * layerm->flow(frSolidInfill).scaled_width(); // require at least this size
+ // we use a higher miterLimit here to handle areas with acute angles
+ // in those cases, the default miterLimit would cut the corner and we'd
+ // get a triangle in $too_narrow; if we grow it below then the shell
+ // would have a different shape from the external surface and we'd still
+ // have the same angle, so the next shell would be grown even more and so on.
+ Polygons too_narrow = diff(
+ new_internal_solid,
+ offset2(new_internal_solid, -margin, +margin, ClipperLib::jtMiter, 5),
+ true);
+ if (! too_narrow.empty()) {
+ // grow the collapsing parts and add the extra area to the neighbor layer
+ // as well as to our original surfaces so that we support this
+ // additional area in the next shell too
+ // make sure our grown surfaces don't exceed the fill area
+ Polygons internal;
+ for (const Surface &surface : neighbor_layerm->fill_surfaces.surfaces)
+ if (surface.is_internal() && !surface.is_bridge())
+ polygons_append(internal, to_polygons(surface.expolygon));
+ polygons_append(new_internal_solid,
+ intersection(
+ offset(too_narrow, +margin),
+ // Discard bridges as they are grown for anchoring and we can't
+ // remove such anchors. (This may happen when a bridge is being
+ // anchored onto a wall where little space remains after the bridge
+ // is grown, and that little space is an internal solid shell so
+ // it triggers this too_narrow logic.)
+ internal));
+ solid = new_internal_solid;
+ }
+ }
+
+ // internal-solid are the union of the existing internal-solid surfaces
+ // and new ones
+ SurfaceCollection backup = std::move(neighbor_layerm->fill_surfaces);
+ polygons_append(new_internal_solid, to_polygons(backup.filter_by_type(stInternalSolid)));
+ ExPolygons internal_solid = union_ex(new_internal_solid, false);
+ // assign new internal-solid surfaces to layer
+ neighbor_layerm->fill_surfaces.set(internal_solid, stInternalSolid);
+ // subtract intersections from layer surfaces to get resulting internal surfaces
+ Polygons polygons_internal = to_polygons(std::move(internal_solid));
+ ExPolygons internal = diff_ex(
+ to_polygons(backup.filter_by_type(stInternal)),
+ polygons_internal,
+ true);
+ // assign resulting internal surfaces to layer
+ neighbor_layerm->fill_surfaces.append(internal, stInternal);
+ polygons_append(polygons_internal, to_polygons(std::move(internal)));
+ // assign top and bottom surfaces to layer
+ SurfaceType surface_types_solid[] = { stTop, stBottom, stBottomBridge };
+ backup.keep_types(surface_types_solid, 3);
+ std::vector<SurfacesPtr> top_bottom_groups;
+ backup.group(&top_bottom_groups);
+ for (SurfacesPtr &group : top_bottom_groups)
+ neighbor_layerm->fill_surfaces.append(
+ diff_ex(to_polygons(group), polygons_internal),
+ group.front()->surface_type);
+ }
+ EXTERNAL:;
+ } // foreach type (stTop, stBottom, stBottomBridge)
+ } // for each layer
+ } // for each region
+
+#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
+ for (size_t region_id = 0; region_id < this->print()->regions.size(); ++ region_id)
+ for (const Layer *layer : this->layers) {
+ const LayerRegion *layerm = layer->regions[region_id];
+ layerm->export_region_slices_to_svg_debug("5_discover_horizontal_shells");
+ layerm->export_region_fill_surfaces_to_svg_debug("5_discover_horizontal_shells");
+ } // for each layer
+ } // for each region
+#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
+}
+
+// combine fill surfaces across layers to honor the "infill every N layers" option
+// Idempotence of this method is guaranteed by the fact that we don't remove things from
+// fill_surfaces but we only turn them into VOID surfaces, thus preserving the boundaries.
+void PrintObject::combine_infill()
+{
+ // Work on each region separately.
+ for (size_t region_id = 0; region_id < this->print()->regions.size(); ++ region_id) {
+ const PrintRegion *region = this->print()->regions[region_id];
+ const int every = region->config.infill_every_layers.value;
+ if (every < 2 || region->config.fill_density == 0.)
+ continue;
+ // Limit the number of combined layers to the maximum height allowed by this regions' nozzle.
+ //FIXME limit the layer height to max_layer_height
+ double nozzle_diameter = std::min(
+ this->print()->config.nozzle_diameter.get_at(region->config.infill_extruder.value - 1),
+ this->print()->config.nozzle_diameter.get_at(region->config.solid_infill_extruder.value - 1));
+ // define the combinations
+ std::vector<size_t> combine(this->layers.size(), 0);
+ {
+ double current_height = 0.;
+ size_t num_layers = 0;
+ for (size_t layer_idx = 0; layer_idx < this->layers.size(); ++ layer_idx) {
+ const Layer *layer = this->layers[layer_idx];
+ if (layer->id() == 0)
+ // Skip first print layer (which may not be first layer in array because of raft).
+ continue;
+ // Check whether the combination of this layer with the lower layers' buffer
+ // would exceed max layer height or max combined layer count.
+ if (current_height + layer->height >= nozzle_diameter + EPSILON || num_layers >= every) {
+ // Append combination to lower layer.
+ combine[layer_idx - 1] = num_layers;
+ current_height = 0.;
+ num_layers = 0;
+ }
+ current_height += layer->height;
+ ++ num_layers;
+ }
+
+ // Append lower layers (if any) to uppermost layer.
+ combine[this->layers.size() - 1] = num_layers;
+ }
+
+ // loop through layers to which we have assigned layers to combine
+ for (size_t layer_idx = 0; layer_idx < this->layers.size(); ++ layer_idx) {
+ size_t num_layers = combine[layer_idx];
+ if (num_layers <= 1)
+ continue;
+ // Get all the LayerRegion objects to be combined.
+ std::vector<LayerRegion*> layerms;
+ layerms.reserve(num_layers);
+ for (size_t i = layer_idx + 1 - num_layers; i <= layer_idx; ++ i)
+ layerms.emplace_back(this->layers[i]->regions[region_id]);
+ // We need to perform a multi-layer intersection, so let's split it in pairs.
+ // Initialize the intersection with the candidates of the lowest layer.
+ ExPolygons intersection = to_expolygons(layerms.front()->fill_surfaces.filter_by_type(stInternal));
+ // Start looping from the second layer and intersect the current intersection with it.
+ for (size_t i = 1; i < layerms.size(); ++ i)
+ intersection = intersection_ex(
+ to_polygons(intersection),
+ to_polygons(layerms[i]->fill_surfaces.filter_by_type(stInternal)),
+ false);
+ double area_threshold = layerms.front()->infill_area_threshold();
+ if (! intersection.empty() && area_threshold > 0.)
+ intersection.erase(std::remove_if(intersection.begin(), intersection.end(),
+ [area_threshold](const ExPolygon &expoly) { return expoly.area() <= area_threshold; }),
+ intersection.end());
+ if (intersection.empty())
+ continue;
+// Slic3r::debugf " combining %d %s regions from layers %d-%d\n",
+// scalar(@$intersection),
+// ($type == S_TYPE_INTERNAL ? 'internal' : 'internal-solid'),
+// $layer_idx-($every-1), $layer_idx;
+ // intersection now contains the regions that can be combined across the full amount of layers,
+ // so let's remove those areas from all layers.
+ Polygons intersection_with_clearance;
+ intersection_with_clearance.reserve(intersection.size());
+ float clearance_offset =
+ 0.5f * layerms.back()->flow(frPerimeter).scaled_width() +
+ // Because fill areas for rectilinear and honeycomb are grown
+ // later to overlap perimeters, we need to counteract that too.
+ ((region->config.fill_pattern == ipRectilinear ||
+ region->config.fill_pattern == ipGrid ||
+ region->config.fill_pattern == ipLine ||
+ region->config.fill_pattern == ipHoneycomb) ? 1.5f : 0.5f) *
+ layerms.back()->flow(frSolidInfill).scaled_width();
+ for (ExPolygon &expoly : intersection)
+ polygons_append(intersection_with_clearance, offset(expoly, clearance_offset));
+ for (LayerRegion *layerm : layerms) {
+ Polygons internal = to_polygons(layerm->fill_surfaces.filter_by_type(stInternal));
+ layerm->fill_surfaces.remove_type(stInternal);
+ layerm->fill_surfaces.append(diff_ex(internal, intersection_with_clearance, false), stInternal);
+ if (layerm == layerms.back()) {
+ // Apply surfaces back with adjusted depth to the uppermost layer.
+ Surface templ(stInternal, ExPolygon());
+ templ.thickness = 0.;
+ for (LayerRegion *layerm2 : layerms)
+ templ.thickness += layerm2->layer()->height;
+ templ.thickness_layers = (unsigned short)layerms.size();
+ layerm->fill_surfaces.append(intersection, templ);
+ } else {
+ // Save void surfaces.
+ layerm->fill_surfaces.append(
+ intersection_ex(internal, intersection_with_clearance, false),
+ stInternalVoid);
+ }
+ }
+ }
+ }
+}
+
void PrintObject::_generate_support_material()
{
PrintObjectSupportMaterial support_material(this, PrintObject::slicing_parameters());