Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'src/avrdude/avrftdi.c')
-rw-r--r--src/avrdude/avrftdi.c1275
1 files changed, 1275 insertions, 0 deletions
diff --git a/src/avrdude/avrftdi.c b/src/avrdude/avrftdi.c
new file mode 100644
index 000000000..29d10332a
--- /dev/null
+++ b/src/avrdude/avrftdi.c
@@ -0,0 +1,1275 @@
+/*
+ * avrftdi - extension for avrdude, Wolfgang Moser, Ville Voipio
+ * Copyright (C) 2011 Hannes Weisbach, Doug Springer
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+/* $Id$ */
+/*
+ * Interface to the MPSSE Engine of FTDI Chips using libftdi.
+ */
+#include "ac_cfg.h"
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <ctype.h>
+#include <string.h>
+#include <errno.h>
+#include <sys/time.h>
+#include <sys/types.h>
+#include <unistd.h>
+#include <stdint.h>
+#include <stdarg.h>
+
+#include "avrdude.h"
+#include "libavrdude.h"
+
+#include "avrftdi.h"
+#include "avrftdi_tpi.h"
+#include "avrftdi_private.h"
+#include "usbdevs.h"
+
+#ifndef MAX
+#define MAX(a,b) ((a)>(b)?(a):(b))
+#endif
+#ifndef MIN
+#define MIN(a,b) ((a)<(b)?(a):(b))
+#endif
+
+#ifdef DO_NOT_BUILD_AVRFTDI
+
+static int avrftdi_noftdi_open (struct programmer_t *pgm, char * name)
+{
+ avrdude_message(MSG_INFO, "%s: Error: no libftdi or libusb support. Install libftdi1/libusb-1.0 or libftdi/libusb and run configure/make again.\n",
+ progname);
+
+ return -1;
+}
+
+void avrftdi_initpgm(PROGRAMMER * pgm)
+{
+ strcpy(pgm->type, "avrftdi");
+ pgm->open = avrftdi_noftdi_open;
+}
+
+#else
+
+enum { FTDI_SCK = 0, FTDI_MOSI, FTDI_MISO, FTDI_RESET };
+
+static int write_flush(avrftdi_t *);
+
+/*
+ * returns a human-readable name for a pin number. the name should match with
+ * the pin names used in FTDI datasheets.
+ */
+static char*
+ftdi_pin_name(avrftdi_t* pdata, struct pindef_t pin)
+{
+ static char str[128];
+
+ char interface = '@';
+
+ /* INTERFACE_ANY is zero, so @ is used
+ * INTERFACE_A is one, so '@' + 1 = 'A'
+ * and so forth ...
+ * be aware, there is an 'interface' member in ftdi_context,
+ * however, we really want the 'index' member here.
+ */
+ interface += pdata->ftdic->index;
+
+ int pinno;
+ int n = 0;
+ int mask = pin.mask[0];
+
+ const char * fmt;
+
+ str[0] = 0;
+
+ for(pinno = 0; mask; mask >>= 1, pinno++) {
+ if(!(mask & 1))
+ continue;
+
+ int chars = 0;
+
+ char port;
+ /* This is FTDI's naming scheme.
+ * probably 'D' is for data and 'C' for control
+ */
+ if(pinno < 8)
+ port = 'D';
+ else
+ port = 'C';
+
+ if(str[0] == 0)
+ fmt = "%c%cBUS%d%n";
+ else
+ fmt = ", %c%cBUS%d%n";
+
+ snprintf(&str[n], sizeof(str) - n, fmt, interface, port, pinno, &chars);
+ n += chars;
+ }
+
+ return str;
+}
+
+/*
+ * output function, to save if(vebose>level)-constructs. also prefixes output
+ * with "avrftdi function-name(line-number):" to identify were messages came
+ * from.
+ * This function is the backend of the log_*-macros, but it can be used
+ * directly.
+ */
+void avrftdi_log(int level, const char * func, int line,
+ const char * fmt, ...) {
+ static int skip_prefix = 0;
+ const char *p = fmt;
+ va_list ap;
+
+ if(verbose >= level)
+ {
+ if(!skip_prefix)
+ {
+ switch(level) {
+ case ERR: avrdude_message(MSG_INFO, "E "); break;
+ case WARN: avrdude_message(MSG_INFO, "W "); break;
+ case INFO: avrdude_message(MSG_INFO, "I "); break;
+ case DEBUG: avrdude_message(MSG_INFO, "D "); break;
+ case TRACE: avrdude_message(MSG_INFO, "T "); break;
+ default: avrdude_message(MSG_INFO, " "); break;
+ }
+ avrdude_message(MSG_INFO, "%s(%d): ", func, line);
+ }
+ va_start(ap, fmt);
+ vfprintf(stderr, fmt, ap);
+ va_end(ap);
+ }
+
+ skip_prefix = 1;
+ while(*p++)
+ if(*p == '\n' && !(*(p+1)))
+ skip_prefix = 0;
+}
+
+/*
+ * helper function to print a binary buffer *buf of size len. begin and end of
+ * the dump are enclosed in the string contained in *desc. offset denotes the
+ * number of bytes which are printed on the first line (may be 0). after that
+ * width bytes are printed on each line
+ */
+static void buf_dump(const unsigned char *buf, int len, char *desc,
+ int offset, int width)
+{
+ int i;
+ avrdude_message(MSG_INFO, "%s begin:\n", desc);
+ for (i = 0; i < offset; i++)
+ avrdude_message(MSG_INFO, "%02x ", buf[i]);
+ avrdude_message(MSG_INFO, "\n");
+ for (i++; i <= len; i++) {
+ avrdude_message(MSG_INFO, "%02x ", buf[i-1]);
+ if((i-offset) != 0 && (i-offset)%width == 0)
+ avrdude_message(MSG_INFO, "\n");
+ }
+ avrdude_message(MSG_INFO, "%s end\n", desc);
+}
+
+/*
+ * calculates the so-called 'divisor'-value from a given frequency.
+ * the divisor is sent to the chip.
+ */
+static int set_frequency(avrftdi_t* ftdi, uint32_t freq)
+{
+ int32_t divisor;
+ uint8_t buf[3];
+
+ /* divisor on 6000000 / freq - 1 */
+ divisor = (6000000 / freq) - 1;
+ if (divisor < 0) {
+ log_warn("Frequency too high (%u > 6 MHz)\n", freq);
+ log_warn("Resetting Frequency to 6MHz\n");
+ divisor = 0;
+ }
+
+ if (divisor > 65535) {
+ log_warn("Frequency too low (%u < 91.553 Hz)\n", freq);
+ log_warn("Resetting Frequency to 91.553Hz\n");
+ divisor = 65535;
+ }
+
+ log_info("Using frequency: %d\n", 6000000/(divisor+1));
+ log_info("Clock divisor: 0x%04x\n", divisor);
+
+ buf[0] = TCK_DIVISOR;
+ buf[1] = (uint8_t)(divisor & 0xff);
+ buf[2] = (uint8_t)((divisor >> 8) & 0xff);
+
+ E(ftdi_write_data(ftdi->ftdic, buf, 3) < 0, ftdi->ftdic);
+
+ return 0;
+}
+
+/*
+ * This function sets or clears any pin, except SCK, MISO and MOSI. Depending
+ * on the pin configuration, a non-zero value sets the pin in the 'active'
+ * state (high active, low active) and a zero value sets the pin in the
+ * inactive state.
+ * Because we configured the pin direction mask earlier, nothing bad can happen
+ * here.
+ */
+static int set_pin(PROGRAMMER * pgm, int pinfunc, int value)
+{
+ avrftdi_t* pdata = to_pdata(pgm);
+ struct pindef_t pin = pgm->pin[pinfunc];
+
+ if (pin.mask[0] == 0) {
+ // ignore not defined pins (might be the led or vcc or buff if not needed)
+ return 0;
+ }
+
+ log_debug("Setting pin %s (%s) as %s: %s (%s active)\n",
+ pinmask_to_str(pin.mask), ftdi_pin_name(pdata, pin),
+ avr_pin_name(pinfunc),
+ (value) ? "high" : "low", (pin.inverse[0]) ? "low" : "high");
+
+ pdata->pin_value = SET_BITS_0(pdata->pin_value, pgm, pinfunc, value);
+
+ return write_flush(pdata);
+}
+
+/*
+ * Mandatory callbacks which boil down to GPIO.
+ */
+static int set_led_pgm(struct programmer_t * pgm, int value)
+{
+ return set_pin(pgm, PIN_LED_PGM, value);
+}
+
+static int set_led_rdy(struct programmer_t * pgm, int value)
+{
+ return set_pin(pgm, PIN_LED_RDY, value);
+}
+
+static int set_led_err(struct programmer_t * pgm, int value)
+{
+ return set_pin(pgm, PIN_LED_ERR, value);
+}
+
+static int set_led_vfy(struct programmer_t * pgm, int value)
+{
+ return set_pin(pgm, PIN_LED_VFY, value);
+}
+
+static void avrftdi_enable(PROGRAMMER * pgm)
+{
+ set_pin(pgm, PPI_AVR_BUFF, ON);
+}
+
+static void avrftdi_disable(PROGRAMMER * pgm)
+{
+ set_pin(pgm, PPI_AVR_BUFF, OFF);
+}
+
+static void avrftdi_powerup(PROGRAMMER * pgm)
+{
+ set_pin(pgm, PPI_AVR_VCC, ON);
+}
+
+static void avrftdi_powerdown(PROGRAMMER * pgm)
+{
+ set_pin(pgm, PPI_AVR_VCC, OFF);
+}
+
+static inline int set_data(PROGRAMMER * pgm, unsigned char *buf, unsigned char data, bool read_data) {
+ int j;
+ int buf_pos = 0;
+ unsigned char bit = 0x80;
+ avrftdi_t* pdata = to_pdata(pgm);
+
+ for (j=0; j<8; j++) {
+ pdata->pin_value = SET_BITS_0(pdata->pin_value,pgm,PIN_AVR_MOSI,data & bit);
+ pdata->pin_value = SET_BITS_0(pdata->pin_value,pgm,PIN_AVR_SCK,0);
+ buf[buf_pos++] = SET_BITS_LOW;
+ buf[buf_pos++] = (pdata->pin_value) & 0xff;
+ buf[buf_pos++] = (pdata->pin_direction) & 0xff;
+ buf[buf_pos++] = SET_BITS_HIGH;
+ buf[buf_pos++] = ((pdata->pin_value) >> 8) & 0xff;
+ buf[buf_pos++] = ((pdata->pin_direction) >> 8) & 0xff;
+
+ pdata->pin_value = SET_BITS_0(pdata->pin_value,pgm,PIN_AVR_SCK,1);
+ buf[buf_pos++] = SET_BITS_LOW;
+ buf[buf_pos++] = (pdata->pin_value) & 0xff;
+ buf[buf_pos++] = (pdata->pin_direction) & 0xff;
+ buf[buf_pos++] = SET_BITS_HIGH;
+ buf[buf_pos++] = ((pdata->pin_value) >> 8) & 0xff;
+ buf[buf_pos++] = ((pdata->pin_direction) >> 8) & 0xff;
+
+ if (read_data) {
+ buf[buf_pos++] = GET_BITS_LOW;
+ buf[buf_pos++] = GET_BITS_HIGH;
+ }
+
+ bit >>= 1;
+ }
+ return buf_pos;
+}
+
+static inline unsigned char extract_data(PROGRAMMER * pgm, unsigned char *buf, int offset) {
+ int j;
+ unsigned char bit = 0x80;
+ unsigned char r = 0;
+
+ buf += offset * 16; // 2 bytes per bit, 8 bits
+ for (j=0; j<8; j++) {
+ uint16_t in = buf[0] | (buf[1] << 8);
+ if (GET_BITS_0(in,pgm,PIN_AVR_MISO)) {
+ r |= bit;
+ }
+ buf += 2; // 2 bytes per input
+ bit >>= 1;
+ }
+ return r;
+}
+
+
+static int avrftdi_transmit_bb(PROGRAMMER * pgm, unsigned char mode, const unsigned char *buf,
+ unsigned char *data, int buf_size)
+{
+ size_t remaining = buf_size;
+ size_t written = 0;
+ avrftdi_t* pdata = to_pdata(pgm);
+ size_t blocksize = pdata->rx_buffer_size/2; // we are reading 2 bytes per data byte
+
+ // determine a maximum size of data block
+ size_t max_size = MIN(pdata->ftdic->max_packet_size,pdata->tx_buffer_size);
+ // select block size so that resulting commands does not exceed max_size if possible
+ blocksize = MAX(1,(max_size-7)/((8*2*6)+(8*1*2)));
+ //avrdude_message(MSG_INFO, "blocksize %d \n",blocksize);
+
+ while(remaining)
+ {
+
+ size_t transfer_size = (remaining > blocksize) ? blocksize : remaining;
+
+ // (8*2) outputs per data byte, 6 transmit bytes per output (SET_BITS_LOW/HIGH),
+ // (8*1) inputs per data byte, 2 transmit bytes per input (GET_BITS_LOW/HIGH),
+ // 1x SEND_IMMEDIATE
+ unsigned char send_buffer[(8*2*6)*transfer_size+(8*1*2)*transfer_size+7];
+ int len = 0;
+ int i;
+
+ for(i = 0 ; i< transfer_size; i++) {
+ len += set_data(pgm, send_buffer + len, buf[written+i], (mode & MPSSE_DO_READ) != 0);
+ }
+
+ pdata->pin_value = SET_BITS_0(pdata->pin_value,pgm,PIN_AVR_SCK,0);
+ send_buffer[len++] = SET_BITS_LOW;
+ send_buffer[len++] = (pdata->pin_value) & 0xff;
+ send_buffer[len++] = (pdata->pin_direction) & 0xff;
+ send_buffer[len++] = SET_BITS_HIGH;
+ send_buffer[len++] = ((pdata->pin_value) >> 8) & 0xff;
+ send_buffer[len++] = ((pdata->pin_direction) >> 8) & 0xff;
+
+ send_buffer[len++] = SEND_IMMEDIATE;
+
+ E(ftdi_write_data(pdata->ftdic, send_buffer, len) != len, pdata->ftdic);
+ if (mode & MPSSE_DO_READ) {
+ unsigned char recv_buffer[2*16*transfer_size];
+ int n;
+ int k = 0;
+ do {
+ n = ftdi_read_data(pdata->ftdic, &recv_buffer[k], 2*16*transfer_size - k);
+ E(n < 0, pdata->ftdic);
+ k += n;
+ } while (k < transfer_size);
+
+ for(i = 0 ; i< transfer_size; i++) {
+ data[written + i] = extract_data(pgm, recv_buffer, i);
+ }
+ }
+
+ written += transfer_size;
+ remaining -= transfer_size;
+ }
+
+ return written;
+}
+
+/* Send 'buf_size' bytes from 'cmd' to device and return data from device in
+ * buffer 'data'.
+ * Write is only performed when mode contains MPSSE_DO_WRITE.
+ * Read is only performed when mode contains MPSSE_DO_WRITE and MPSSE_DO_READ.
+ */
+static int avrftdi_transmit_mpsse(avrftdi_t* pdata, unsigned char mode, const unsigned char *buf,
+ unsigned char *data, int buf_size)
+{
+ size_t blocksize;
+ size_t remaining = buf_size;
+ size_t written = 0;
+
+ unsigned char cmd[3];
+// unsigned char si = SEND_IMMEDIATE;
+
+ cmd[0] = mode | MPSSE_WRITE_NEG;
+ cmd[1] = ((buf_size - 1) & 0xff);
+ cmd[2] = (((buf_size - 1) >> 8) & 0xff);
+
+ //if we are not reading back, we can just write the data out
+ if(!(mode & MPSSE_DO_READ))
+ blocksize = buf_size;
+ else
+ blocksize = pdata->rx_buffer_size;
+
+ E(ftdi_write_data(pdata->ftdic, cmd, sizeof(cmd)) != sizeof(cmd), pdata->ftdic);
+
+ while(remaining)
+ {
+ size_t transfer_size = (remaining > blocksize) ? blocksize : remaining;
+
+ E(ftdi_write_data(pdata->ftdic, (unsigned char*)&buf[written], transfer_size) != transfer_size, pdata->ftdic);
+#if 0
+ if(remaining < blocksize)
+ E(ftdi_write_data(pdata->ftdic, &si, sizeof(si)) != sizeof(si), pdata->ftdic);
+#endif
+
+ if (mode & MPSSE_DO_READ) {
+ int n;
+ int k = 0;
+ do {
+ n = ftdi_read_data(pdata->ftdic, &data[written + k], transfer_size - k);
+ E(n < 0, pdata->ftdic);
+ k += n;
+ } while (k < transfer_size);
+
+ }
+
+ written += transfer_size;
+ remaining -= transfer_size;
+ }
+
+ return written;
+}
+
+static inline int avrftdi_transmit(PROGRAMMER * pgm, unsigned char mode, const unsigned char *buf,
+ unsigned char *data, int buf_size)
+{
+ avrftdi_t* pdata = to_pdata(pgm);
+ if (pdata->use_bitbanging)
+ return avrftdi_transmit_bb(pgm, mode, buf, data, buf_size);
+ else
+ return avrftdi_transmit_mpsse(pdata, mode, buf, data, buf_size);
+}
+
+static int write_flush(avrftdi_t* pdata)
+{
+ unsigned char buf[6];
+
+ log_debug("Setting pin direction (0x%04x) and value (0x%04x)\n",
+ pdata->pin_direction, pdata->pin_value);
+
+ buf[0] = SET_BITS_LOW;
+ buf[1] = (pdata->pin_value) & 0xff;
+ buf[2] = (pdata->pin_direction) & 0xff;
+ buf[3] = SET_BITS_HIGH;
+ buf[4] = ((pdata->pin_value) >> 8) & 0xff;
+ buf[5] = ((pdata->pin_direction) >> 8) & 0xff;
+
+ E(ftdi_write_data(pdata->ftdic, buf, 6) != 6, pdata->ftdic);
+
+ log_trace("Set pins command: %02x %02x %02x %02x %02x %02x\n",
+ buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
+
+ /* we need to flush here, because set_pin is used as reset.
+ * if we want to sleep reset periods, we must be certain the
+ * avr has got the reset signal when we start sleeping.
+ * (it may be stuck in the USB stack or some USB hub)
+ *
+ * Add.: purge does NOT flush. It clears. Also, it is unknown, when the purge
+ * command actually arrives at the chip.
+ * Use read pin status command as sync.
+ */
+ //E(ftdi_usb_purge_buffers(pdata->ftdic), pdata->ftdic);
+
+ unsigned char cmd[] = { GET_BITS_LOW, SEND_IMMEDIATE };
+ E(ftdi_write_data(pdata->ftdic, cmd, sizeof(cmd)) != sizeof(cmd), pdata->ftdic);
+
+ int num = 0;
+ do
+ {
+ int n = ftdi_read_data(pdata->ftdic, buf, sizeof(buf));
+ if(n > 0)
+ num += n;
+ E(n < 0, pdata->ftdic);
+ } while(num < 1);
+
+ if(num > 1)
+ log_warn("Read %d extra bytes\n", num-1);
+
+ return 0;
+
+}
+
+static int avrftdi_check_pins_bb(PROGRAMMER * pgm, bool output)
+{
+ int pin;
+
+ /* pin checklist. */
+ struct pin_checklist_t pin_checklist[N_PINS];
+
+ avrftdi_t* pdata = to_pdata(pgm);
+
+ /* value for 8/12/16 bit wide interface */
+ int valid_mask = ((1 << pdata->pin_limit) - 1);
+
+ log_debug("Using valid mask bibanging: 0x%08x\n", valid_mask);
+ static struct pindef_t valid_pins;
+ valid_pins.mask[0] = valid_mask;
+ valid_pins.inverse[0] = valid_mask ;
+
+ /* build pin checklist */
+ for(pin = 0; pin < N_PINS; ++pin) {
+ pin_checklist[pin].pinname = pin;
+ pin_checklist[pin].mandatory = 0;
+ pin_checklist[pin].valid_pins = &valid_pins;
+ }
+
+ /* assumes all checklists above have same number of entries */
+ return pins_check(pgm, pin_checklist, N_PINS, output);
+}
+
+static int avrftdi_check_pins_mpsse(PROGRAMMER * pgm, bool output)
+{
+ int pin;
+
+ /* pin checklist. */
+ struct pin_checklist_t pin_checklist[N_PINS];
+
+ avrftdi_t* pdata = to_pdata(pgm);
+
+ /* SCK/MOSI/MISO are fixed and not invertable?*/
+ /* TODO: inverted SCK/MISO/MOSI */
+ static const struct pindef_t valid_pins_SCK = {{0x01},{0x00}} ;
+ static const struct pindef_t valid_pins_MOSI = {{0x02},{0x00}} ;
+ static const struct pindef_t valid_pins_MISO = {{0x04},{0x00}} ;
+
+ /* value for 8/12/16 bit wide interface for other pins */
+ int valid_mask = ((1 << pdata->pin_limit) - 1);
+ /* mask out SCK/MISO/MOSI */
+ valid_mask &= ~((1 << FTDI_SCK) | (1 << FTDI_MOSI) | (1 << FTDI_MISO));
+
+ log_debug("Using valid mask mpsse: 0x%08x\n", valid_mask);
+ static struct pindef_t valid_pins_others;
+ valid_pins_others.mask[0] = valid_mask;
+ valid_pins_others.inverse[0] = valid_mask ;
+
+ /* build pin checklist */
+ for(pin = 0; pin < N_PINS; ++pin) {
+ pin_checklist[pin].pinname = pin;
+ pin_checklist[pin].mandatory = 0;
+ pin_checklist[pin].valid_pins = &valid_pins_others;
+ }
+
+ /* now set mpsse specific pins */
+ pin_checklist[PIN_AVR_SCK].mandatory = 1;
+ pin_checklist[PIN_AVR_SCK].valid_pins = &valid_pins_SCK;
+ pin_checklist[PIN_AVR_MOSI].mandatory = 1;
+ pin_checklist[PIN_AVR_MOSI].valid_pins = &valid_pins_MOSI;
+ pin_checklist[PIN_AVR_MISO].mandatory = 1;
+ pin_checklist[PIN_AVR_MISO].valid_pins = &valid_pins_MISO;
+ pin_checklist[PIN_AVR_RESET].mandatory = 1;
+
+ /* assumes all checklists above have same number of entries */
+ return pins_check(pgm, pin_checklist, N_PINS, output);
+}
+
+static int avrftdi_pin_setup(PROGRAMMER * pgm)
+{
+ int pin;
+
+ /*************
+ * pin setup *
+ *************/
+
+ avrftdi_t* pdata = to_pdata(pgm);
+
+ bool pin_check_mpsse = (0 == avrftdi_check_pins_mpsse(pgm, verbose>3));
+
+ bool pin_check_bitbanging = (0 == avrftdi_check_pins_bb(pgm, verbose>3));
+
+ if (!pin_check_mpsse && !pin_check_bitbanging) {
+ log_err("No valid pin configuration found.\n");
+ avrftdi_check_pins_bb(pgm, true);
+ log_err("Pin configuration for FTDI MPSSE must be:\n");
+ log_err("%s: 0, %s: 1, %s: 2 (is: %s, %s, %s)\n", avr_pin_name(PIN_AVR_SCK),
+ avr_pin_name(PIN_AVR_MOSI), avr_pin_name(PIN_AVR_MISO),
+ pins_to_str(&pgm->pin[PIN_AVR_SCK]),
+ pins_to_str(&pgm->pin[PIN_AVR_MOSI]),
+ pins_to_str(&pgm->pin[PIN_AVR_MISO]));
+ log_err("If other pin configuration is used, fallback to slower bitbanging mode is used.\n");
+
+ return -1;
+ }
+
+ pdata->use_bitbanging = !pin_check_mpsse;
+ if (pdata->use_bitbanging) log_info("Because of pin configuration fallback to bitbanging mode.\n");
+
+ /*
+ * TODO: No need to fail for a wrongly configured led or something.
+ * Maybe we should only fail for SCK; MISO, MOSI, RST (and probably
+ * VCC and BUFF).
+ */
+
+ /* everything is an output, except MISO */
+ for(pin = 0; pin < N_PINS; ++pin) {
+ pdata->pin_direction |= pgm->pin[pin].mask[0];
+ pdata->pin_value = SET_BITS_0(pdata->pin_value, pgm, pin, OFF);
+ }
+ pdata->pin_direction &= ~pgm->pin[PIN_AVR_MISO].mask[0];
+
+ for(pin = PIN_LED_ERR; pin < N_PINS; ++pin) {
+ pdata->led_mask |= pgm->pin[pin].mask[0];
+ }
+
+
+ log_info("Pin direction mask: %04x\n", pdata->pin_direction);
+ log_info("Pin value mask: %04x\n", pdata->pin_value);
+
+ return 0;
+}
+
+static int avrftdi_open(PROGRAMMER * pgm, char *port)
+{
+ int vid, pid, interface, index, err;
+ char * serial, *desc;
+
+ avrftdi_t* pdata = to_pdata(pgm);
+
+ /************************
+ * parameter validation *
+ ************************/
+
+ /* use vid/pid in following priority: config,
+ * defaults. cmd-line is currently not supported */
+
+ if (pgm->usbvid)
+ vid = pgm->usbvid;
+ else
+ vid = USB_VENDOR_FTDI;
+
+ LNODEID usbpid = lfirst(pgm->usbpid);
+ if (usbpid) {
+ pid = *(int *)(ldata(usbpid));
+ if (lnext(usbpid))
+ avrdude_message(MSG_INFO, "%s: Warning: using PID 0x%04x, ignoring remaining PIDs in list\n",
+ progname, pid);
+ } else
+ pid = USB_DEVICE_FT2232;
+
+ if (0 == pgm->usbsn[0]) /* we don't care about SN. Use first avail. */
+ serial = NULL;
+ else
+ serial = pgm->usbsn;
+
+ /* not used yet, but i put them here, just in case someone does needs or
+ * wants to implement this.
+ */
+ desc = NULL;
+ index = 0;
+
+ if (pgm->usbdev[0] == 'a' || pgm->usbdev[0] == 'A')
+ interface = INTERFACE_A;
+ else if (pgm->usbdev[0] == 'b' || pgm->usbdev[0] == 'B')
+ interface = INTERFACE_B;
+ else {
+ log_warn("Invalid interface '%s'. Setting to Interface A\n", pgm->usbdev);
+ interface = INTERFACE_A;
+ }
+
+ /****************
+ * Device setup *
+ ****************/
+
+ E(ftdi_set_interface(pdata->ftdic, interface) < 0, pdata->ftdic);
+
+ err = ftdi_usb_open_desc_index(pdata->ftdic, vid, pid, desc, serial, index);
+ if(err) {
+ log_err("Error %d occurred: %s\n", err, ftdi_get_error_string(pdata->ftdic));
+ //stupid hack, because avrdude calls pgm->close() even when pgm->open() fails
+ //and usb_dev is intialized to the last usb device from probing
+ pdata->ftdic->usb_dev = NULL;
+ return err;
+ } else {
+ log_info("Using device VID:PID %04x:%04x and SN '%s' on interface %c.\n",
+ vid, pid, serial, INTERFACE_A == interface? 'A': 'B');
+ }
+
+ ftdi_set_latency_timer(pdata->ftdic, 1);
+ //ftdi_write_data_set_chunksize(pdata->ftdic, 16);
+ //ftdi_read_data_set_chunksize(pdata->ftdic, 16);
+
+ /* set SPI mode */
+ E(ftdi_set_bitmode(pdata->ftdic, 0, BITMODE_RESET) < 0, pdata->ftdic);
+ E(ftdi_set_bitmode(pdata->ftdic, pdata->pin_direction & 0xff, BITMODE_MPSSE) < 0, pdata->ftdic);
+ E(ftdi_usb_purge_buffers(pdata->ftdic), pdata->ftdic);
+
+ write_flush(pdata);
+
+ if (pgm->baudrate) {
+ set_frequency(pdata, pgm->baudrate);
+ } else if(pgm->bitclock) {
+ set_frequency(pdata, (uint32_t)(1.0f/pgm->bitclock));
+ } else {
+ set_frequency(pdata, pgm->baudrate ? pgm->baudrate : 150000);
+ }
+
+ /* set pin limit depending on chip type */
+ switch(pdata->ftdic->type) {
+ case TYPE_AM:
+ case TYPE_BM:
+ case TYPE_R:
+ log_err("Found unsupported device type AM, BM or R. avrftdi ");
+ log_err("cannot work with your chip. Try the 'synbb' programmer.\n");
+ return -1;
+ case TYPE_2232C:
+ pdata->pin_limit = 12;
+ pdata->rx_buffer_size = 384;
+ pdata->tx_buffer_size = 128;
+ break;
+ case TYPE_2232H:
+ pdata->pin_limit = 16;
+ pdata->rx_buffer_size = 4096;
+ pdata->tx_buffer_size = 4096;
+ break;
+#ifdef HAVE_LIBFTDI_TYPE_232H
+ case TYPE_232H:
+ pdata->pin_limit = 16;
+ pdata->rx_buffer_size = 1024;
+ pdata->tx_buffer_size = 1024;
+ break;
+#else
+#warning No support for 232H, use a newer libftdi, version >= 0.20
+#endif
+ case TYPE_4232H:
+ pdata->pin_limit = 8;
+ pdata->rx_buffer_size = 2048;
+ pdata->tx_buffer_size = 2048;
+ break;
+ default:
+ log_warn("Found unknown device %x. I will do my ", pdata->ftdic->type);
+ log_warn("best to work with it, but no guarantees ...\n");
+ pdata->pin_limit = 8;
+ pdata->rx_buffer_size = pdata->ftdic->max_packet_size;
+ pdata->tx_buffer_size = pdata->ftdic->max_packet_size;
+ break;
+ }
+
+ if(avrftdi_pin_setup(pgm))
+ return -1;
+
+ /**********************************************
+ * set the ready LED and set our direction up *
+ **********************************************/
+
+ set_led_rdy(pgm,0);
+ set_led_pgm(pgm,1);
+
+ return 0;
+}
+
+static void avrftdi_close(PROGRAMMER * pgm)
+{
+ avrftdi_t* pdata = to_pdata(pgm);
+
+ if(pdata->ftdic->usb_dev) {
+ set_pin(pgm, PIN_AVR_RESET, ON);
+
+ /* Stop driving the pins - except for the LEDs */
+ log_info("LED Mask=0x%04x value =0x%04x &=0x%04x\n",
+ pdata->led_mask, pdata->pin_value, pdata->led_mask & pdata->pin_value);
+
+ pdata->pin_direction = pdata->led_mask;
+ pdata->pin_value &= pdata->led_mask;
+ write_flush(pdata);
+ /* reset state recommended by FTDI */
+ ftdi_set_bitmode(pdata->ftdic, 0, BITMODE_RESET);
+ E_VOID(ftdi_usb_close(pdata->ftdic), pdata->ftdic);
+ }
+
+ return;
+}
+
+static int avrftdi_initialize(PROGRAMMER * pgm, AVRPART * p)
+{
+ avrftdi_powerup(pgm);
+
+ if(p->flags & AVRPART_HAS_TPI)
+ {
+ /* see avrftdi_tpi.c */
+ avrftdi_tpi_initialize(pgm, p);
+ }
+ else
+ {
+ set_pin(pgm, PIN_AVR_RESET, OFF);
+ set_pin(pgm, PIN_AVR_SCK, OFF);
+ /*use speed optimization with CAUTION*/
+ usleep(20 * 1000);
+
+ /* giving rst-pulse of at least 2 avr-clock-cycles, for
+ * security (2us @ 1MHz) */
+ set_pin(pgm, PIN_AVR_RESET, ON);
+ usleep(20 * 1000);
+
+ /*setting rst back to 0 */
+ set_pin(pgm, PIN_AVR_RESET, OFF);
+ /*wait at least 20ms bevor issuing spi commands to avr */
+ usleep(20 * 1000);
+ }
+
+ return pgm->program_enable(pgm, p);
+}
+
+static void avrftdi_display(PROGRAMMER * pgm, const char *p)
+{
+ // print the full pin definitiions as in ft245r ?
+ return;
+}
+
+
+static int avrftdi_cmd(PROGRAMMER * pgm, const unsigned char *cmd, unsigned char *res)
+{
+ return avrftdi_transmit(pgm, MPSSE_DO_READ | MPSSE_DO_WRITE, cmd, res, 4);
+}
+
+
+static int avrftdi_program_enable(PROGRAMMER * pgm, AVRPART * p)
+{
+ int i;
+ unsigned char buf[4];
+
+ memset(buf, 0, sizeof(buf));
+
+ if (p->op[AVR_OP_PGM_ENABLE] == NULL) {
+ log_err("AVR_OP_PGM_ENABLE command not defined for %s\n", p->desc);
+ return -1;
+ }
+
+ avr_set_bits(p->op[AVR_OP_PGM_ENABLE], buf);
+
+ for(i = 0; i < 4; i++) {
+ pgm->cmd(pgm, buf, buf);
+ if (buf[p->pollindex-1] != p->pollvalue) {
+ log_warn("Program enable command not successful. Retrying.\n");
+ set_pin(pgm, PIN_AVR_RESET, ON);
+ usleep(20);
+ set_pin(pgm, PIN_AVR_RESET, OFF);
+ avr_set_bits(p->op[AVR_OP_PGM_ENABLE], buf);
+ } else
+ return 0;
+ }
+
+ log_err("Device is not responding to program enable. Check connection.\n");
+
+ return -1;
+}
+
+
+static int avrftdi_chip_erase(PROGRAMMER * pgm, AVRPART * p)
+{
+ unsigned char cmd[4];
+ unsigned char res[4];
+
+ if (p->op[AVR_OP_CHIP_ERASE] == NULL) {
+ log_err("AVR_OP_CHIP_ERASE command not defined for %s\n", p->desc);
+ return -1;
+ }
+
+ memset(cmd, 0, sizeof(cmd));
+
+ avr_set_bits(p->op[AVR_OP_CHIP_ERASE], cmd);
+ pgm->cmd(pgm, cmd, res);
+ usleep(p->chip_erase_delay);
+ pgm->initialize(pgm, p);
+
+ return 0;
+}
+
+
+/* Load extended address byte command */
+static int
+avrftdi_lext(PROGRAMMER *pgm, AVRPART *p, AVRMEM *m, unsigned int address)
+{
+ unsigned char buf[] = { 0x00, 0x00, 0x00, 0x00 };
+
+ avr_set_bits(m->op[AVR_OP_LOAD_EXT_ADDR], buf);
+ avr_set_addr(m->op[AVR_OP_LOAD_EXT_ADDR], buf, address);
+
+ if(verbose > TRACE)
+ buf_dump(buf, sizeof(buf),
+ "load extended address command", 0, 16 * 3);
+
+ if (0 > avrftdi_transmit(pgm, MPSSE_DO_WRITE, buf, buf, 4))
+ return -1;
+
+ return 0;
+}
+
+static int avrftdi_eeprom_write(PROGRAMMER *pgm, AVRPART *p, AVRMEM *m,
+ unsigned int page_size, unsigned int addr, unsigned int len)
+{
+ unsigned char cmd[] = { 0x00, 0x00, 0x00, 0x00 };
+ unsigned char *data = &m->buf[addr];
+ unsigned int add;
+
+ avr_set_bits(m->op[AVR_OP_WRITE], cmd);
+
+ for (add = addr; add < addr + len; add++)
+ {
+ avr_set_addr(m->op[AVR_OP_WRITE], cmd, add);
+ avr_set_input(m->op[AVR_OP_WRITE], cmd, *data++);
+
+ if (0 > avrftdi_transmit(pgm, MPSSE_DO_WRITE, cmd, cmd, 4))
+ return -1;
+ usleep((m->max_write_delay));
+
+ }
+ return len;
+}
+
+static int avrftdi_eeprom_read(PROGRAMMER *pgm, AVRPART *p, AVRMEM *m,
+ unsigned int page_size, unsigned int addr, unsigned int len)
+{
+ unsigned char cmd[4];
+ unsigned char buffer[len], *bufptr = buffer;
+ unsigned int add;
+
+ memset(buffer, 0, sizeof(buffer));
+ for (add = addr; add < addr + len; add++)
+ {
+ memset(cmd, 0, sizeof(cmd));
+ avr_set_bits(m->op[AVR_OP_READ], cmd);
+ avr_set_addr(m->op[AVR_OP_READ], cmd, add);
+
+ if (0 > avrftdi_transmit(pgm, MPSSE_DO_READ | MPSSE_DO_WRITE, cmd, cmd, 4))
+ return -1;
+
+ avr_get_output(m->op[AVR_OP_READ], cmd, bufptr++);
+ }
+
+ memcpy(m->buf + addr, buffer, len);
+ return len;
+}
+
+static int avrftdi_flash_write(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
+ unsigned int page_size, unsigned int addr, unsigned int len)
+{
+ int use_lext_address = m->op[AVR_OP_LOAD_EXT_ADDR] != NULL;
+
+ unsigned int word;
+ unsigned int poll_index;
+ unsigned int buf_size;
+
+ unsigned char poll_byte;
+ unsigned char *buffer = &m->buf[addr];
+ unsigned char buf[4*len+4], *bufptr = buf;
+
+ memset(buf, 0, sizeof(buf));
+
+ /* pre-check opcodes */
+ if (m->op[AVR_OP_LOADPAGE_LO] == NULL) {
+ log_err("AVR_OP_LOADPAGE_LO command not defined for %s\n", p->desc);
+ return -1;
+ }
+ if (m->op[AVR_OP_LOADPAGE_HI] == NULL) {
+ log_err("AVR_OP_LOADPAGE_HI command not defined for %s\n", p->desc);
+ return -1;
+ }
+
+ if(page_size != m->page_size) {
+ log_warn("Parameter page_size is %d, ", page_size);
+ log_warn("but m->page_size is %d. Using the latter.\n", m->page_size);
+ }
+
+ page_size = m->page_size;
+
+ /* if we do cross a 64k word boundary (or write the
+ * first page), we need to issue a 'load extended
+ * address byte' command, which is defined as 0x4d
+ * 0x00 <address byte> 0x00. As far as i know, this
+ * is only available on 256k parts. 64k word is 128k
+ * bytes.
+ * write the command only once.
+ */
+ if(use_lext_address && (((addr/2) & 0xffff0000))) {
+ if (0 > avrftdi_lext(pgm, p, m, addr/2))
+ return -1;
+ }
+
+ /* prepare the command stream for the whole page */
+ /* addr is in bytes, but we program in words. addr/2 should be something
+ * like addr >> WORD_SHIFT, though */
+ for(word = addr/2; word < (len + addr)/2; word++)
+ {
+ log_debug("-< bytes = %d of %d\n", word * 2, len + addr);
+
+ /*setting word*/
+ avr_set_bits(m->op[AVR_OP_LOADPAGE_LO], bufptr);
+ /* here is the second byte increment, just if you're wondering */
+ avr_set_addr(m->op[AVR_OP_LOADPAGE_LO], bufptr, word);
+ avr_set_input(m->op[AVR_OP_LOADPAGE_LO], bufptr, *buffer++);
+ bufptr += 4;
+ avr_set_bits(m->op[AVR_OP_LOADPAGE_HI], bufptr);
+ avr_set_addr(m->op[AVR_OP_LOADPAGE_HI], bufptr, word);
+ avr_set_input(m->op[AVR_OP_LOADPAGE_HI], bufptr, *buffer++);
+ bufptr += 4;
+ }
+
+ /* issue write page command, if available */
+ if (m->op[AVR_OP_WRITEPAGE] == NULL) {
+ log_err("AVR_OP_WRITEPAGE command not defined for %s\n", p->desc);
+ return -1;
+ } else {
+ avr_set_bits(m->op[AVR_OP_WRITEPAGE], bufptr);
+ /* setting page address highbyte */
+ avr_set_addr(m->op[AVR_OP_WRITEPAGE],
+ bufptr, addr/2);
+ bufptr += 4;
+ }
+
+ buf_size = bufptr - buf;
+
+ if(verbose > TRACE)
+ buf_dump(buf, buf_size, "command buffer", 0, 16*2);
+
+ log_info("Transmitting buffer of size: %d\n", buf_size);
+ if (0 > avrftdi_transmit(pgm, MPSSE_DO_WRITE, buf, buf, buf_size))
+ return -1;
+
+ bufptr = buf;
+ /* find a poll byte. we cannot poll a value of 0xff, so look
+ * for a value != 0xff
+ */
+ for(poll_index = addr+len-1; poll_index > addr-1; poll_index--)
+ if(m->buf[poll_index] != 0xff)
+ break;
+
+ if((poll_index < addr + len) && m->buf[poll_index] != 0xff)
+ {
+ log_info("Using m->buf[%d] = 0x%02x as polling value ", poll_index,
+ m->buf[poll_index]);
+ /* poll page write ready */
+ do {
+ log_info(".");
+
+ pgm->read_byte(pgm, p, m, poll_index, &poll_byte);
+ } while (m->buf[poll_index] != poll_byte);
+
+ log_info("\n");
+ }
+ else
+ {
+ log_warn("No suitable byte (!=0xff) for polling found.\n");
+ log_warn("Trying to sleep instead, but programming errors may occur.\n");
+ log_warn("Be sure to verify programmed memory (no -V option)\n");
+ /* TODO sync write */
+ /* sleep */
+ usleep((m->max_write_delay));
+ }
+
+ return len;
+}
+
+/*
+ *Reading from flash
+ */
+static int avrftdi_flash_read(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
+ unsigned int page_size, unsigned int addr, unsigned int len)
+{
+ OPCODE * readop;
+ int byte, word;
+ int use_lext_address = m->op[AVR_OP_LOAD_EXT_ADDR] != NULL;
+ unsigned int address = addr/2;
+
+ unsigned char o_buf[4*len+4];
+ unsigned char i_buf[4*len+4];
+ unsigned int index;
+
+
+ memset(o_buf, 0, sizeof(o_buf));
+ memset(i_buf, 0, sizeof(i_buf));
+
+ /* pre-check opcodes */
+ if (m->op[AVR_OP_READ_LO] == NULL) {
+ log_err("AVR_OP_READ_LO command not defined for %s\n", p->desc);
+ return -1;
+ }
+ if (m->op[AVR_OP_READ_HI] == NULL) {
+ log_err("AVR_OP_READ_HI command not defined for %s\n", p->desc);
+ return -1;
+ }
+
+ if(use_lext_address && ((address & 0xffff0000))) {
+ if (0 > avrftdi_lext(pgm, p, m, address))
+ return -1;
+ }
+
+ /* word addressing! */
+ for(word = addr/2, index = 0; word < (addr + len)/2; word++)
+ {
+ /* one byte is transferred via a 4-byte opcode.
+ * TODO: reduce magic numbers
+ */
+ avr_set_bits(m->op[AVR_OP_READ_LO], &o_buf[index*4]);
+ avr_set_addr(m->op[AVR_OP_READ_LO], &o_buf[index*4], word);
+ index++;
+ avr_set_bits(m->op[AVR_OP_READ_HI], &o_buf[index*4]);
+ avr_set_addr(m->op[AVR_OP_READ_HI], &o_buf[index*4], word);
+ index++;
+ }
+
+ /* transmit,
+ * if there was an error, we did not see, memory validation will
+ * subsequently fail.
+ */
+ if(verbose > TRACE) {
+ buf_dump(o_buf, sizeof(o_buf), "o_buf", 0, 32);
+ }
+
+ if (0 > avrftdi_transmit(pgm, MPSSE_DO_READ | MPSSE_DO_WRITE, o_buf, i_buf, len * 4))
+ return -1;
+
+ if(verbose > TRACE) {
+ buf_dump(i_buf, sizeof(i_buf), "i_buf", 0, 32);
+ }
+
+ memset(&m->buf[addr], 0, page_size);
+
+ /* every (read) op is 4 bytes in size and yields one byte of memory data */
+ for(byte = 0; byte < page_size; byte++) {
+ if(byte & 1)
+ readop = m->op[AVR_OP_READ_HI];
+ else
+ readop = m->op[AVR_OP_READ_LO];
+
+ /* take 4 bytes and put the memory byte in the buffer at
+ * offset addr + offset of the current byte
+ */
+ avr_get_output(readop, &i_buf[byte*4], &m->buf[addr+byte]);
+ }
+
+ if(verbose > TRACE)
+ buf_dump(&m->buf[addr], page_size, "page:", 0, 32);
+
+ return len;
+}
+
+static int avrftdi_paged_write(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
+ unsigned int page_size, unsigned int addr, unsigned int n_bytes)
+{
+ if (strcmp(m->desc, "flash") == 0)
+ return avrftdi_flash_write(pgm, p, m, page_size, addr, n_bytes);
+ else if (strcmp(m->desc, "eeprom") == 0)
+ return avrftdi_eeprom_write(pgm, p, m, page_size, addr, n_bytes);
+ else
+ return -2;
+}
+
+static int avrftdi_paged_load(PROGRAMMER * pgm, AVRPART * p, AVRMEM * m,
+ unsigned int page_size, unsigned int addr, unsigned int n_bytes)
+{
+ if (strcmp(m->desc, "flash") == 0)
+ return avrftdi_flash_read(pgm, p, m, page_size, addr, n_bytes);
+ else if(strcmp(m->desc, "eeprom") == 0)
+ return avrftdi_eeprom_read(pgm, p, m, page_size, addr, n_bytes);
+ else
+ return -2;
+}
+
+static void
+avrftdi_setup(PROGRAMMER * pgm)
+{
+ avrftdi_t* pdata;
+
+ pgm->cookie = malloc(sizeof(avrftdi_t));
+ pdata = to_pdata(pgm);
+
+ pdata->ftdic = ftdi_new();
+ if(!pdata->ftdic)
+ {
+ log_err("Error allocating memory.\n");
+ exit(1);
+ }
+ E_VOID(ftdi_init(pdata->ftdic), pdata->ftdic);
+
+ pdata->pin_value = 0;
+ pdata->pin_direction = 0;
+ pdata->led_mask = 0;
+}
+
+static void
+avrftdi_teardown(PROGRAMMER * pgm)
+{
+ avrftdi_t* pdata = to_pdata(pgm);
+
+ if(pdata) {
+ ftdi_deinit(pdata->ftdic);
+ ftdi_free(pdata->ftdic);
+ free(pdata);
+ }
+}
+
+void avrftdi_initpgm(PROGRAMMER * pgm)
+{
+
+ strcpy(pgm->type, "avrftdi");
+
+ /*
+ * mandatory functions
+ */
+
+ pgm->initialize = avrftdi_initialize;
+ pgm->display = avrftdi_display;
+ pgm->enable = avrftdi_enable;
+ pgm->disable = avrftdi_disable;
+ pgm->powerup = avrftdi_powerup;
+ pgm->powerdown = avrftdi_powerdown;
+ pgm->program_enable = avrftdi_program_enable;
+ pgm->chip_erase = avrftdi_chip_erase;
+ pgm->cmd = avrftdi_cmd;
+ pgm->open = avrftdi_open;
+ pgm->close = avrftdi_close;
+ pgm->read_byte = avr_read_byte_default;
+ pgm->write_byte = avr_write_byte_default;
+
+ /*
+ * optional functions
+ */
+
+ pgm->paged_write = avrftdi_paged_write;
+ pgm->paged_load = avrftdi_paged_load;
+
+ pgm->setpin = set_pin;
+
+ pgm->setup = avrftdi_setup;
+ pgm->teardown = avrftdi_teardown;
+
+ pgm->rdy_led = set_led_rdy;
+ pgm->err_led = set_led_err;
+ pgm->pgm_led = set_led_pgm;
+ pgm->vfy_led = set_led_vfy;
+}
+
+#endif /* DO_NOT_BUILD_AVRFTDI */
+
+
+const char avrftdi_desc[] = "Interface to the MPSSE Engine of FTDI Chips using libftdi.";
+