Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'src/libslic3r/ExtrusionSimulator.cpp')
-rw-r--r--src/libslic3r/ExtrusionSimulator.cpp1030
1 files changed, 1030 insertions, 0 deletions
diff --git a/src/libslic3r/ExtrusionSimulator.cpp b/src/libslic3r/ExtrusionSimulator.cpp
new file mode 100644
index 000000000..fcb2fe825
--- /dev/null
+++ b/src/libslic3r/ExtrusionSimulator.cpp
@@ -0,0 +1,1030 @@
+// Optimize the extrusion simulator to the bones.
+//#pragma GCC optimize ("O3")
+//#undef SLIC3R_DEBUG
+//#define NDEBUG
+
+#include <cmath>
+#include <cassert>
+
+#include <boost/geometry.hpp>
+#include <boost/geometry/geometries/box.hpp>
+#include <boost/geometry/geometries/point.hpp>
+#include <boost/geometry/geometries/point_xy.hpp>
+
+#include <boost/multi_array.hpp>
+
+#include "libslic3r.h"
+#include "ExtrusionSimulator.hpp"
+
+#ifndef M_PI
+#define M_PI 3.1415926535897932384626433832795
+#endif
+
+namespace Slic3r {
+
+// Replacement for a template alias.
+// Shorthand for the point_xy.
+template<typename T>
+struct V2
+{
+ typedef boost::geometry::model::d2::point_xy<T> Type;
+};
+
+// Replacement for a template alias.
+// Shorthand for the point with a cartesian coordinate system.
+template<typename T>
+struct V3
+{
+ typedef boost::geometry::model::point<T, 3, boost::geometry::cs::cartesian> Type;
+};
+
+// Replacement for a template alias.
+// Shorthand for the point with a cartesian coordinate system.
+template<typename T>
+struct V4
+{
+ typedef boost::geometry::model::point<T, 4, boost::geometry::cs::cartesian> Type;
+};
+
+typedef V2<int >::Type V2i;
+typedef V2<float >::Type V2f;
+typedef V2<double>::Type V2d;
+
+// Used for an RGB color.
+typedef V3<unsigned char>::Type V3uc;
+// Used for an RGBA color.
+typedef V4<unsigned char>::Type V4uc;
+
+typedef boost::geometry::model::box<V2i> B2i;
+typedef boost::geometry::model::box<V2f> B2f;
+typedef boost::geometry::model::box<V2d> B2d;
+
+typedef boost::multi_array<unsigned char, 2> A2uc;
+typedef boost::multi_array<int , 2> A2i;
+typedef boost::multi_array<float , 2> A2f;
+typedef boost::multi_array<double , 2> A2d;
+
+template<typename T>
+inline void operator+=(
+ boost::geometry::model::d2::point_xy<T> &v1,
+ const boost::geometry::model::d2::point_xy<T> &v2)
+{
+ boost::geometry::add_point(v1, v2);
+}
+
+template<typename T>
+inline void operator-=(
+ boost::geometry::model::d2::point_xy<T> &v1,
+ const boost::geometry::model::d2::point_xy<T> &v2)
+{
+ boost::geometry::subtract_point(v1, v2);
+}
+
+template<typename T>
+inline void operator*=(boost::geometry::model::d2::point_xy<T> &v, const T c)
+{
+ boost::geometry::multiply_value(v, c);
+}
+
+template<typename T>
+inline void operator/=(boost::geometry::model::d2::point_xy<T> &v, const T c)
+{
+ boost::geometry::divide_value(v, c);
+}
+
+template<typename T>
+inline typename boost::geometry::model::d2::point_xy<T> operator+(
+ const boost::geometry::model::d2::point_xy<T> &v1,
+ const boost::geometry::model::d2::point_xy<T> &v2)
+{
+ boost::geometry::model::d2::point_xy<T> out(v1);
+ out += v2;
+ return out;
+}
+
+template<typename T>
+inline boost::geometry::model::d2::point_xy<T> operator-(
+ const boost::geometry::model::d2::point_xy<T> &v1,
+ const boost::geometry::model::d2::point_xy<T> &v2)
+{
+ boost::geometry::model::d2::point_xy<T> out(v1);
+ out -= v2;
+ return out;
+}
+
+template<typename T>
+inline boost::geometry::model::d2::point_xy<T> operator*(
+ const boost::geometry::model::d2::point_xy<T> &v, const T c)
+{
+ boost::geometry::model::d2::point_xy<T> out(v);
+ out *= c;
+ return out;
+}
+
+template<typename T>
+inline typename boost::geometry::model::d2::point_xy<T> operator*(
+ const T c, const boost::geometry::model::d2::point_xy<T> &v)
+{
+ boost::geometry::model::d2::point_xy<T> out(v);
+ out *= c;
+ return out;
+}
+
+template<typename T>
+inline typename boost::geometry::model::d2::point_xy<T> operator/(
+ const boost::geometry::model::d2::point_xy<T> &v, const T c)
+{
+ boost::geometry::model::d2::point_xy<T> out(v);
+ out /= c;
+ return out;
+}
+
+template<typename T>
+inline T dot(
+ const boost::geometry::model::d2::point_xy<T> &v1,
+ const boost::geometry::model::d2::point_xy<T> &v2)
+{
+ return boost::geometry::dot_product(v1, v2);
+}
+
+template<typename T>
+inline T dot(const boost::geometry::model::d2::point_xy<T> &v)
+{
+ return boost::geometry::dot_product(v, v);
+}
+
+template <typename T>
+inline T cross(
+ const boost::geometry::model::d2::point_xy<T> &v1,
+ const boost::geometry::model::d2::point_xy<T> &v2)
+{
+ return v1.x() * v2.y() - v2.x() * v1.y();
+}
+
+// Euclidian measure
+template<typename T>
+inline T l2(const boost::geometry::model::d2::point_xy<T> &v)
+{
+ return std::sqrt(dot(v));
+}
+
+// Euclidian measure
+template<typename T>
+inline T mag(const boost::geometry::model::d2::point_xy<T> &v)
+{
+ return l2(v);
+}
+
+template<typename T>
+inline T dist2_to_line(
+ const boost::geometry::model::d2::point_xy<T> &p0,
+ const boost::geometry::model::d2::point_xy<T> &p1,
+ const boost::geometry::model::d2::point_xy<T> &px)
+{
+ boost::geometry::model::d2::point_xy<T> v = p1 - p0;
+ boost::geometry::model::d2::point_xy<T> vx = px - p0;
+ T l = dot(v);
+ T t = dot(v, vx);
+ if (l != T(0) && t > T(0.)) {
+ t /= l;
+ vx = px - ((t > T(1.)) ? p1 : (p0 + t * v));
+ }
+ return dot(vx);
+}
+
+// Intersect a circle with a line segment.
+// Returns number of intersection points.
+template<typename T>
+int line_circle_intersection(
+ const boost::geometry::model::d2::point_xy<T> &p0,
+ const boost::geometry::model::d2::point_xy<T> &p1,
+ const boost::geometry::model::d2::point_xy<T> &center,
+ const T radius,
+ boost::geometry::model::d2::point_xy<T> intersection[2])
+{
+ typedef typename V2<T>::Type V2T;
+ V2T v = p1 - p0;
+ V2T vc = p0 - center;
+ T a = dot(v);
+ T b = T(2.) * dot(vc, v);
+ T c = dot(vc) - radius * radius;
+ T d = b * b - T(4.) * a * c;
+
+ if (d < T(0))
+ // The circle misses the ray.
+ return 0;
+
+ int n = 0;
+ if (d == T(0)) {
+ // The circle touches the ray at a single tangent point.
+ T t = - b / (T(2.) * a);
+ if (t >= T(0.) && t <= T(1.))
+ intersection[n ++] = p0 + t * v;
+ } else {
+ // The circle intersects the ray in two points.
+ d = sqrt(d);
+ T t = (- b - d) / (T(2.) * a);
+ if (t >= T(0.) && t <= T(1.))
+ intersection[n ++] = p0 + t * v;
+ t = (- b + d) / (T(2.) * a);
+ if (t >= T(0.) && t <= T(1.))
+ intersection[n ++] = p0 + t * v;
+ }
+ return n;
+}
+
+// Sutherland–Hodgman clipping of a rectangle against an AABB.
+// Expects the first 4 points of rect to be filled at the beginning.
+// The clipping may produce up to 8 points.
+// Returns the number of resulting points.
+template<typename T>
+int clip_rect_by_AABB(
+ boost::geometry::model::d2::point_xy<T> rect[8],
+ const boost::geometry::model::box<boost::geometry::model::d2::point_xy<T> > &aabb)
+{
+ typedef typename V2<T>::Type V2T;
+ V2T result[8];
+ int nin = 4;
+ int nout = 0;
+ V2T *in = rect;
+ V2T *out = result;
+ // Clip left
+ {
+ const V2T *S = in + nin - 1;
+ T left = aabb.min_corner().x();
+ for (int i = 0; i < nin; ++i) {
+ const V2T &E = in[i];
+ if (E.x() == left) {
+ out[nout++] = E;
+ }
+ else if (E.x() > left) {
+ // E is inside the AABB.
+ if (S->x() < left) {
+ // S is outside the AABB. Calculate an intersection point.
+ T t = (left - S->x()) / (E.x() - S->x());
+ out[nout++] = V2T(left, S->y() + t * (E.y() - S->y()));
+ }
+ out[nout++] = E;
+ }
+ else if (S->x() > left) {
+ // S is inside the AABB, E is outside the AABB.
+ T t = (left - S->x()) / (E.x() - S->x());
+ out[nout++] = V2T(left, S->y() + t * (E.y() - S->y()));
+ }
+ S = &E;
+ }
+ assert(nout <= 8);
+ }
+ // Clip bottom
+ {
+ std::swap(in, out);
+ nin = nout;
+ nout = 0;
+ const V2T *S = in + nin - 1;
+ T bottom = aabb.min_corner().y();
+ for (int i = 0; i < nin; ++i) {
+ const V2T &E = in[i];
+ if (E.y() == bottom) {
+ out[nout++] = E;
+ }
+ else if (E.y() > bottom) {
+ // E is inside the AABB.
+ if (S->y() < bottom) {
+ // S is outside the AABB. Calculate an intersection point.
+ T t = (bottom - S->y()) / (E.y() - S->y());
+ out[nout++] = V2T(S->x() + t * (E.x() - S->x()), bottom);
+ }
+ out[nout++] = E;
+ }
+ else if (S->y() > bottom) {
+ // S is inside the AABB, E is outside the AABB.
+ T t = (bottom - S->y()) / (E.y() - S->y());
+ out[nout++] = V2T(S->x() + t * (E.x() - S->x()), bottom);
+ }
+ S = &E;
+ }
+ assert(nout <= 8);
+ }
+ // Clip right
+ {
+ std::swap(in, out);
+ nin = nout;
+ nout = 0;
+ const V2T *S = in + nin - 1;
+ T right = aabb.max_corner().x();
+ for (int i = 0; i < nin; ++i) {
+ const V2T &E = in[i];
+ if (E.x() == right) {
+ out[nout++] = E;
+ }
+ else if (E.x() < right) {
+ // E is inside the AABB.
+ if (S->x() > right) {
+ // S is outside the AABB. Calculate an intersection point.
+ T t = (right - S->x()) / (E.x() - S->x());
+ out[nout++] = V2T(right, S->y() + t * (E.y() - S->y()));
+ }
+ out[nout++] = E;
+ }
+ else if (S->x() < right) {
+ // S is inside the AABB, E is outside the AABB.
+ T t = (right - S->x()) / (E.x() - S->x());
+ out[nout++] = V2T(right, S->y() + t * (E.y() - S->y()));
+ }
+ S = &E;
+ }
+ assert(nout <= 8);
+ }
+ // Clip top
+ {
+ std::swap(in, out);
+ nin = nout;
+ nout = 0;
+ const V2T *S = in + nin - 1;
+ T top = aabb.max_corner().y();
+ for (int i = 0; i < nin; ++i) {
+ const V2T &E = in[i];
+ if (E.y() == top) {
+ out[nout++] = E;
+ }
+ else if (E.y() < top) {
+ // E is inside the AABB.
+ if (S->y() > top) {
+ // S is outside the AABB. Calculate an intersection point.
+ T t = (top - S->y()) / (E.y() - S->y());
+ out[nout++] = V2T(S->x() + t * (E.x() - S->x()), top);
+ }
+ out[nout++] = E;
+ }
+ else if (S->y() < top) {
+ // S is inside the AABB, E is outside the AABB.
+ T t = (top - S->y()) / (E.y() - S->y());
+ out[nout++] = V2T(S->x() + t * (E.x() - S->x()), top);
+ }
+ S = &E;
+ }
+ assert(nout <= 8);
+ }
+
+ assert(nout <= 8);
+ return nout;
+}
+
+// Calculate area of the circle x AABB intersection.
+// The calculation is approximate in a way, that the circular segment
+// intersecting the cell is approximated by its chord (a linear segment).
+template<typename T>
+int clip_circle_by_AABB(
+ const boost::geometry::model::d2::point_xy<T> &center,
+ const T radius,
+ const boost::geometry::model::box<boost::geometry::model::d2::point_xy<T> > &aabb,
+ boost::geometry::model::d2::point_xy<T> result[8],
+ bool result_arc[8])
+{
+ typedef typename V2<T>::Type V2T;
+
+ V2T rect[4] = {
+ aabb.min_corner(),
+ V2T(aabb.max_corner().x(), aabb.min_corner().y()),
+ aabb.max_corner(),
+ V2T(aabb.min_corner().x(), aabb.max_corner().y())
+ };
+
+ int bits_corners = 0;
+ T r2 = sqr(radius);
+ for (int i = 0; i < 4; ++ i, bits_corners <<= 1)
+ bits_corners |= dot(rect[i] - center) >= r2;
+ bits_corners >>= 1;
+
+ if (bits_corners == 0) {
+ // all inside
+ memcpy(result, rect, sizeof(rect));
+ memset(result_arc, true, 4);
+ return 4;
+ }
+
+ if (bits_corners == 0x0f)
+ // all outside
+ return 0;
+
+ // Some corners are outside, some are inside. Trim the rectangle.
+ int n = 0;
+ for (int i = 0; i < 4; ++ i) {
+ bool inside = (bits_corners & 0x08) == 0;
+ bits_corners <<= 1;
+ V2T chordal_points[2];
+ int n_chordal_points = line_circle_intersection(rect[i], rect[(i + 1)%4], center, radius, chordal_points);
+ if (n_chordal_points == 2) {
+ result_arc[n] = true;
+ result[n ++] = chordal_points[0];
+ result_arc[n] = true;
+ result[n ++] = chordal_points[1];
+ } else {
+ if (inside) {
+ result_arc[n] = false;
+ result[n ++] = rect[i];
+ }
+ if (n_chordal_points == 1) {
+ result_arc[n] = false;
+ result[n ++] = chordal_points[0];
+ }
+ }
+ }
+ return n;
+}
+/*
+// Calculate area of the circle x AABB intersection.
+// The calculation is approximate in a way, that the circular segment
+// intersecting the cell is approximated by its chord (a linear segment).
+template<typename T>
+T circle_AABB_intersection_area(
+ const boost::geometry::model::d2::point_xy<T> &center,
+ const T radius,
+ const boost::geometry::model::box<boost::geometry::model::d2::point_xy<T> > &aabb)
+{
+ typedef typename V2<T>::Type V2T;
+ typedef typename boost::geometry::model::box<V2T> B2T;
+ T radius2 = radius * radius;
+
+ bool intersectionLeft = sqr(aabb.min_corner().x() - center.x()) < radius2;
+ bool intersectionRight = sqr(aabb.max_corner().x() - center.x()) < radius2;
+ bool intersectionBottom = sqr(aabb.min_corner().y() - center.y()) < radius2;
+ bool intersectionTop = sqr(aabb.max_corner().y() - center.y()) < radius2;
+
+ if (! (intersectionLeft || intersectionRight || intersectionTop || intersectionBottom))
+ // No intersection between the aabb and the center.
+ return boost::geometry::point_in_box<V2T, B2T>()::apply(center, aabb) ? 1.f : 0.f;
+
+
+
+ V2T rect[4] = {
+ aabb.min_corner(),
+ V2T(aabb.max_corner().x(), aabb.min_corner().y()),
+ aabb.max_corner(),
+ V2T(aabb.min_corner().x(), aabb.max_corner().y())
+ };
+
+ int bits_corners = 0;
+ T r2 = sqr(radius);
+ for (int i = 0; i < 4; ++ i, bits_corners <<= 1)
+ bits_corners |= dot(rect[i] - center) >= r2;
+ bits_corners >>= 1;
+
+ if (bits_corners == 0) {
+ // all inside
+ memcpy(result, rect, sizeof(rect));
+ memset(result_arc, true, 4);
+ return 4;
+ }
+
+ if (bits_corners == 0x0f)
+ // all outside
+ return 0;
+
+ // Some corners are outside, some are inside. Trim the rectangle.
+ int n = 0;
+ for (int i = 0; i < 4; ++ i) {
+ bool inside = (bits_corners & 0x08) == 0;
+ bits_corners <<= 1;
+ V2T chordal_points[2];
+ int n_chordal_points = line_circle_intersection(rect[i], rect[(i + 1)%4], center, radius, chordal_points);
+ if (n_chordal_points == 2) {
+ result_arc[n] = true;
+ result[n ++] = chordal_points[0];
+ result_arc[n] = true;
+ result[n ++] = chordal_points[1];
+ } else {
+ if (inside) {
+ result_arc[n] = false;
+ result[n ++] = rect[i];
+ }
+ if (n_chordal_points == 1) {
+ result_arc[n] = false;
+ result[n ++] = chordal_points[0];
+ }
+ }
+ }
+ return n;
+}
+*/
+
+template<typename T>
+inline T polyArea(const boost::geometry::model::d2::point_xy<T> *poly, int n)
+{
+ T area = T(0);
+ for (int i = 1; i + 1 < n; ++i)
+ area += cross(poly[i] - poly[0], poly[i + 1] - poly[0]);
+ return T(0.5) * area;
+}
+
+template<typename T>
+boost::geometry::model::d2::point_xy<T> polyCentroid(const boost::geometry::model::d2::point_xy<T> *poly, int n)
+{
+ boost::geometry::model::d2::point_xy<T> centroid(T(0), T(0));
+ for (int i = 0; i < n; ++i)
+ centroid += poly[i];
+ return (n == 0) ? centroid : (centroid / float(n));
+}
+
+void gcode_paint_layer(
+ const std::vector<V2f> &polyline,
+ float width,
+ float thickness,
+ A2f &acc)
+{
+ int nc = acc.shape()[1];
+ int nr = acc.shape()[0];
+// printf("gcode_paint_layer %d,%d\n", nc, nr);
+ for (size_t iLine = 1; iLine != polyline.size(); ++iLine) {
+ const V2f &p1 = polyline[iLine - 1];
+ const V2f &p2 = polyline[iLine];
+ // printf("p1, p2: %f,%f %f,%f\n", p1.x(), p1.y(), p2.x(), p2.y());
+ const V2f dir = p2 - p1;
+ V2f vperp(- dir.y(), dir.x());
+ vperp = vperp * 0.5f * width / l2(vperp);
+ // Rectangle of the extrusion.
+ V2f rect[4] = { p1 + vperp, p1 - vperp, p2 - vperp, p2 + vperp };
+ // Bounding box of the extrusion.
+ B2f bboxLine(rect[0], rect[0]);
+ boost::geometry::expand(bboxLine, rect[1]);
+ boost::geometry::expand(bboxLine, rect[2]);
+ boost::geometry::expand(bboxLine, rect[3]);
+ B2i bboxLinei(
+ V2i(clamp(0, nc-1, int(floor(bboxLine.min_corner().x()))),
+ clamp(0, nr-1, int(floor(bboxLine.min_corner().y())))),
+ V2i(clamp(0, nc-1, int(ceil (bboxLine.max_corner().x()))),
+ clamp(0, nr-1, int(ceil (bboxLine.max_corner().y())))));
+ // printf("bboxLinei %d,%d %d,%d\n", bboxLinei.min_corner().x(), bboxLinei.min_corner().y(), bboxLinei.max_corner().x(), bboxLinei.max_corner().y());
+#ifdef _DEBUG
+ float area = polyArea(rect, 4);
+ assert(area > 0.f);
+#endif /* _DEBUG */
+ for (int j = bboxLinei.min_corner().y(); j + 1 < bboxLinei.max_corner().y(); ++ j) {
+ for (int i = bboxLinei.min_corner().x(); i + 1 < bboxLinei.max_corner().x(); ++i) {
+ V2f rect2[8];
+ memcpy(rect2, rect, sizeof(rect));
+ int n = clip_rect_by_AABB(rect2, B2f(V2f(float(i), float(j)), V2f(float(i + 1), float(j + 1))));
+ float area = polyArea(rect2, n);
+ assert(area >= 0.f && area <= 1.000001f);
+ acc[j][i] += area * thickness;
+ }
+ }
+ }
+}
+
+void gcode_paint_bitmap(
+ const std::vector<V2f> &polyline,
+ float width,
+ A2uc &bitmap,
+ float scale)
+{
+ int nc = bitmap.shape()[1];
+ int nr = bitmap.shape()[0];
+ float r2 = width * width * 0.25f;
+// printf("gcode_paint_layer %d,%d\n", nc, nr);
+ for (size_t iLine = 1; iLine != polyline.size(); ++iLine) {
+ const V2f &p1 = polyline[iLine - 1];
+ const V2f &p2 = polyline[iLine];
+ // printf("p1, p2: %f,%f %f,%f\n", p1.x(), p1.y(), p2.x(), p2.y());
+ V2f dir = p2 - p1;
+ dir = dir * 0.5f * width / l2(dir);
+ V2f vperp(- dir.y(), dir.x());
+ // Rectangle of the extrusion.
+ V2f rect[4] = { (p1 + vperp - dir) * scale, (p1 - vperp - dir) * scale, (p2 - vperp + dir) * scale, (p2 + vperp + dir) * scale };
+ // Bounding box of the extrusion.
+ B2f bboxLine(rect[0], rect[0]);
+ boost::geometry::expand(bboxLine, rect[1]);
+ boost::geometry::expand(bboxLine, rect[2]);
+ boost::geometry::expand(bboxLine, rect[3]);
+ B2i bboxLinei(
+ V2i(clamp(0, nc-1, int(floor(bboxLine.min_corner().x()))),
+ clamp(0, nr-1, int(floor(bboxLine.min_corner().y())))),
+ V2i(clamp(0, nc-1, int(ceil (bboxLine.max_corner().x()))),
+ clamp(0, nr-1, int(ceil (bboxLine.max_corner().y())))));
+ // printf("bboxLinei %d,%d %d,%d\n", bboxLinei.min_corner().x(), bboxLinei.min_corner().y(), bboxLinei.max_corner().x(), bboxLinei.max_corner().y());
+ for (int j = bboxLinei.min_corner().y(); j + 1 < bboxLinei.max_corner().y(); ++ j) {
+ for (int i = bboxLinei.min_corner().x(); i + 1 < bboxLinei.max_corner().x(); ++i) {
+ float d2 = dist2_to_line(p1, p2, V2f(float(i) + 0.5f, float(j) + 0.5f) / scale);
+ if (d2 < r2)
+ bitmap[j][i] = 1;
+ }
+ }
+ }
+}
+
+struct Cell
+{
+ // Cell index in the grid.
+ V2i idx;
+ // Total volume of the material stored in this cell.
+ float volume;
+ // Area covered inside this cell, <0,1>.
+ float area;
+ // Fraction of the area covered by the print head. <0,1>
+ float fraction_covered;
+ // Height of the covered part in excess to the expected layer height.
+ float excess_height;
+
+ bool operator<(const Cell &c2) const {
+ return this->excess_height < c2.excess_height;
+ }
+};
+
+struct ExtrusionPoint {
+ V2f center;
+ float radius;
+ float height;
+};
+
+typedef std::vector<ExtrusionPoint> ExtrusionPoints;
+
+void gcode_spread_points(
+ A2f &acc,
+ const A2f &mask,
+ const ExtrusionPoints &points,
+ ExtrusionSimulationType simulationType)
+{
+ int nc = acc.shape()[1];
+ int nr = acc.shape()[0];
+
+ // Maximum radius of the spreading points, to allocate a large enough cell array.
+ float rmax = 0.f;
+ for (ExtrusionPoints::const_iterator it = points.begin(); it != points.end(); ++ it)
+ rmax = std::max(rmax, it->radius);
+ size_t n_rows_max = size_t(ceil(rmax * 2.f + 2.f));
+ size_t n_cells_max = sqr(n_rows_max);
+ std::vector<std::pair<float, float> > spans;
+ std::vector<Cell> cells(n_cells_max, Cell());
+ std::vector<float> areas_sum(n_cells_max, 0.f);
+
+ for (ExtrusionPoints::const_iterator it = points.begin(); it != points.end(); ++ it) {
+ const V2f &center = it->center;
+ const float radius = it->radius;
+ const float radius2 = radius * radius;
+ const float height_target = it->height;
+ B2f bbox(center - V2f(radius, radius), center + V2f(radius, radius));
+ B2i bboxi(
+ V2i(clamp(0, nc-1, int(floor(bbox.min_corner().x()))),
+ clamp(0, nr-1, int(floor(bbox.min_corner().y())))),
+ V2i(clamp(0, nc-1, int(ceil (bbox.max_corner().x()))),
+ clamp(0, nr-1, int(ceil (bbox.max_corner().y())))));
+ /*
+ // Fill in the spans, at which the circle intersects the rows.
+ int row_first = bboxi.min_corner().y();
+ int row_last = bboxi.max_corner().y();
+ for (; row_first <= row_last; ++ row_first) {
+ float y = float(j) - center.y();
+ float discr = radius2 - sqr(y);
+ if (discr > 0) {
+ // Circle intersects the row j at 2 points.
+ float d = sqrt(discr);
+ spans.push_back(std.pair<float, float>(center.x() - d, center.x() + d)));
+ break;
+ }
+ }
+ for (int j = row_first + 1; j <= row_last; ++ j) {
+ float y = float(j) - center.y();
+ float discr = radius2 - sqr(y);
+ if (discr > 0) {
+ // Circle intersects the row j at 2 points.
+ float d = sqrt(discr);
+ spans.push_back(std.pair<float, float>(center.x() - d, center.x() + d)));
+ } else {
+ row_last = j - 1;
+ break;
+ }
+ }
+ */
+ float area_total = 0;
+ float volume_total = 0;
+ float volume_excess = 0;
+ float volume_deficit = 0;
+ size_t n_cells = 0;
+ float area_circle_total = 0;
+#if 0
+ // The intermediate lines.
+ for (int j = row_first; j < row_last; ++ j) {
+ const std::pair<float, float> &span1 = spans[j];
+ const std::pair<float, float> &span2 = spans[j+1];
+ float l1 = span1.first;
+ float l2 = span2.first;
+ float r1 = span1.second;
+ float r2 = span2.second;
+ if (l2 < l1)
+ std::swap(l1, l2);
+ if (r1 > r2)
+ std::swap(r1, r2);
+ int il1 = int(floor(l1));
+ int il2 = int(ceil(l2));
+ int ir1 = int(floor(r1));
+ int ir2 = int(floor(r2));
+ assert(il2 <= ir1);
+ for (int i = il1; i < il2; ++ i) {
+ Cell &cell = cells[n_cells ++];
+ cell.idx.x(i);
+ cell.idx.y(j);
+ cell.area = area;
+ }
+ for (int i = il2; i < ir1; ++ i) {
+ Cell &cell = cells[n_cells ++];
+ cell.idx.x(i);
+ cell.idx.y(j);
+ cell.area = 1.f;
+ }
+ for (int i = ir1; i < ir2; ++ i) {
+ Cell &cell = cells[n_cells ++];
+ cell.idx.x(i);
+ cell.idx.y(j);
+ cell.area = area;
+ }
+ }
+#else
+ for (int j = bboxi.min_corner().y(); j < bboxi.max_corner().y(); ++ j) {
+ for (int i = bboxi.min_corner().x(); i < bboxi.max_corner().x(); ++i) {
+ B2f bb(V2f(float(i), float(j)), V2f(float(i + 1), float(j + 1)));
+ V2f poly[8];
+ bool poly_arc[8];
+ int n = clip_circle_by_AABB(center, radius, bb, poly, poly_arc);
+ float area = polyArea(poly, n);
+ assert(area >= 0.f && area <= 1.000001f);
+ if (area == 0.f)
+ continue;
+ Cell &cell = cells[n_cells ++];
+ cell.idx.x(i);
+ cell.idx.y(j);
+ cell.volume = acc[j][i];
+ cell.area = mask[j][i];
+ assert(cell.area >= 0.f && cell.area <= 1.000001f);
+ area_circle_total += area;
+ if (cell.area < area)
+ cell.area = area;
+ cell.fraction_covered = clamp(0.f, 1.f, (cell.area > 0) ? (area / cell.area) : 0);
+ if (cell.fraction_covered == 0) {
+ -- n_cells;
+ continue;
+ }
+ float cell_height = cell.volume / cell.area;
+ cell.excess_height = cell_height - height_target;
+ if (cell.excess_height > 0.f)
+ volume_excess += cell.excess_height * cell.area * cell.fraction_covered;
+ else
+ volume_deficit -= cell.excess_height * cell.area * cell.fraction_covered;
+ volume_total += cell.volume * cell.fraction_covered;
+ area_total += cell.area * cell.fraction_covered;
+ }
+ }
+#endif
+ float area_circle_total2 = float(M_PI) * sqr(radius);
+ float area_err = fabs(area_circle_total2 - area_circle_total) / area_circle_total2;
+// printf("area_circle_total: %f, %f, %f\n", area_circle_total, area_circle_total2, area_err);
+ float volume_full = float(M_PI) * sqr(radius) * height_target;
+// if (true) {
+// printf("volume_total: %f, volume_full: %f, fill factor: %f\n", volume_total, volume_full, 100.f - 100.f * volume_total / volume_full);
+// printf("volume_full: %f, volume_excess+deficit: %f, volume_excess: %f, volume_deficit: %f\n", volume_full, volume_excess+volume_deficit, volume_excess, volume_deficit);
+ if (simulationType == ExtrusionSimulationSpreadFull || volume_total <= volume_full) {
+ // The volume under the circle is spreaded fully.
+ float height_avg = volume_total / area_total;
+ for (size_t i = 0; i < n_cells; ++ i) {
+ const Cell &cell = cells[i];
+ acc[cell.idx.y()][cell.idx.x()] = (1.f - cell.fraction_covered) * cell.volume + cell.fraction_covered * cell.area * height_avg;
+ }
+ } else if (simulationType == ExtrusionSimulationSpreadExcess) {
+ // The volume under the circle does not fit.
+ // 1) Fill the underfilled cells and remove them from the list.
+ float volume_borrowed_total = 0.;
+ for (size_t i = 0; i < n_cells;) {
+ Cell &cell = cells[i];
+ if (cell.excess_height <= 0) {
+ // Fill in the part of the cell below the circle.
+ float volume_borrowed = - cell.excess_height * cell.area * cell.fraction_covered;
+ assert(volume_borrowed >= 0.f);
+ acc[cell.idx.y()][cell.idx.x()] = cell.volume + volume_borrowed;
+ volume_borrowed_total += volume_borrowed;
+ cell = cells[-- n_cells];
+ } else
+ ++ i;
+ }
+ // 2) Sort the remaining cells by their excess height.
+ std::sort(cells.begin(), cells.begin() + n_cells);
+ // 3) Prefix sum the areas per excess height.
+ // The excess height is discrete with the number of excess cells.
+ areas_sum[n_cells-1] = cells[n_cells-1].area * cells[n_cells-1].fraction_covered;
+ for (int i = n_cells - 2; i >= 0; -- i) {
+ const Cell &cell = cells[i];
+ areas_sum[i] = areas_sum[i + 1] + cell.area * cell.fraction_covered;
+ }
+ // 4) Find the excess height, where the volume_excess is over the volume_borrowed_total.
+ float volume_current = 0.f;
+ float excess_height_prev = 0.f;
+ size_t i_top = n_cells;
+ for (size_t i = 0; i < n_cells; ++ i) {
+ const Cell &cell = cells[i];
+ volume_current += (cell.excess_height - excess_height_prev) * areas_sum[i];
+ excess_height_prev = cell.excess_height;
+ if (volume_current > volume_borrowed_total) {
+ i_top = i;
+ break;
+ }
+ }
+ // 5) Remove material from the cells with deficit.
+ // First remove all the excess material from the cells, where the deficit is low.
+ for (size_t i = 0; i < i_top; ++ i) {
+ const Cell &cell = cells[i];
+ float volume_removed = cell.excess_height * cell.area * cell.fraction_covered;
+ acc[cell.idx.y()][cell.idx.x()] = cell.volume - volume_removed;
+ volume_borrowed_total -= volume_removed;
+ }
+ // Second remove some excess material from the cells, where the deficit is high.
+ if (i_top < n_cells) {
+ float height_diff = volume_borrowed_total / areas_sum[i_top];
+ for (size_t i = i_top; i < n_cells; ++ i) {
+ const Cell &cell = cells[i];
+ acc[cell.idx.y()][cell.idx.x()] = cell.volume - height_diff * cell.area * cell.fraction_covered;
+ }
+ }
+ }
+ }
+}
+
+inline std::vector<V3uc> CreatePowerColorGradient24bit()
+{
+ int i;
+ int iColor = 0;
+ std::vector<V3uc> out(6 * 255 + 1, V3uc(0, 0, 0));
+ for (i = 0; i < 256; ++i)
+ out[iColor++] = V3uc(0, 0, i);
+ for (i = 1; i < 256; ++i)
+ out[iColor++] = V3uc(0, i, 255);
+ for (i = 1; i < 256; ++i)
+ out[iColor++] = V3uc(0, 255, 256 - i);
+ for (i = 1; i < 256; ++i)
+ out[iColor++] = V3uc(i, 255, 0);
+ for (i = 1; i < 256; ++i)
+ out[iColor++] = V3uc(255, 256 - i, 0);
+ for (i = 1; i < 256; ++i)
+ out[iColor++] = V3uc(255, 0, i);
+ return out;
+}
+
+class ExtrusionSimulatorImpl {
+public:
+ std::vector<unsigned char> image_data;
+ A2f accumulator;
+ A2uc bitmap;
+ unsigned int bitmap_oversampled;
+ ExtrusionPoints extrusion_points;
+ // RGB gradient to color map the fullness of an accumulator bucket into the output image.
+ std::vector<boost::geometry::model::point<unsigned char, 3, boost::geometry::cs::cartesian> > color_gradient;
+};
+
+ExtrusionSimulator::ExtrusionSimulator() :
+ pimpl(new ExtrusionSimulatorImpl)
+{
+ pimpl->color_gradient = CreatePowerColorGradient24bit();
+ pimpl->bitmap_oversampled = 4;
+}
+
+ExtrusionSimulator::~ExtrusionSimulator()
+{
+ delete pimpl;
+ pimpl = NULL;
+}
+
+void ExtrusionSimulator::set_image_size(const Point &image_size)
+{
+ // printf("ExtrusionSimulator::set_image_size()\n");
+ if (this->image_size.x() == image_size.x() &&
+ this->image_size.y() == image_size.y())
+ return;
+
+ // printf("Setting image size: %d, %d\n", image_size.x, image_size.y);
+ this->image_size = image_size;
+ // Allocate the image data in an RGBA format.
+ // printf("Allocating image data, size %d\n", image_size.x * image_size.y * 4);
+ pimpl->image_data.assign(image_size.x() * image_size.y() * 4, 0);
+ // printf("Allocating image data, allocated\n");
+
+ //FIXME fill the image with red vertical lines.
+ for (size_t r = 0; r < image_size.y(); ++ r) {
+ for (size_t c = 0; c < image_size.x(); c += 2) {
+ // Color red
+ pimpl->image_data[r * image_size.x() * 4 + c * 4] = 255;
+ // Opacity full
+ pimpl->image_data[r * image_size.x() * 4 + c * 4 + 3] = 255;
+ }
+ }
+ // printf("Allocating image data, set\n");
+}
+
+void ExtrusionSimulator::set_viewport(const BoundingBox &viewport)
+{
+ // printf("ExtrusionSimulator::set_viewport(%d, %d, %d, %d)\n", viewport.min.x, viewport.min.y, viewport.max.x, viewport.max.y);
+ if (this->viewport != viewport) {
+ this->viewport = viewport;
+ Point sz = viewport.size();
+ pimpl->accumulator.resize(boost::extents[sz.y()][sz.x()]);
+ pimpl->bitmap.resize(boost::extents[sz.y()*pimpl->bitmap_oversampled][sz.x()*pimpl->bitmap_oversampled]);
+ // printf("Accumulator size: %d, %d\n", sz.y, sz.x);
+ }
+}
+
+void ExtrusionSimulator::set_bounding_box(const BoundingBox &bbox)
+{
+ this->bbox = bbox;
+}
+
+const void* ExtrusionSimulator::image_ptr() const
+{
+ return (pimpl->image_data.empty()) ? NULL : (void*)&pimpl->image_data.front();
+}
+
+void ExtrusionSimulator::reset_accumulator()
+{
+ // printf("ExtrusionSimulator::reset_accumulator()\n");
+ Point sz = viewport.size();
+ // printf("Reset accumulator, Accumulator size: %d, %d\n", sz.y, sz.x);
+ memset(&pimpl->accumulator[0][0], 0, sizeof(float) * sz.x() * sz.y());
+ memset(&pimpl->bitmap[0][0], 0, sz.x() * sz.y() * pimpl->bitmap_oversampled * pimpl->bitmap_oversampled);
+ pimpl->extrusion_points.clear();
+ // printf("Reset accumulator, done.\n");
+}
+
+void ExtrusionSimulator::extrude_to_accumulator(const ExtrusionPath &path, const Point &shift, ExtrusionSimulationType simulationType)
+{
+ // printf("Extruding a path. Nr points: %d, width: %f, height: %f\r\n", path.polyline.points.size(), path.width, path.height);
+ // Convert the path to V2f points, shift and scale them to the viewport.
+ std::vector<V2f> polyline;
+ polyline.reserve(path.polyline.points.size());
+ float scalex = float(viewport.size().x()) / float(bbox.size().x());
+ float scaley = float(viewport.size().y()) / float(bbox.size().y());
+ float w = scale_(path.width) * scalex;
+ float h = scale_(path.height) * scalex;
+ w = scale_(path.mm3_per_mm / path.height) * scalex;
+ // printf("scalex: %f, scaley: %f\n", scalex, scaley);
+ // printf("bbox: %d,%d %d,%d\n", bbox.min.x(), bbox.min.y, bbox.max.x(), bbox.max.y);
+ for (Points::const_iterator it = path.polyline.points.begin(); it != path.polyline.points.end(); ++ it) {
+ // printf("point %d,%d\n", it->x+shift.x(), it->y+shift.y);
+ ExtrusionPoint ept;
+ ept.center = V2f(float((*it)(0)+shift.x()-bbox.min.x()) * scalex, float((*it)(1)+shift.y()-bbox.min.y()) * scaley);
+ ept.radius = w/2.f;
+ ept.height = 0.5f;
+ polyline.push_back(ept.center);
+ pimpl->extrusion_points.push_back(ept);
+ }
+ // Extrude the polyline into an accumulator.
+ // printf("width scaled: %f, height scaled: %f\n", w, h);
+ gcode_paint_layer(polyline, w, 0.5f, pimpl->accumulator);
+
+ if (simulationType > ExtrusionSimulationDontSpread)
+ gcode_paint_bitmap(polyline, w, pimpl->bitmap, pimpl->bitmap_oversampled);
+ // double path.mm3_per_mm; // mm^3 of plastic per mm of linear head motion
+ // float path.width;
+ // float path.height;
+}
+
+void ExtrusionSimulator::evaluate_accumulator(ExtrusionSimulationType simulationType)
+{
+ // printf("ExtrusionSimulator::evaluate_accumulator()\n");
+ Point sz = viewport.size();
+
+ if (simulationType > ExtrusionSimulationDontSpread) {
+ // Average the cells of a bitmap into a lower resolution floating point mask.
+ A2f mask(boost::extents[sz.y()][sz.x()]);
+ for (int r = 0; r < sz.y(); ++r) {
+ for (int c = 0; c < sz.x(); ++c) {
+ float p = 0;
+ for (int j = 0; j < pimpl->bitmap_oversampled; ++ j) {
+ for (int i = 0; i < pimpl->bitmap_oversampled; ++ i) {
+ if (pimpl->bitmap[r * pimpl->bitmap_oversampled + j][c * pimpl->bitmap_oversampled + i])
+ p += 1.f;
+ }
+ }
+ p /= float(pimpl->bitmap_oversampled * pimpl->bitmap_oversampled * 2);
+ mask[r][c] = p;
+ }
+ }
+
+ // Spread the excess of the material.
+ gcode_spread_points(pimpl->accumulator, mask, pimpl->extrusion_points, simulationType);
+ }
+
+ // Color map the accumulator.
+ for (int r = 0; r < sz.y(); ++r) {
+ unsigned char *ptr = &pimpl->image_data[(image_size.x() * (viewport.min.y() + r) + viewport.min.x()) * 4];
+ for (int c = 0; c < sz.x(); ++c) {
+ #if 1
+ float p = pimpl->accumulator[r][c];
+ #else
+ float p = mask[r][c];
+ #endif
+ int idx = int(floor(p * float(pimpl->color_gradient.size()) + 0.5f));
+ V3uc clr = pimpl->color_gradient[clamp(0, int(pimpl->color_gradient.size()-1), idx)];
+ *ptr ++ = clr.get<0>();
+ *ptr ++ = clr.get<1>();
+ *ptr ++ = clr.get<2>();
+ *ptr ++ = (idx == 0) ? 0 : 255;
+ }
+ }
+}
+
+} // namespace Slic3r