Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'src/libslic3r/Fill/FillRectilinear2.cpp')
-rw-r--r--src/libslic3r/Fill/FillRectilinear2.cpp1476
1 files changed, 0 insertions, 1476 deletions
diff --git a/src/libslic3r/Fill/FillRectilinear2.cpp b/src/libslic3r/Fill/FillRectilinear2.cpp
deleted file mode 100644
index 8aea75886..000000000
--- a/src/libslic3r/Fill/FillRectilinear2.cpp
+++ /dev/null
@@ -1,1476 +0,0 @@
-#include <stdlib.h>
-#include <stdint.h>
-
-#include <algorithm>
-#include <cmath>
-#include <limits>
-
-#include <boost/static_assert.hpp>
-
-#include "../ClipperUtils.hpp"
-#include "../ExPolygon.hpp"
-#include "../Geometry.hpp"
-#include "../Surface.hpp"
-
-#include "FillRectilinear2.hpp"
-
-// #define SLIC3R_DEBUG
-
-// Make assert active if SLIC3R_DEBUG
-#ifdef SLIC3R_DEBUG
- #undef NDEBUG
- #include "SVG.hpp"
-#endif
-
-#include <cassert>
-
-// We want our version of assert.
-#include "../libslic3r.h"
-
-namespace Slic3r {
-
-// Having a segment of a closed polygon, calculate its Euclidian length.
-// The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop,
-// therefore the point p1 lies on poly.points[seg1-1], poly.points[seg1] etc.
-static inline coordf_t segment_length(const Polygon &poly, size_t seg1, const Point &p1, size_t seg2, const Point &p2)
-{
-#ifdef SLIC3R_DEBUG
- // Verify that p1 lies on seg1. This is difficult to verify precisely,
- // but at least verify, that p1 lies in the bounding box of seg1.
- for (size_t i = 0; i < 2; ++ i) {
- size_t seg = (i == 0) ? seg1 : seg2;
- Point px = (i == 0) ? p1 : p2;
- Point pa = poly.points[((seg == 0) ? poly.points.size() : seg) - 1];
- Point pb = poly.points[seg];
- if (pa(0) > pb(0))
- std::swap(pa(0), pb(0));
- if (pa(1) > pb(1))
- std::swap(pa(1), pb(1));
- assert(px(0) >= pa(0) && px(0) <= pb(0));
- assert(px(1) >= pa(1) && px(1) <= pb(1));
- }
-#endif /* SLIC3R_DEBUG */
- const Point *pPrev = &p1;
- const Point *pThis = NULL;
- coordf_t len = 0;
- if (seg1 <= seg2) {
- for (size_t i = seg1; i < seg2; ++ i, pPrev = pThis)
- len += (*pPrev - *(pThis = &poly.points[i])).cast<double>().norm();
- } else {
- for (size_t i = seg1; i < poly.points.size(); ++ i, pPrev = pThis)
- len += (*pPrev - *(pThis = &poly.points[i])).cast<double>().norm();
- for (size_t i = 0; i < seg2; ++ i, pPrev = pThis)
- len += (*pPrev - *(pThis = &poly.points[i])).cast<double>().norm();
- }
- len += (*pPrev - p2).cast<double>().norm();
- return len;
-}
-
-// Append a segment of a closed polygon to a polyline.
-// The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop.
-// Only insert intermediate points between seg1 and seg2.
-static inline void polygon_segment_append(Points &out, const Polygon &polygon, size_t seg1, size_t seg2)
-{
- if (seg1 == seg2) {
- // Nothing to append from this segment.
- } else if (seg1 < seg2) {
- // Do not append a point pointed to by seg2.
- out.insert(out.end(), polygon.points.begin() + seg1, polygon.points.begin() + seg2);
- } else {
- out.reserve(out.size() + seg2 + polygon.points.size() - seg1);
- out.insert(out.end(), polygon.points.begin() + seg1, polygon.points.end());
- // Do not append a point pointed to by seg2.
- out.insert(out.end(), polygon.points.begin(), polygon.points.begin() + seg2);
- }
-}
-
-// Append a segment of a closed polygon to a polyline.
-// The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop,
-// but this time the segment is traversed backward.
-// Only insert intermediate points between seg1 and seg2.
-static inline void polygon_segment_append_reversed(Points &out, const Polygon &polygon, size_t seg1, size_t seg2)
-{
- if (seg1 >= seg2) {
- out.reserve(seg1 - seg2);
- for (size_t i = seg1; i > seg2; -- i)
- out.push_back(polygon.points[i - 1]);
- } else {
- // it could be, that seg1 == seg2. In that case, append the complete loop.
- out.reserve(out.size() + seg2 + polygon.points.size() - seg1);
- for (size_t i = seg1; i > 0; -- i)
- out.push_back(polygon.points[i - 1]);
- for (size_t i = polygon.points.size(); i > seg2; -- i)
- out.push_back(polygon.points[i - 1]);
- }
-}
-
-// Intersection point of a vertical line with a polygon segment.
-class SegmentIntersection
-{
-public:
- SegmentIntersection() :
- iContour(0),
- iSegment(0),
- pos_p(0),
- pos_q(1),
- type(UNKNOWN),
- consumed_vertical_up(false),
- consumed_perimeter_right(false)
- {}
-
- // Index of a contour in ExPolygonWithOffset, with which this vertical line intersects.
- size_t iContour;
- // Index of a segment in iContour, with which this vertical line intersects.
- size_t iSegment;
- // y position of the intersection, ratinal number.
- int64_t pos_p;
- uint32_t pos_q;
-
- coord_t pos() const {
- // Division rounds both positive and negative down to zero.
- // Add half of q for an arithmetic rounding effect.
- int64_t p = pos_p;
- if (p < 0)
- p -= int64_t(pos_q>>1);
- else
- p += int64_t(pos_q>>1);
- return coord_t(p / int64_t(pos_q));
- }
-
- // Kind of intersection. With the original contour, or with the inner offestted contour?
- // A vertical segment will be at least intersected by OUTER_LOW, OUTER_HIGH,
- // but it could be intersected with OUTER_LOW, INNER_LOW, INNER_HIGH, OUTER_HIGH,
- // and there may be more than one pair of INNER_LOW, INNER_HIGH between OUTER_LOW, OUTER_HIGH.
- enum SegmentIntersectionType {
- OUTER_LOW = 0,
- OUTER_HIGH = 1,
- INNER_LOW = 2,
- INNER_HIGH = 3,
- UNKNOWN = -1
- };
- SegmentIntersectionType type;
-
- // Was this segment along the y axis consumed?
- // Up means up along the vertical segment.
- bool consumed_vertical_up;
- // Was a segment of the inner perimeter contour consumed?
- // Right means right from the vertical segment.
- bool consumed_perimeter_right;
-
- // For the INNER_LOW type, this point may be connected to another INNER_LOW point following a perimeter contour.
- // For the INNER_HIGH type, this point may be connected to another INNER_HIGH point following a perimeter contour.
- // If INNER_LOW is connected to INNER_HIGH or vice versa,
- // one has to make sure the vertical infill line does not overlap with the connecting perimeter line.
- bool is_inner() const { return type == INNER_LOW || type == INNER_HIGH; }
- bool is_outer() const { return type == OUTER_LOW || type == OUTER_HIGH; }
- bool is_low () const { return type == INNER_LOW || type == OUTER_LOW; }
- bool is_high () const { return type == INNER_HIGH || type == OUTER_HIGH; }
-
- // Compare two y intersection points given by rational numbers.
- // Note that the rational number is given as pos_p/pos_q, where pos_p is int64 and pos_q is uint32.
- // This function calculates pos_p * other.pos_q < other.pos_p * pos_q as a 48bit number.
- // We don't use 128bit intrinsic data types as these are usually not supported by 32bit compilers and
- // we don't need the full 128bit precision anyway.
- bool operator<(const SegmentIntersection &other) const
- {
- assert(pos_q > 0);
- assert(other.pos_q > 0);
- if (pos_p == 0 || other.pos_p == 0) {
- // Because the denominators are positive and one of the nominators is zero,
- // following simple statement holds.
- return pos_p < other.pos_p;
- } else {
- // None of the nominators is zero.
- int sign1 = (pos_p > 0) ? 1 : -1;
- int sign2 = (other.pos_p > 0) ? 1 : -1;
- int signs = sign1 * sign2;
- assert(signs == 1 || signs == -1);
- if (signs < 0) {
- // The nominators have different signs.
- return sign1 < 0;
- } else {
- // The nominators have the same sign.
- // Absolute values
- uint64_t p1, p2;
- if (sign1 > 0) {
- p1 = uint64_t(pos_p);
- p2 = uint64_t(other.pos_p);
- } else {
- p1 = uint64_t(- pos_p);
- p2 = uint64_t(- other.pos_p);
- };
- // Multiply low and high 32bit words of p1 by other_pos.q
- // 32bit x 32bit => 64bit
- // l_hi and l_lo overlap by 32 bits.
- uint64_t l_hi = (p1 >> 32) * uint64_t(other.pos_q);
- uint64_t l_lo = (p1 & 0xffffffffll) * uint64_t(other.pos_q);
- l_hi += (l_lo >> 32);
- uint64_t r_hi = (p2 >> 32) * uint64_t(pos_q);
- uint64_t r_lo = (p2 & 0xffffffffll) * uint64_t(pos_q);
- r_hi += (r_lo >> 32);
- // Compare the high 64 bits.
- if (l_hi == r_hi) {
- // Compare the low 32 bits.
- l_lo &= 0xffffffffll;
- r_lo &= 0xffffffffll;
- return (sign1 < 0) ? (l_lo > r_lo) : (l_lo < r_lo);
- }
- return (sign1 < 0) ? (l_hi > r_hi) : (l_hi < r_hi);
- }
- }
- }
-
- bool operator==(const SegmentIntersection &other) const
- {
- assert(pos_q > 0);
- assert(other.pos_q > 0);
- if (pos_p == 0 || other.pos_p == 0) {
- // Because the denominators are positive and one of the nominators is zero,
- // following simple statement holds.
- return pos_p == other.pos_p;
- }
-
- // None of the nominators is zero, none of the denominators is zero.
- bool positive = pos_p > 0;
- if (positive != (other.pos_p > 0))
- return false;
- // The nominators have the same sign.
- // Absolute values
- uint64_t p1 = positive ? uint64_t(pos_p) : uint64_t(- pos_p);
- uint64_t p2 = positive ? uint64_t(other.pos_p) : uint64_t(- other.pos_p);
- // Multiply low and high 32bit words of p1 by other_pos.q
- // 32bit x 32bit => 64bit
- // l_hi and l_lo overlap by 32 bits.
- uint64_t l_lo = (p1 & 0xffffffffll) * uint64_t(other.pos_q);
- uint64_t r_lo = (p2 & 0xffffffffll) * uint64_t(pos_q);
- if (l_lo != r_lo)
- return false;
- uint64_t l_hi = (p1 >> 32) * uint64_t(other.pos_q);
- uint64_t r_hi = (p2 >> 32) * uint64_t(pos_q);
- return l_hi + (l_lo >> 32) == r_hi + (r_lo >> 32);
- }
-};
-
-// A vertical line with intersection points with polygons.
-class SegmentedIntersectionLine
-{
-public:
- // Index of this vertical intersection line.
- size_t idx;
- // x position of this vertical intersection line.
- coord_t pos;
- // List of intersection points with polygons, sorted increasingly by the y axis.
- std::vector<SegmentIntersection> intersections;
-};
-
-// A container maintaining an expolygon with its inner offsetted polygon.
-// The purpose of the inner offsetted polygon is to provide segments to connect the infill lines.
-struct ExPolygonWithOffset
-{
-public:
- ExPolygonWithOffset(
- const ExPolygon &expolygon,
- float angle,
- coord_t aoffset1,
- coord_t aoffset2)
- {
- // Copy and rotate the source polygons.
- polygons_src = expolygon;
- polygons_src.contour.rotate(angle);
- for (Polygons::iterator it = polygons_src.holes.begin(); it != polygons_src.holes.end(); ++ it)
- it->rotate(angle);
-
- double mitterLimit = 3.;
- // for the infill pattern, don't cut the corners.
- // default miterLimt = 3
- //double mitterLimit = 10.;
- assert(aoffset1 < 0);
- assert(aoffset2 < 0);
- assert(aoffset2 < aoffset1);
-// bool sticks_removed =
- remove_sticks(polygons_src);
-// if (sticks_removed) printf("Sticks removed!\n");
- polygons_outer = offset(polygons_src, aoffset1,
- ClipperLib::jtMiter,
- mitterLimit);
- polygons_inner = offset(polygons_outer, aoffset2 - aoffset1,
- ClipperLib::jtMiter,
- mitterLimit);
- // Filter out contours with zero area or small area, contours with 2 points only.
- const double min_area_threshold = 0.01 * aoffset2 * aoffset2;
- remove_small(polygons_outer, min_area_threshold);
- remove_small(polygons_inner, min_area_threshold);
- remove_sticks(polygons_outer);
- remove_sticks(polygons_inner);
- n_contours_outer = polygons_outer.size();
- n_contours_inner = polygons_inner.size();
- n_contours = n_contours_outer + n_contours_inner;
- polygons_ccw.assign(n_contours, false);
- for (size_t i = 0; i < n_contours; ++ i) {
- contour(i).remove_duplicate_points();
- assert(! contour(i).has_duplicate_points());
- polygons_ccw[i] = Slic3r::Geometry::is_ccw(contour(i));
- }
- }
-
- // Any contour with offset1
- bool is_contour_outer(size_t idx) const { return idx < n_contours_outer; }
- // Any contour with offset2
- bool is_contour_inner(size_t idx) const { return idx >= n_contours_outer; }
-
- const Polygon& contour(size_t idx) const
- { return is_contour_outer(idx) ? polygons_outer[idx] : polygons_inner[idx - n_contours_outer]; }
-
- Polygon& contour(size_t idx)
- { return is_contour_outer(idx) ? polygons_outer[idx] : polygons_inner[idx - n_contours_outer]; }
-
- bool is_contour_ccw(size_t idx) const { return polygons_ccw[idx]; }
-
- BoundingBox bounding_box_src() const
- { return get_extents(polygons_src); }
- BoundingBox bounding_box_outer() const
- { return get_extents(polygons_outer); }
- BoundingBox bounding_box_inner() const
- { return get_extents(polygons_inner); }
-
-#ifdef SLIC3R_DEBUG
- void export_to_svg(Slic3r::SVG &svg) {
- svg.draw_outline(polygons_src, "black");
- svg.draw_outline(polygons_outer, "green");
- svg.draw_outline(polygons_inner, "brown");
- }
-#endif /* SLIC3R_DEBUG */
-
- ExPolygon polygons_src;
- Polygons polygons_outer;
- Polygons polygons_inner;
-
- size_t n_contours_outer;
- size_t n_contours_inner;
- size_t n_contours;
-
-protected:
- // For each polygon of polygons_inner, remember its orientation.
- std::vector<unsigned char> polygons_ccw;
-};
-
-static inline int distance_of_segmens(const Polygon &poly, size_t seg1, size_t seg2, bool forward)
-{
- int d = int(seg2) - int(seg1);
- if (! forward)
- d = - d;
- if (d < 0)
- d += int(poly.points.size());
- return d;
-}
-
-// For a vertical line, an inner contour and an intersection point,
-// find an intersection point on the previous resp. next vertical line.
-// The intersection point is connected with the prev resp. next intersection point with iInnerContour.
-// Return -1 if there is no such point on the previous resp. next vertical line.
-static inline int intersection_on_prev_next_vertical_line(
- const ExPolygonWithOffset &poly_with_offset,
- const std::vector<SegmentedIntersectionLine> &segs,
- size_t iVerticalLine,
- size_t iInnerContour,
- size_t iIntersection,
- bool dir_is_next)
-{
- size_t iVerticalLineOther = iVerticalLine;
- if (dir_is_next) {
- if (++ iVerticalLineOther == segs.size())
- // No successive vertical line.
- return -1;
- } else if (iVerticalLineOther -- == 0) {
- // No preceding vertical line.
- return -1;
- }
-
- const SegmentedIntersectionLine &il = segs[iVerticalLine];
- const SegmentIntersection &itsct = il.intersections[iIntersection];
- const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther];
- const Polygon &poly = poly_with_offset.contour(iInnerContour);
-// const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
- const bool forward = itsct.is_low() == dir_is_next;
- // Resulting index of an intersection point on il2.
- int out = -1;
- // Find an intersection point on iVerticalLineOther, intersecting iInnerContour
- // at the same orientation as iIntersection, and being closest to iIntersection
- // in the number of contour segments, when following the direction of the contour.
- int dmin = std::numeric_limits<int>::max();
- for (size_t i = 0; i < il2.intersections.size(); ++ i) {
- const SegmentIntersection &itsct2 = il2.intersections[i];
- if (itsct.iContour == itsct2.iContour && itsct.type == itsct2.type) {
- /*
- if (itsct.is_low()) {
- assert(itsct.type == SegmentIntersection::INNER_LOW);
- assert(iIntersection > 0);
- assert(il.intersections[iIntersection-1].type == SegmentIntersection::OUTER_LOW);
- assert(i > 0);
- if (il2.intersections[i-1].is_inner())
- // Take only the lowest inner intersection point.
- continue;
- assert(il2.intersections[i-1].type == SegmentIntersection::OUTER_LOW);
- } else {
- assert(itsct.type == SegmentIntersection::INNER_HIGH);
- assert(iIntersection+1 < il.intersections.size());
- assert(il.intersections[iIntersection+1].type == SegmentIntersection::OUTER_HIGH);
- assert(i+1 < il2.intersections.size());
- if (il2.intersections[i+1].is_inner())
- // Take only the highest inner intersection point.
- continue;
- assert(il2.intersections[i+1].type == SegmentIntersection::OUTER_HIGH);
- }
- */
- // The intersection points lie on the same contour and have the same orientation.
- // Find the intersection point with a shortest path in the direction of the contour.
- int d = distance_of_segmens(poly, itsct.iSegment, itsct2.iSegment, forward);
- if (d < dmin) {
- out = i;
- dmin = d;
- }
- }
- }
- //FIXME this routine is not asymptotic optimal, it will be slow if there are many intersection points along the line.
- return out;
-}
-
-static inline int intersection_on_prev_vertical_line(
- const ExPolygonWithOffset &poly_with_offset,
- const std::vector<SegmentedIntersectionLine> &segs,
- size_t iVerticalLine,
- size_t iInnerContour,
- size_t iIntersection)
-{
- return intersection_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, false);
-}
-
-static inline int intersection_on_next_vertical_line(
- const ExPolygonWithOffset &poly_with_offset,
- const std::vector<SegmentedIntersectionLine> &segs,
- size_t iVerticalLine,
- size_t iInnerContour,
- size_t iIntersection)
-{
- return intersection_on_prev_next_vertical_line(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, true);
-}
-
-enum IntersectionTypeOtherVLine {
- // There is no connection point on the other vertical line.
- INTERSECTION_TYPE_OTHER_VLINE_UNDEFINED = -1,
- // Connection point on the other vertical segment was found
- // and it could be followed.
- INTERSECTION_TYPE_OTHER_VLINE_OK = 0,
- // The connection segment connects to a middle of a vertical segment.
- // Cannot follow.
- INTERSECTION_TYPE_OTHER_VLINE_INNER,
- // Cannot extend the contor to this intersection point as either the connection segment
- // or the succeeding vertical segment were already consumed.
- INTERSECTION_TYPE_OTHER_VLINE_CONSUMED,
- // Not the first intersection along the contor. This intersection point
- // has been preceded by an intersection point along the vertical line.
- INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST,
-};
-
-// Find an intersection on a previous line, but return -1, if the connecting segment of a perimeter was already extruded.
-static inline IntersectionTypeOtherVLine intersection_type_on_prev_next_vertical_line(
- const std::vector<SegmentedIntersectionLine> &segs,
- size_t iVerticalLine,
- size_t iIntersection,
- size_t iIntersectionOther,
- bool dir_is_next)
-{
- // This routine will propose a connecting line even if the connecting perimeter segment intersects
- // iVertical line multiple times before reaching iIntersectionOther.
- if (iIntersectionOther == size_t(-1))
- return INTERSECTION_TYPE_OTHER_VLINE_UNDEFINED;
- assert(dir_is_next ? (iVerticalLine + 1 < segs.size()) : (iVerticalLine > 0));
- const SegmentedIntersectionLine &il_this = segs[iVerticalLine];
- const SegmentIntersection &itsct_this = il_this.intersections[iIntersection];
- const SegmentedIntersectionLine &il_other = segs[dir_is_next ? (iVerticalLine+1) : (iVerticalLine-1)];
- const SegmentIntersection &itsct_other = il_other.intersections[iIntersectionOther];
- assert(itsct_other.is_inner());
- assert(iIntersectionOther > 0);
- assert(iIntersectionOther + 1 < il_other.intersections.size());
- // Is iIntersectionOther at the boundary of a vertical segment?
- const SegmentIntersection &itsct_other2 = il_other.intersections[itsct_other.is_low() ? iIntersectionOther - 1 : iIntersectionOther + 1];
- if (itsct_other2.is_inner())
- // Cannot follow a perimeter segment into the middle of another vertical segment.
- // Only perimeter segments connecting to the end of a vertical segment are followed.
- return INTERSECTION_TYPE_OTHER_VLINE_INNER;
- assert(itsct_other.is_low() == itsct_other2.is_low());
- if (dir_is_next ? itsct_this.consumed_perimeter_right : itsct_other.consumed_perimeter_right)
- // This perimeter segment was already consumed.
- return INTERSECTION_TYPE_OTHER_VLINE_CONSUMED;
- if (itsct_other.is_low() ? itsct_other.consumed_vertical_up : il_other.intersections[iIntersectionOther-1].consumed_vertical_up)
- // This vertical segment was already consumed.
- return INTERSECTION_TYPE_OTHER_VLINE_CONSUMED;
- return INTERSECTION_TYPE_OTHER_VLINE_OK;
-}
-
-static inline IntersectionTypeOtherVLine intersection_type_on_prev_vertical_line(
- const std::vector<SegmentedIntersectionLine> &segs,
- size_t iVerticalLine,
- size_t iIntersection,
- size_t iIntersectionPrev)
-{
- return intersection_type_on_prev_next_vertical_line(segs, iVerticalLine, iIntersection, iIntersectionPrev, false);
-}
-
-static inline IntersectionTypeOtherVLine intersection_type_on_next_vertical_line(
- const std::vector<SegmentedIntersectionLine> &segs,
- size_t iVerticalLine,
- size_t iIntersection,
- size_t iIntersectionNext)
-{
- return intersection_type_on_prev_next_vertical_line(segs, iVerticalLine, iIntersection, iIntersectionNext, true);
-}
-
-// Measure an Euclidian length of a perimeter segment when going from iIntersection to iIntersection2.
-static inline coordf_t measure_perimeter_prev_next_segment_length(
- const ExPolygonWithOffset &poly_with_offset,
- const std::vector<SegmentedIntersectionLine> &segs,
- size_t iVerticalLine,
- size_t iInnerContour,
- size_t iIntersection,
- size_t iIntersection2,
- bool dir_is_next)
-{
- size_t iVerticalLineOther = iVerticalLine;
- if (dir_is_next) {
- if (++ iVerticalLineOther == segs.size())
- // No successive vertical line.
- return coordf_t(-1);
- } else if (iVerticalLineOther -- == 0) {
- // No preceding vertical line.
- return coordf_t(-1);
- }
-
- const SegmentedIntersectionLine &il = segs[iVerticalLine];
- const SegmentIntersection &itsct = il.intersections[iIntersection];
- const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther];
- const SegmentIntersection &itsct2 = il2.intersections[iIntersection2];
- const Polygon &poly = poly_with_offset.contour(iInnerContour);
-// const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
- assert(itsct.type == itsct2.type);
- assert(itsct.iContour == itsct2.iContour);
- assert(itsct.is_inner());
- const bool forward = itsct.is_low() == dir_is_next;
-
- Point p1(il.pos, itsct.pos());
- Point p2(il2.pos, itsct2.pos());
- return forward ?
- segment_length(poly, itsct .iSegment, p1, itsct2.iSegment, p2) :
- segment_length(poly, itsct2.iSegment, p2, itsct .iSegment, p1);
-}
-
-static inline coordf_t measure_perimeter_prev_segment_length(
- const ExPolygonWithOffset &poly_with_offset,
- const std::vector<SegmentedIntersectionLine> &segs,
- size_t iVerticalLine,
- size_t iInnerContour,
- size_t iIntersection,
- size_t iIntersection2)
-{
- return measure_perimeter_prev_next_segment_length(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, iIntersection2, false);
-}
-
-static inline coordf_t measure_perimeter_next_segment_length(
- const ExPolygonWithOffset &poly_with_offset,
- const std::vector<SegmentedIntersectionLine> &segs,
- size_t iVerticalLine,
- size_t iInnerContour,
- size_t iIntersection,
- size_t iIntersection2)
-{
- return measure_perimeter_prev_next_segment_length(poly_with_offset, segs, iVerticalLine, iInnerContour, iIntersection, iIntersection2, true);
-}
-
-// Append the points of a perimeter segment when going from iIntersection to iIntersection2.
-// The first point (the point of iIntersection) will not be inserted,
-// the last point will be inserted.
-static inline void emit_perimeter_prev_next_segment(
- const ExPolygonWithOffset &poly_with_offset,
- const std::vector<SegmentedIntersectionLine> &segs,
- size_t iVerticalLine,
- size_t iInnerContour,
- size_t iIntersection,
- size_t iIntersection2,
- Polyline &out,
- bool dir_is_next)
-{
- size_t iVerticalLineOther = iVerticalLine;
- if (dir_is_next) {
- ++ iVerticalLineOther;
- assert(iVerticalLineOther < segs.size());
- } else {
- assert(iVerticalLineOther > 0);
- -- iVerticalLineOther;
- }
-
- const SegmentedIntersectionLine &il = segs[iVerticalLine];
- const SegmentIntersection &itsct = il.intersections[iIntersection];
- const SegmentedIntersectionLine &il2 = segs[iVerticalLineOther];
- const SegmentIntersection &itsct2 = il2.intersections[iIntersection2];
- const Polygon &poly = poly_with_offset.contour(iInnerContour);
-// const bool ccw = poly_with_offset.is_contour_ccw(iInnerContour);
- assert(itsct.type == itsct2.type);
- assert(itsct.iContour == itsct2.iContour);
- assert(itsct.is_inner());
- const bool forward = itsct.is_low() == dir_is_next;
- // Do not append the first point.
- // out.points.push_back(Point(il.pos, itsct.pos));
- if (forward)
- polygon_segment_append(out.points, poly, itsct.iSegment, itsct2.iSegment);
- else
- polygon_segment_append_reversed(out.points, poly, itsct.iSegment, itsct2.iSegment);
- // Append the last point.
- out.points.push_back(Point(il2.pos, itsct2.pos()));
-}
-
-static inline coordf_t measure_perimeter_segment_on_vertical_line_length(
- const ExPolygonWithOffset &poly_with_offset,
- const std::vector<SegmentedIntersectionLine> &segs,
- size_t iVerticalLine,
- size_t iInnerContour,
- size_t iIntersection,
- size_t iIntersection2,
- bool forward)
-{
- const SegmentedIntersectionLine &il = segs[iVerticalLine];
- const SegmentIntersection &itsct = il.intersections[iIntersection];
- const SegmentIntersection &itsct2 = il.intersections[iIntersection2];
- const Polygon &poly = poly_with_offset.contour(iInnerContour);
- assert(itsct.is_inner());
- assert(itsct2.is_inner());
- assert(itsct.type != itsct2.type);
- assert(itsct.iContour == iInnerContour);
- assert(itsct.iContour == itsct2.iContour);
- Point p1(il.pos, itsct.pos());
- Point p2(il.pos, itsct2.pos());
- return forward ?
- segment_length(poly, itsct .iSegment, p1, itsct2.iSegment, p2) :
- segment_length(poly, itsct2.iSegment, p2, itsct .iSegment, p1);
-}
-
-// Append the points of a perimeter segment when going from iIntersection to iIntersection2.
-// The first point (the point of iIntersection) will not be inserted,
-// the last point will be inserted.
-static inline void emit_perimeter_segment_on_vertical_line(
- const ExPolygonWithOffset &poly_with_offset,
- const std::vector<SegmentedIntersectionLine> &segs,
- size_t iVerticalLine,
- size_t iInnerContour,
- size_t iIntersection,
- size_t iIntersection2,
- Polyline &out,
- bool forward)
-{
- const SegmentedIntersectionLine &il = segs[iVerticalLine];
- const SegmentIntersection &itsct = il.intersections[iIntersection];
- const SegmentIntersection &itsct2 = il.intersections[iIntersection2];
- const Polygon &poly = poly_with_offset.contour(iInnerContour);
- assert(itsct.is_inner());
- assert(itsct2.is_inner());
- assert(itsct.type != itsct2.type);
- assert(itsct.iContour == iInnerContour);
- assert(itsct.iContour == itsct2.iContour);
- // Do not append the first point.
- // out.points.push_back(Point(il.pos, itsct.pos));
- if (forward)
- polygon_segment_append(out.points, poly, itsct.iSegment, itsct2.iSegment);
- else
- polygon_segment_append_reversed(out.points, poly, itsct.iSegment, itsct2.iSegment);
- // Append the last point.
- out.points.push_back(Point(il.pos, itsct2.pos()));
-}
-
-//TBD: For precise infill, measure the area of a slab spanned by an infill line.
-/*
-static inline float measure_outer_contour_slab(
- const ExPolygonWithOffset &poly_with_offset,
- const std::vector<SegmentedIntersectionLine> &segs,
- size_t i_vline,
- size_t iIntersection)
-{
- const SegmentedIntersectionLine &il = segs[i_vline];
- const SegmentIntersection &itsct = il.intersections[i_vline];
- const SegmentIntersection &itsct2 = il.intersections[iIntersection2];
- const Polygon &poly = poly_with_offset.contour((itsct.iContour);
- assert(itsct.is_outer());
- assert(itsct2.is_outer());
- assert(itsct.type != itsct2.type);
- assert(itsct.iContour == itsct2.iContour);
- if (! itsct.is_outer() || ! itsct2.is_outer() || itsct.type == itsct2.type || itsct.iContour != itsct2.iContour)
- // Error, return zero area.
- return 0.f;
-
- // Find possible connection points on the previous / next vertical line.
- int iPrev = intersection_on_prev_vertical_line(poly_with_offset, segs, i_vline, itsct.iContour, i_intersection);
- int iNext = intersection_on_next_vertical_line(poly_with_offset, segs, i_vline, itsct.iContour, i_intersection);
- // Find possible connection points on the same vertical line.
- int iAbove = iBelow = -1;
- // Does the perimeter intersect the current vertical line above intrsctn?
- for (size_t i = i_intersection + 1; i + 1 < seg.intersections.size(); ++ i)
- if (seg.intersections[i].iContour == itsct.iContour)
- { iAbove = i; break; }
- // Does the perimeter intersect the current vertical line below intrsctn?
- for (int i = int(i_intersection) - 1; i > 0; -- i)
- if (seg.intersections[i].iContour == itsct.iContour)
- { iBelow = i; break; }
-
- if (iSegAbove != -1 && seg.intersections[iAbove].type == SegmentIntersection::OUTER_HIGH) {
- // Invalidate iPrev resp. iNext, if the perimeter crosses the current vertical line earlier than iPrev resp. iNext.
- // The perimeter contour orientation.
- const Polygon &poly = poly_with_offset.contour(itsct.iContour);
- {
- int d_horiz = (iPrev == -1) ? std::numeric_limits<int>::max() :
- distance_of_segmens(poly, segs[i_vline-1].intersections[iPrev].iSegment, itsct.iSegment, true);
- int d_down = (iBelow == -1) ? std::numeric_limits<int>::max() :
- distance_of_segmens(poly, iSegBelow, itsct.iSegment, true);
- int d_up = (iAbove == -1) ? std::numeric_limits<int>::max() :
- distance_of_segmens(poly, iSegAbove, itsct.iSegment, true);
- if (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && d_horiz > std::min(d_down, d_up))
- // The vertical crossing comes eralier than the prev crossing.
- // Disable the perimeter going back.
- intrsctn_type_prev = INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST;
- if (d_up > std::min(d_horiz, d_down))
- // The horizontal crossing comes earlier than the vertical crossing.
- vert_seg_dir_valid_mask &= ~DIR_BACKWARD;
- }
- {
- int d_horiz = (iNext == -1) ? std::numeric_limits<int>::max() :
- distance_of_segmens(poly, itsct.iSegment, segs[i_vline+1].intersections[iNext].iSegment, true);
- int d_down = (iSegBelow == -1) ? std::numeric_limits<int>::max() :
- distance_of_segmens(poly, itsct.iSegment, iSegBelow, true);
- int d_up = (iSegAbove == -1) ? std::numeric_limits<int>::max() :
- distance_of_segmens(poly, itsct.iSegment, iSegAbove, true);
- if (d_up > std::min(d_horiz, d_down))
- // The horizontal crossing comes earlier than the vertical crossing.
- vert_seg_dir_valid_mask &= ~DIR_FORWARD;
- }
- }
-}
-*/
-
-enum DirectionMask
-{
- DIR_FORWARD = 1,
- DIR_BACKWARD = 2
-};
-
-bool FillRectilinear2::fill_surface_by_lines(const Surface *surface, const FillParams &params, float angleBase, float pattern_shift, Polylines &polylines_out)
-{
- // At the end, only the new polylines will be rotated back.
- size_t n_polylines_out_initial = polylines_out.size();
-
- // Shrink the input polygon a bit first to not push the infill lines out of the perimeters.
-// const float INFILL_OVERLAP_OVER_SPACING = 0.3f;
- const float INFILL_OVERLAP_OVER_SPACING = 0.45f;
- assert(INFILL_OVERLAP_OVER_SPACING > 0 && INFILL_OVERLAP_OVER_SPACING < 0.5f);
-
- // Rotate polygons so that we can work with vertical lines here
- std::pair<float, Point> rotate_vector = this->_infill_direction(surface);
- rotate_vector.first += angleBase;
-
- assert(params.density > 0.0001f && params.density <= 1.f);
- coord_t line_spacing = coord_t(scale_(this->spacing) / params.density);
-
- // On the polygons of poly_with_offset, the infill lines will be connected.
- ExPolygonWithOffset poly_with_offset(
- surface->expolygon,
- - rotate_vector.first,
- scale_(this->overlap - (0.5 - INFILL_OVERLAP_OVER_SPACING) * this->spacing),
- scale_(this->overlap - 0.5 * this->spacing));
- if (poly_with_offset.n_contours_inner == 0) {
- // Not a single infill line fits.
- //FIXME maybe one shall trigger the gap fill here?
- return true;
- }
-
- BoundingBox bounding_box = poly_with_offset.bounding_box_src();
-
- // define flow spacing according to requested density
- if (params.full_infill() && !params.dont_adjust) {
- line_spacing = this->_adjust_solid_spacing(bounding_box.size()(0), line_spacing);
- this->spacing = unscale<double>(line_spacing);
- } else {
- // extend bounding box so that our pattern will be aligned with other layers
- // Transform the reference point to the rotated coordinate system.
- Point refpt = rotate_vector.second.rotated(- rotate_vector.first);
- // _align_to_grid will not work correctly with positive pattern_shift.
- coord_t pattern_shift_scaled = coord_t(scale_(pattern_shift)) % line_spacing;
- refpt(0) -= (pattern_shift_scaled >= 0) ? pattern_shift_scaled : (line_spacing + pattern_shift_scaled);
- bounding_box.merge(_align_to_grid(
- bounding_box.min,
- Point(line_spacing, line_spacing),
- refpt));
- }
-
- // Intersect a set of euqally spaced vertical lines wiht expolygon.
- // n_vlines = ceil(bbox_width / line_spacing)
- size_t n_vlines = (bounding_box.max(0) - bounding_box.min(0) + line_spacing - 1) / line_spacing;
- coord_t x0 = bounding_box.min(0);
- if (params.full_infill())
- x0 += (line_spacing + SCALED_EPSILON) / 2;
-
-#ifdef SLIC3R_DEBUG
- static int iRun = 0;
- BoundingBox bbox_svg = poly_with_offset.bounding_box_outer();
- ::Slic3r::SVG svg(debug_out_path("FillRectilinear2-%d.svg", iRun), bbox_svg); // , scale_(1.));
- poly_with_offset.export_to_svg(svg);
- {
- ::Slic3r::SVG svg(debug_out_path("FillRectilinear2-initial-%d.svg", iRun), bbox_svg); // , scale_(1.));
- poly_with_offset.export_to_svg(svg);
- }
- iRun ++;
-#endif /* SLIC3R_DEBUG */
-
- // For each contour
- // Allocate storage for the segments.
- std::vector<SegmentedIntersectionLine> segs(n_vlines, SegmentedIntersectionLine());
- for (size_t i = 0; i < n_vlines; ++ i) {
- segs[i].idx = i;
- segs[i].pos = x0 + i * line_spacing;
- }
- for (size_t iContour = 0; iContour < poly_with_offset.n_contours; ++ iContour) {
- const Points &contour = poly_with_offset.contour(iContour).points;
- if (contour.size() < 2)
- continue;
- // For each segment
- for (size_t iSegment = 0; iSegment < contour.size(); ++ iSegment) {
- size_t iPrev = ((iSegment == 0) ? contour.size() : iSegment) - 1;
- const Point &p1 = contour[iPrev];
- const Point &p2 = contour[iSegment];
- // Which of the equally spaced vertical lines is intersected by this segment?
- coord_t l = p1(0);
- coord_t r = p2(0);
- if (l > r)
- std::swap(l, r);
- // il, ir are the left / right indices of vertical lines intersecting a segment
- int il = (l - x0) / line_spacing;
- while (il * line_spacing + x0 < l)
- ++ il;
- il = std::max(int(0), il);
- int ir = (r - x0 + line_spacing) / line_spacing;
- while (ir * line_spacing + x0 > r)
- -- ir;
- ir = std::min(int(segs.size()) - 1, ir);
- if (il > ir)
- // No vertical line intersects this segment.
- continue;
- assert(il >= 0 && size_t(il) < segs.size());
- assert(ir >= 0 && size_t(ir) < segs.size());
- for (int i = il; i <= ir; ++ i) {
- coord_t this_x = segs[i].pos;
- assert(this_x == i * line_spacing + x0);
- SegmentIntersection is;
- is.iContour = iContour;
- is.iSegment = iSegment;
- assert(l <= this_x);
- assert(r >= this_x);
- // Calculate the intersection position in y axis. x is known.
- if (p1(0) == this_x) {
- if (p2(0) == this_x) {
- // Ignore strictly vertical segments.
- continue;
- }
- is.pos_p = p1(1);
- is.pos_q = 1;
- } else if (p2(0) == this_x) {
- is.pos_p = p2(1);
- is.pos_q = 1;
- } else {
- // First calculate the intersection parameter 't' as a rational number with non negative denominator.
- if (p2(0) > p1(0)) {
- is.pos_p = this_x - p1(0);
- is.pos_q = p2(0) - p1(0);
- } else {
- is.pos_p = p1(0) - this_x;
- is.pos_q = p1(0) - p2(0);
- }
- assert(is.pos_p >= 0 && is.pos_p <= is.pos_q);
- // Make an intersection point from the 't'.
- is.pos_p *= int64_t(p2(1) - p1(1));
- is.pos_p += p1(1) * int64_t(is.pos_q);
- }
- // +-1 to take rounding into account.
- assert(is.pos() + 1 >= std::min(p1(1), p2(1)));
- assert(is.pos() <= std::max(p1(1), p2(1)) + 1);
- segs[i].intersections.push_back(is);
- }
- }
- }
-
- // Sort the intersections along their segments, specify the intersection types.
- for (size_t i_seg = 0; i_seg < segs.size(); ++ i_seg) {
- SegmentedIntersectionLine &sil = segs[i_seg];
- // Sort the intersection points using exact rational arithmetic.
- std::sort(sil.intersections.begin(), sil.intersections.end());
- // Assign the intersection types, remove duplicate or overlapping intersection points.
- // When a loop vertex touches a vertical line, intersection point is generated for both segments.
- // If such two segments are oriented equally, then one of them is removed.
- // Otherwise the vertex is tangential to the vertical line and both segments are removed.
- // The same rule applies, if the loop is pinched into a single point and this point touches the vertical line:
- // The loop has a zero vertical size at the vertical line, therefore the intersection point is removed.
- size_t j = 0;
- for (size_t i = 0; i < sil.intersections.size(); ++ i) {
- // What is the orientation of the segment at the intersection point?
- size_t iContour = sil.intersections[i].iContour;
- const Points &contour = poly_with_offset.contour(iContour).points;
- size_t iSegment = sil.intersections[i].iSegment;
- size_t iPrev = ((iSegment == 0) ? contour.size() : iSegment) - 1;
- coord_t dir = contour[iSegment](0) - contour[iPrev](0);
- bool low = dir > 0;
- sil.intersections[i].type = poly_with_offset.is_contour_outer(iContour) ?
- (low ? SegmentIntersection::OUTER_LOW : SegmentIntersection::OUTER_HIGH) :
- (low ? SegmentIntersection::INNER_LOW : SegmentIntersection::INNER_HIGH);
- if (j > 0 && sil.intersections[i].iContour == sil.intersections[j-1].iContour) {
- // Two successive intersection points on a vertical line with the same contour. This may be a special case.
- if (sil.intersections[i].pos() == sil.intersections[j-1].pos()) {
- // Two successive segments meet exactly at the vertical line.
- #ifdef SLIC3R_DEBUG
- // Verify that the segments of sil.intersections[i] and sil.intersections[j-1] are adjoint.
- size_t iSegment2 = sil.intersections[j-1].iSegment;
- size_t iPrev2 = ((iSegment2 == 0) ? contour.size() : iSegment2) - 1;
- assert(iSegment == iPrev2 || iSegment2 == iPrev);
- #endif /* SLIC3R_DEBUG */
- if (sil.intersections[i].type == sil.intersections[j-1].type) {
- // Two successive segments of the same direction (both to the right or both to the left)
- // meet exactly at the vertical line.
- // Remove the second intersection point.
- } else {
- // This is a loop returning to the same point.
- // It may as well be a vertex of a loop touching this vertical line.
- // Remove both the lines.
- -- j;
- }
- } else if (sil.intersections[i].type == sil.intersections[j-1].type) {
- // Two non successive segments of the same direction (both to the right or both to the left)
- // meet exactly at the vertical line. That means there is a Z shaped path, where the center segment
- // of the Z shaped path is aligned with this vertical line.
- // Remove one of the intersection points while maximizing the vertical segment length.
- if (low) {
- // Remove the second intersection point, keep the first intersection point.
- } else {
- // Remove the first intersection point, keep the second intersection point.
- sil.intersections[j-1] = sil.intersections[i];
- }
- } else {
- // Vertical line intersects a contour segment at a general position (not at one of its end points).
- // or the contour just touches this vertical line with a vertical segment or a sequence of vertical segments.
- // Keep both intersection points.
- if (j < i)
- sil.intersections[j] = sil.intersections[i];
- ++ j;
- }
- } else {
- // Vertical line intersects a contour segment at a general position (not at one of its end points).
- if (j < i)
- sil.intersections[j] = sil.intersections[i];
- ++ j;
- }
- }
- // Shrink the list of intersections, if any of the intersection was removed during the classification.
- if (j < sil.intersections.size())
- sil.intersections.erase(sil.intersections.begin() + j, sil.intersections.end());
- }
-
- // Verify the segments. If something is wrong, give up.
-#define ASSERT_OR_RETURN(CONDITION) do { assert(CONDITION); if (! (CONDITION)) return false; } while (0)
- for (size_t i_seg = 0; i_seg < segs.size(); ++ i_seg) {
- SegmentedIntersectionLine &sil = segs[i_seg];
- // The intersection points have to be even.
- ASSERT_OR_RETURN((sil.intersections.size() & 1) == 0);
- for (size_t i = 0; i < sil.intersections.size();) {
- // An intersection segment crossing the bigger contour may cross the inner offsetted contour even number of times.
- ASSERT_OR_RETURN(sil.intersections[i].type == SegmentIntersection::OUTER_LOW);
- size_t j = i + 1;
- ASSERT_OR_RETURN(j < sil.intersections.size());
- ASSERT_OR_RETURN(sil.intersections[j].type == SegmentIntersection::INNER_LOW || sil.intersections[j].type == SegmentIntersection::OUTER_HIGH);
- for (; j < sil.intersections.size() && sil.intersections[j].is_inner(); ++ j) ;
- ASSERT_OR_RETURN(j < sil.intersections.size());
- ASSERT_OR_RETURN((j & 1) == 1);
- ASSERT_OR_RETURN(sil.intersections[j].type == SegmentIntersection::OUTER_HIGH);
- ASSERT_OR_RETURN(i + 1 == j || sil.intersections[j - 1].type == SegmentIntersection::INNER_HIGH);
- i = j + 1;
- }
- }
-#undef ASSERT_OR_RETURN
-
-#ifdef SLIC3R_DEBUG
- // Paint the segments and finalize the SVG file.
- for (size_t i_seg = 0; i_seg < segs.size(); ++ i_seg) {
- SegmentedIntersectionLine &sil = segs[i_seg];
- for (size_t i = 0; i < sil.intersections.size();) {
- size_t j = i + 1;
- for (; j < sil.intersections.size() && sil.intersections[j].is_inner(); ++ j) ;
- if (i + 1 == j) {
- svg.draw(Line(Point(sil.pos, sil.intersections[i].pos()), Point(sil.pos, sil.intersections[j].pos())), "blue");
- } else {
- svg.draw(Line(Point(sil.pos, sil.intersections[i].pos()), Point(sil.pos, sil.intersections[i+1].pos())), "green");
- svg.draw(Line(Point(sil.pos, sil.intersections[i+1].pos()), Point(sil.pos, sil.intersections[j-1].pos())), (j - i + 1 > 4) ? "yellow" : "magenta");
- svg.draw(Line(Point(sil.pos, sil.intersections[j-1].pos()), Point(sil.pos, sil.intersections[j].pos())), "green");
- }
- i = j + 1;
- }
- }
- svg.Close();
-#endif /* SLIC3R_DEBUG */
-
- // For each outer only chords, measure their maximum distance to the bow of the outer contour.
- // Mark an outer only chord as consumed, if the distance is low.
- for (size_t i_vline = 0; i_vline < segs.size(); ++ i_vline) {
- SegmentedIntersectionLine &seg = segs[i_vline];
- for (size_t i_intersection = 0; i_intersection + 1 < seg.intersections.size(); ++ i_intersection) {
- if (seg.intersections[i_intersection].type == SegmentIntersection::OUTER_LOW &&
- seg.intersections[i_intersection+1].type == SegmentIntersection::OUTER_HIGH) {
- bool consumed = false;
-// if (params.full_infill()) {
-// measure_outer_contour_slab(poly_with_offset, segs, i_vline, i_ntersection);
-// } else
- consumed = true;
- seg.intersections[i_intersection].consumed_vertical_up = consumed;
- }
- }
- }
-
- // Now construct a graph.
- // Find the first point.
- // Naively one would expect to achieve best results by chaining the paths by the shortest distance,
- // but that procedure does not create the longest continuous paths.
- // A simple "sweep left to right" procedure achieves better results.
- size_t i_vline = 0;
- size_t i_intersection = size_t(-1);
- // Follow the line, connect the lines into a graph.
- // Until no new line could be added to the output path:
- Point pointLast;
- Polyline *polyline_current = NULL;
- if (! polylines_out.empty())
- pointLast = polylines_out.back().points.back();
- for (;;) {
- if (i_intersection == size_t(-1)) {
- // The path has been interrupted. Find a next starting point, closest to the previous extruder position.
- coordf_t dist2min = std::numeric_limits<coordf_t>().max();
- for (size_t i_vline2 = 0; i_vline2 < segs.size(); ++ i_vline2) {
- const SegmentedIntersectionLine &seg = segs[i_vline2];
- if (! seg.intersections.empty()) {
- assert(seg.intersections.size() > 1);
- // Even number of intersections with the loops.
- assert((seg.intersections.size() & 1) == 0);
- assert(seg.intersections.front().type == SegmentIntersection::OUTER_LOW);
- for (size_t i = 0; i < seg.intersections.size(); ++ i) {
- const SegmentIntersection &intrsctn = seg.intersections[i];
- if (intrsctn.is_outer()) {
- assert(intrsctn.is_low() || i > 0);
- bool consumed = intrsctn.is_low() ?
- intrsctn.consumed_vertical_up :
- seg.intersections[i-1].consumed_vertical_up;
- if (! consumed) {
- coordf_t dist2 = sqr(coordf_t(pointLast(0) - seg.pos)) + sqr(coordf_t(pointLast(1) - intrsctn.pos()));
- if (dist2 < dist2min) {
- dist2min = dist2;
- i_vline = i_vline2;
- i_intersection = i;
- //FIXME We are taking the first left point always. Verify, that the caller chains the paths
- // by a shortest distance, while reversing the paths if needed.
- //if (polylines_out.empty())
- // Initial state, take the first line, which is the first from the left.
- goto found;
- }
- }
- }
- }
- }
- }
- if (i_intersection == size_t(-1))
- // We are finished.
- break;
- found:
- // Start a new path.
- polylines_out.push_back(Polyline());
- polyline_current = &polylines_out.back();
- // Emit the first point of a path.
- pointLast = Point(segs[i_vline].pos, segs[i_vline].intersections[i_intersection].pos());
- polyline_current->points.push_back(pointLast);
- }
-
- // From the initial point (i_vline, i_intersection), follow a path.
- SegmentedIntersectionLine &seg = segs[i_vline];
- SegmentIntersection *intrsctn = &seg.intersections[i_intersection];
- bool going_up = intrsctn->is_low();
- bool try_connect = false;
- if (going_up) {
- assert(! intrsctn->consumed_vertical_up);
- assert(i_intersection + 1 < seg.intersections.size());
- // Step back to the beginning of the vertical segment to mark it as consumed.
- if (intrsctn->is_inner()) {
- assert(i_intersection > 0);
- -- intrsctn;
- -- i_intersection;
- }
- // Consume the complete vertical segment up to the outer contour.
- do {
- intrsctn->consumed_vertical_up = true;
- ++ intrsctn;
- ++ i_intersection;
- assert(i_intersection < seg.intersections.size());
- } while (intrsctn->type != SegmentIntersection::OUTER_HIGH);
- if ((intrsctn - 1)->is_inner()) {
- // Step back.
- -- intrsctn;
- -- i_intersection;
- assert(intrsctn->type == SegmentIntersection::INNER_HIGH);
- try_connect = true;
- }
- } else {
- // Going down.
- assert(intrsctn->is_high());
- assert(i_intersection > 0);
- assert(! (intrsctn - 1)->consumed_vertical_up);
- // Consume the complete vertical segment up to the outer contour.
- if (intrsctn->is_inner())
- intrsctn->consumed_vertical_up = true;
- do {
- assert(i_intersection > 0);
- -- intrsctn;
- -- i_intersection;
- intrsctn->consumed_vertical_up = true;
- } while (intrsctn->type != SegmentIntersection::OUTER_LOW);
- if ((intrsctn + 1)->is_inner()) {
- // Step back.
- ++ intrsctn;
- ++ i_intersection;
- assert(intrsctn->type == SegmentIntersection::INNER_LOW);
- try_connect = true;
- }
- }
- if (try_connect) {
- // Decide, whether to finish the segment, or whether to follow the perimeter.
-
- // 1) Find possible connection points on the previous / next vertical line.
- int iPrev = intersection_on_prev_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection);
- int iNext = intersection_on_next_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection);
- IntersectionTypeOtherVLine intrsctn_type_prev = intersection_type_on_prev_vertical_line(segs, i_vline, i_intersection, iPrev);
- IntersectionTypeOtherVLine intrsctn_type_next = intersection_type_on_next_vertical_line(segs, i_vline, i_intersection, iNext);
-
- // 2) Find possible connection points on the same vertical line.
- int iAbove = -1;
- int iBelow = -1;
- int iSegAbove = -1;
- int iSegBelow = -1;
- {
-// SegmentIntersection::SegmentIntersectionType type_crossing = (intrsctn->type == SegmentIntersection::INNER_LOW) ?
-// SegmentIntersection::INNER_HIGH : SegmentIntersection::INNER_LOW;
- // Does the perimeter intersect the current vertical line above intrsctn?
- for (size_t i = i_intersection + 1; i + 1 < seg.intersections.size(); ++ i)
-// if (seg.intersections[i].iContour == intrsctn->iContour && seg.intersections[i].type == type_crossing) {
- if (seg.intersections[i].iContour == intrsctn->iContour) {
- iAbove = i;
- iSegAbove = seg.intersections[i].iSegment;
- break;
- }
- // Does the perimeter intersect the current vertical line below intrsctn?
- for (size_t i = i_intersection - 1; i > 0; -- i)
-// if (seg.intersections[i].iContour == intrsctn->iContour && seg.intersections[i].type == type_crossing) {
- if (seg.intersections[i].iContour == intrsctn->iContour) {
- iBelow = i;
- iSegBelow = seg.intersections[i].iSegment;
- break;
- }
- }
-
- // 3) Sort the intersection points, clear iPrev / iNext / iSegBelow / iSegAbove,
- // if it is preceded by any other intersection point along the contour.
- unsigned int vert_seg_dir_valid_mask =
- (going_up ?
- (iSegAbove != -1 && seg.intersections[iAbove].type == SegmentIntersection::INNER_LOW) :
- (iSegBelow != -1 && seg.intersections[iBelow].type == SegmentIntersection::INNER_HIGH)) ?
- (DIR_FORWARD | DIR_BACKWARD) :
- 0;
- {
- // Invalidate iPrev resp. iNext, if the perimeter crosses the current vertical line earlier than iPrev resp. iNext.
- // The perimeter contour orientation.
- const bool forward = intrsctn->is_low(); // == poly_with_offset.is_contour_ccw(intrsctn->iContour);
- const Polygon &poly = poly_with_offset.contour(intrsctn->iContour);
- {
- int d_horiz = (iPrev == -1) ? std::numeric_limits<int>::max() :
- distance_of_segmens(poly, segs[i_vline-1].intersections[iPrev].iSegment, intrsctn->iSegment, forward);
- int d_down = (iSegBelow == -1) ? std::numeric_limits<int>::max() :
- distance_of_segmens(poly, iSegBelow, intrsctn->iSegment, forward);
- int d_up = (iSegAbove == -1) ? std::numeric_limits<int>::max() :
- distance_of_segmens(poly, iSegAbove, intrsctn->iSegment, forward);
- if (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && d_horiz > std::min(d_down, d_up))
- // The vertical crossing comes eralier than the prev crossing.
- // Disable the perimeter going back.
- intrsctn_type_prev = INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST;
- if (going_up ? (d_up > std::min(d_horiz, d_down)) : (d_down > std::min(d_horiz, d_up)))
- // The horizontal crossing comes earlier than the vertical crossing.
- vert_seg_dir_valid_mask &= ~(forward ? DIR_BACKWARD : DIR_FORWARD);
- }
- {
- int d_horiz = (iNext == -1) ? std::numeric_limits<int>::max() :
- distance_of_segmens(poly, intrsctn->iSegment, segs[i_vline+1].intersections[iNext].iSegment, forward);
- int d_down = (iSegBelow == -1) ? std::numeric_limits<int>::max() :
- distance_of_segmens(poly, intrsctn->iSegment, iSegBelow, forward);
- int d_up = (iSegAbove == -1) ? std::numeric_limits<int>::max() :
- distance_of_segmens(poly, intrsctn->iSegment, iSegAbove, forward);
- if (intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK && d_horiz > std::min(d_down, d_up))
- // The vertical crossing comes eralier than the prev crossing.
- // Disable the perimeter going forward.
- intrsctn_type_next = INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST;
- if (going_up ? (d_up > std::min(d_horiz, d_down)) : (d_down > std::min(d_horiz, d_up)))
- // The horizontal crossing comes earlier than the vertical crossing.
- vert_seg_dir_valid_mask &= ~(forward ? DIR_FORWARD : DIR_BACKWARD);
- }
- }
-
- // 4) Try to connect to a previous or next vertical line, making a zig-zag pattern.
- if (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK || intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK) {
- coordf_t distPrev = (intrsctn_type_prev != INTERSECTION_TYPE_OTHER_VLINE_OK) ? std::numeric_limits<coord_t>::max() :
- measure_perimeter_prev_segment_length(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iPrev);
- coordf_t distNext = (intrsctn_type_next != INTERSECTION_TYPE_OTHER_VLINE_OK) ? std::numeric_limits<coord_t>::max() :
- measure_perimeter_next_segment_length(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext);
- // Take the shorter path.
- //FIXME this may not be always the best strategy to take the shortest connection line now.
- bool take_next = (intrsctn_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK) ?
- (distNext < distPrev) :
- intrsctn_type_next == INTERSECTION_TYPE_OTHER_VLINE_OK;
- assert(intrsctn->is_inner());
- bool skip = params.dont_connect || (link_max_length > 0 && (take_next ? distNext : distPrev) > link_max_length);
- if (skip) {
- // Just skip the connecting contour and start a new path.
- goto dont_connect;
- polyline_current->points.push_back(Point(seg.pos, intrsctn->pos()));
- polylines_out.push_back(Polyline());
- polyline_current = &polylines_out.back();
- const SegmentedIntersectionLine &il2 = segs[take_next ? (i_vline + 1) : (i_vline - 1)];
- polyline_current->points.push_back(Point(il2.pos, il2.intersections[take_next ? iNext : iPrev].pos()));
- } else {
- polyline_current->points.push_back(Point(seg.pos, intrsctn->pos()));
- emit_perimeter_prev_next_segment(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, take_next ? iNext : iPrev, *polyline_current, take_next);
- }
- // Mark both the left and right connecting segment as consumed, because one cannot go to this intersection point as it has been consumed.
- if (iPrev != -1)
- segs[i_vline-1].intersections[iPrev].consumed_perimeter_right = true;
- if (iNext != -1)
- intrsctn->consumed_perimeter_right = true;
- //FIXME consume the left / right connecting segments at the other end of this line? Currently it is not critical because a perimeter segment is not followed if the vertical segment at the other side has already been consumed.
- // Advance to the neighbor line.
- if (take_next) {
- ++ i_vline;
- i_intersection = iNext;
- } else {
- -- i_vline;
- i_intersection = iPrev;
- }
- continue;
- }
-
- // 5) Try to connect to a previous or next point on the same vertical line.
- if (vert_seg_dir_valid_mask) {
- bool valid = true;
- // Verify, that there is no intersection with the inner contour up to the end of the contour segment.
- // Verify, that the successive segment has not been consumed yet.
- if (going_up) {
- if (seg.intersections[iAbove].consumed_vertical_up) {
- valid = false;
- } else {
- for (int i = (int)i_intersection + 1; i < iAbove && valid; ++i)
- if (seg.intersections[i].is_inner())
- valid = false;
- }
- } else {
- if (seg.intersections[iBelow-1].consumed_vertical_up) {
- valid = false;
- } else {
- for (int i = iBelow + 1; i < (int)i_intersection && valid; ++i)
- if (seg.intersections[i].is_inner())
- valid = false;
- }
- }
- if (valid) {
- const Polygon &poly = poly_with_offset.contour(intrsctn->iContour);
- int iNext = going_up ? iAbove : iBelow;
- int iSegNext = going_up ? iSegAbove : iSegBelow;
- bool dir_forward = (vert_seg_dir_valid_mask == (DIR_FORWARD | DIR_BACKWARD)) ?
- // Take the shorter length between the current and the next intersection point.
- (distance_of_segmens(poly, intrsctn->iSegment, iSegNext, true) <
- distance_of_segmens(poly, intrsctn->iSegment, iSegNext, false)) :
- (vert_seg_dir_valid_mask == DIR_FORWARD);
- // Skip this perimeter line?
- bool skip = params.dont_connect;
- if (! skip && link_max_length > 0) {
- coordf_t link_length = measure_perimeter_segment_on_vertical_line_length(
- poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext, dir_forward);
- skip = link_length > link_max_length;
- }
- polyline_current->points.push_back(Point(seg.pos, intrsctn->pos()));
- if (skip) {
- // Just skip the connecting contour and start a new path.
- polylines_out.push_back(Polyline());
- polyline_current = &polylines_out.back();
- polyline_current->points.push_back(Point(seg.pos, seg.intersections[iNext].pos()));
- } else {
- // Consume the connecting contour and the next segment.
- emit_perimeter_segment_on_vertical_line(poly_with_offset, segs, i_vline, intrsctn->iContour, i_intersection, iNext, *polyline_current, dir_forward);
- }
- // Mark both the left and right connecting segment as consumed, because one cannot go to this intersection point as it has been consumed.
- // If there are any outer intersection points skipped (bypassed) by the contour,
- // mark them as processed.
- if (going_up) {
- for (int i = (int)i_intersection; i < iAbove; ++ i)
- seg.intersections[i].consumed_vertical_up = true;
- } else {
- for (int i = iBelow; i < (int)i_intersection; ++ i)
- seg.intersections[i].consumed_vertical_up = true;
- }
-// seg.intersections[going_up ? i_intersection : i_intersection - 1].consumed_vertical_up = true;
- intrsctn->consumed_perimeter_right = true;
- i_intersection = iNext;
- if (going_up)
- ++ intrsctn;
- else
- -- intrsctn;
- intrsctn->consumed_perimeter_right = true;
- continue;
- }
- }
- dont_connect:
- // No way to continue the current polyline. Take the rest of the line up to the outer contour.
- // This will finish the polyline, starting another polyline at a new point.
- if (going_up)
- ++ intrsctn;
- else
- -- intrsctn;
- }
-
- // Finish the current vertical line,
- // reset the current vertical line to pick a new starting point in the next round.
- assert(intrsctn->is_outer());
- assert(intrsctn->is_high() == going_up);
- pointLast = Point(seg.pos, intrsctn->pos());
- polyline_current->points.push_back(pointLast);
- // Handle duplicate points and zero length segments.
- polyline_current->remove_duplicate_points();
- assert(! polyline_current->has_duplicate_points());
- // Handle nearly zero length edges.
- if (polyline_current->points.size() <= 1 ||
- (polyline_current->points.size() == 2 &&
- std::abs(polyline_current->points.front()(0) - polyline_current->points.back()(0)) < SCALED_EPSILON &&
- std::abs(polyline_current->points.front()(1) - polyline_current->points.back()(1)) < SCALED_EPSILON))
- polylines_out.pop_back();
- intrsctn = NULL;
- i_intersection = -1;
- polyline_current = NULL;
- }
-
-#ifdef SLIC3R_DEBUG
- {
- {
- ::Slic3r::SVG svg(debug_out_path("FillRectilinear2-final-%03d.svg", iRun), bbox_svg); // , scale_(1.));
- poly_with_offset.export_to_svg(svg);
- for (size_t i = n_polylines_out_initial; i < polylines_out.size(); ++ i)
- svg.draw(polylines_out[i].lines(), "black");
- }
- // Paint a picture per polyline. This makes it easier to discover the order of the polylines and their overlap.
- for (size_t i_polyline = n_polylines_out_initial; i_polyline < polylines_out.size(); ++ i_polyline) {
- ::Slic3r::SVG svg(debug_out_path("FillRectilinear2-final-%03d-%03d.svg", iRun, i_polyline), bbox_svg); // , scale_(1.));
- svg.draw(polylines_out[i_polyline].lines(), "black");
- }
- }
-#endif /* SLIC3R_DEBUG */
-
- // paths must be rotated back
- for (Polylines::iterator it = polylines_out.begin() + n_polylines_out_initial; it != polylines_out.end(); ++ it) {
- // No need to translate, the absolute position is irrelevant.
- // it->translate(- rotate_vector.second(0), - rotate_vector.second(1));
- assert(! it->has_duplicate_points());
- it->rotate(rotate_vector.first);
- //FIXME rather simplify the paths to avoid very short edges?
- //assert(! it->has_duplicate_points());
- it->remove_duplicate_points();
- }
-
-#ifdef SLIC3R_DEBUG
- // Verify, that there are no duplicate points in the sequence.
- for (Polyline &polyline : polylines_out)
- assert(! polyline.has_duplicate_points());
-#endif /* SLIC3R_DEBUG */
-
- return true;
-}
-
-Polylines FillRectilinear2::fill_surface(const Surface *surface, const FillParams &params)
-{
- Polylines polylines_out;
- if (! fill_surface_by_lines(surface, params, 0.f, 0.f, polylines_out)) {
- printf("FillRectilinear2::fill_surface() failed to fill a region.\n");
- }
- return polylines_out;
-}
-
-Polylines FillGrid2::fill_surface(const Surface *surface, const FillParams &params)
-{
- // Each linear fill covers half of the target coverage.
- FillParams params2 = params;
- params2.density *= 0.5f;
- Polylines polylines_out;
- if (! fill_surface_by_lines(surface, params2, 0.f, 0.f, polylines_out) ||
- ! fill_surface_by_lines(surface, params2, float(M_PI / 2.), 0.f, polylines_out)) {
- printf("FillGrid2::fill_surface() failed to fill a region.\n");
- }
- return polylines_out;
-}
-
-Polylines FillTriangles::fill_surface(const Surface *surface, const FillParams &params)
-{
- // Each linear fill covers 1/3 of the target coverage.
- FillParams params2 = params;
- params2.density *= 0.333333333f;
- FillParams params3 = params2;
- params3.dont_connect = true;
- Polylines polylines_out;
- if (! fill_surface_by_lines(surface, params2, 0.f, 0., polylines_out) ||
- ! fill_surface_by_lines(surface, params2, float(M_PI / 3.), 0., polylines_out) ||
- ! fill_surface_by_lines(surface, params3, float(2. * M_PI / 3.), 0., polylines_out)) {
- printf("FillTriangles::fill_surface() failed to fill a region.\n");
- }
- return polylines_out;
-}
-
-Polylines FillStars::fill_surface(const Surface *surface, const FillParams &params)
-{
- // Each linear fill covers 1/3 of the target coverage.
- FillParams params2 = params;
- params2.density *= 0.333333333f;
- FillParams params3 = params2;
- params3.dont_connect = true;
- Polylines polylines_out;
- if (! fill_surface_by_lines(surface, params2, 0.f, 0., polylines_out) ||
- ! fill_surface_by_lines(surface, params2, float(M_PI / 3.), 0., polylines_out) ||
- ! fill_surface_by_lines(surface, params3, float(2. * M_PI / 3.), 0.5 * this->spacing / params2.density, polylines_out)) {
- printf("FillStars::fill_surface() failed to fill a region.\n");
- }
- return polylines_out;
-}
-
-Polylines FillCubic::fill_surface(const Surface *surface, const FillParams &params)
-{
- // Each linear fill covers 1/3 of the target coverage.
- FillParams params2 = params;
- params2.density *= 0.333333333f;
- FillParams params3 = params2;
- params3.dont_connect = true;
- Polylines polylines_out;
- coordf_t dx = sqrt(0.5) * z;
- if (! fill_surface_by_lines(surface, params2, 0.f, dx, polylines_out) ||
- ! fill_surface_by_lines(surface, params2, float(M_PI / 3.), - dx, polylines_out) ||
- // Rotated by PI*2/3 + PI to achieve reverse sloping wall.
- ! fill_surface_by_lines(surface, params3, float(M_PI * 2. / 3.), dx, polylines_out)) {
- printf("FillCubic::fill_surface() failed to fill a region.\n");
- }
- return polylines_out;
-}
-
-} // namespace Slic3r