Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'src/libslic3r/Geometry.cpp')
-rw-r--r--src/libslic3r/Geometry.cpp1169
1 files changed, 1169 insertions, 0 deletions
diff --git a/src/libslic3r/Geometry.cpp b/src/libslic3r/Geometry.cpp
new file mode 100644
index 000000000..87b4e223d
--- /dev/null
+++ b/src/libslic3r/Geometry.cpp
@@ -0,0 +1,1169 @@
+#include "Geometry.hpp"
+#include "ClipperUtils.hpp"
+#include "ExPolygon.hpp"
+#include "Line.hpp"
+#include "PolylineCollection.hpp"
+#include "clipper.hpp"
+#include <algorithm>
+#include <cassert>
+#include <cmath>
+#include <list>
+#include <map>
+#include <set>
+#include <utility>
+#include <stack>
+#include <vector>
+
+#ifdef SLIC3R_DEBUG
+#include "SVG.hpp"
+#endif
+
+#ifdef SLIC3R_DEBUG
+namespace boost { namespace polygon {
+
+// The following code for the visualization of the boost Voronoi diagram is based on:
+//
+// Boost.Polygon library voronoi_graphic_utils.hpp header file
+// Copyright Andrii Sydorchuk 2010-2012.
+// Distributed under the Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+template <typename CT>
+class voronoi_visual_utils {
+ public:
+ // Discretize parabolic Voronoi edge.
+ // Parabolic Voronoi edges are always formed by one point and one segment
+ // from the initial input set.
+ //
+ // Args:
+ // point: input point.
+ // segment: input segment.
+ // max_dist: maximum discretization distance.
+ // discretization: point discretization of the given Voronoi edge.
+ //
+ // Template arguments:
+ // InCT: coordinate type of the input geometries (usually integer).
+ // Point: point type, should model point concept.
+ // Segment: segment type, should model segment concept.
+ //
+ // Important:
+ // discretization should contain both edge endpoints initially.
+ template <class InCT1, class InCT2,
+ template<class> class Point,
+ template<class> class Segment>
+ static
+ typename enable_if<
+ typename gtl_and<
+ typename gtl_if<
+ typename is_point_concept<
+ typename geometry_concept< Point<InCT1> >::type
+ >::type
+ >::type,
+ typename gtl_if<
+ typename is_segment_concept<
+ typename geometry_concept< Segment<InCT2> >::type
+ >::type
+ >::type
+ >::type,
+ void
+ >::type discretize(
+ const Point<InCT1>& point,
+ const Segment<InCT2>& segment,
+ const CT max_dist,
+ std::vector< Point<CT> >* discretization) {
+ // Apply the linear transformation to move start point of the segment to
+ // the point with coordinates (0, 0) and the direction of the segment to
+ // coincide the positive direction of the x-axis.
+ CT segm_vec_x = cast(x(high(segment))) - cast(x(low(segment)));
+ CT segm_vec_y = cast(y(high(segment))) - cast(y(low(segment)));
+ CT sqr_segment_length = segm_vec_x * segm_vec_x + segm_vec_y * segm_vec_y;
+
+ // Compute x-coordinates of the endpoints of the edge
+ // in the transformed space.
+ CT projection_start = sqr_segment_length *
+ get_point_projection((*discretization)[0], segment);
+ CT projection_end = sqr_segment_length *
+ get_point_projection((*discretization)[1], segment);
+
+ // Compute parabola parameters in the transformed space.
+ // Parabola has next representation:
+ // f(x) = ((x-rot_x)^2 + rot_y^2) / (2.0*rot_y).
+ CT point_vec_x = cast(x(point)) - cast(x(low(segment)));
+ CT point_vec_y = cast(y(point)) - cast(y(low(segment)));
+ CT rot_x = segm_vec_x * point_vec_x + segm_vec_y * point_vec_y;
+ CT rot_y = segm_vec_x * point_vec_y - segm_vec_y * point_vec_x;
+
+ // Save the last point.
+ Point<CT> last_point = (*discretization)[1];
+ discretization->pop_back();
+
+ // Use stack to avoid recursion.
+ std::stack<CT> point_stack;
+ point_stack.push(projection_end);
+ CT cur_x = projection_start;
+ CT cur_y = parabola_y(cur_x, rot_x, rot_y);
+
+ // Adjust max_dist parameter in the transformed space.
+ const CT max_dist_transformed = max_dist * max_dist * sqr_segment_length;
+ while (!point_stack.empty()) {
+ CT new_x = point_stack.top();
+ CT new_y = parabola_y(new_x, rot_x, rot_y);
+
+ // Compute coordinates of the point of the parabola that is
+ // furthest from the current line segment.
+ CT mid_x = (new_y - cur_y) / (new_x - cur_x) * rot_y + rot_x;
+ CT mid_y = parabola_y(mid_x, rot_x, rot_y);
+
+ // Compute maximum distance between the given parabolic arc
+ // and line segment that discretize it.
+ CT dist = (new_y - cur_y) * (mid_x - cur_x) -
+ (new_x - cur_x) * (mid_y - cur_y);
+ dist = dist * dist / ((new_y - cur_y) * (new_y - cur_y) +
+ (new_x - cur_x) * (new_x - cur_x));
+ if (dist <= max_dist_transformed) {
+ // Distance between parabola and line segment is less than max_dist.
+ point_stack.pop();
+ CT inter_x = (segm_vec_x * new_x - segm_vec_y * new_y) /
+ sqr_segment_length + cast(x(low(segment)));
+ CT inter_y = (segm_vec_x * new_y + segm_vec_y * new_x) /
+ sqr_segment_length + cast(y(low(segment)));
+ discretization->push_back(Point<CT>(inter_x, inter_y));
+ cur_x = new_x;
+ cur_y = new_y;
+ } else {
+ point_stack.push(mid_x);
+ }
+ }
+
+ // Update last point.
+ discretization->back() = last_point;
+ }
+
+ private:
+ // Compute y(x) = ((x - a) * (x - a) + b * b) / (2 * b).
+ static CT parabola_y(CT x, CT a, CT b) {
+ return ((x - a) * (x - a) + b * b) / (b + b);
+ }
+
+ // Get normalized length of the distance between:
+ // 1) point projection onto the segment
+ // 2) start point of the segment
+ // Return this length divided by the segment length. This is made to avoid
+ // sqrt computation during transformation from the initial space to the
+ // transformed one and vice versa. The assumption is made that projection of
+ // the point lies between the start-point and endpoint of the segment.
+ template <class InCT,
+ template<class> class Point,
+ template<class> class Segment>
+ static
+ typename enable_if<
+ typename gtl_and<
+ typename gtl_if<
+ typename is_point_concept<
+ typename geometry_concept< Point<int> >::type
+ >::type
+ >::type,
+ typename gtl_if<
+ typename is_segment_concept<
+ typename geometry_concept< Segment<long> >::type
+ >::type
+ >::type
+ >::type,
+ CT
+ >::type get_point_projection(
+ const Point<CT>& point, const Segment<InCT>& segment) {
+ CT segment_vec_x = cast(x(high(segment))) - cast(x(low(segment)));
+ CT segment_vec_y = cast(y(high(segment))) - cast(y(low(segment)));
+ CT point_vec_x = x(point) - cast(x(low(segment)));
+ CT point_vec_y = y(point) - cast(y(low(segment)));
+ CT sqr_segment_length =
+ segment_vec_x * segment_vec_x + segment_vec_y * segment_vec_y;
+ CT vec_dot = segment_vec_x * point_vec_x + segment_vec_y * point_vec_y;
+ return vec_dot / sqr_segment_length;
+ }
+
+ template <typename InCT>
+ static CT cast(const InCT& value) {
+ return static_cast<CT>(value);
+ }
+};
+
+} } // namespace boost::polygon
+#endif
+
+using namespace boost::polygon; // provides also high() and low()
+
+namespace Slic3r { namespace Geometry {
+
+static bool sort_points(const Point& a, const Point& b)
+{
+ return (a(0) < b(0)) || (a(0) == b(0) && a(1) < b(1));
+}
+
+static bool sort_pointfs(const Vec3d& a, const Vec3d& b)
+{
+ return (a(0) < b(0)) || (a(0) == b(0) && a(1) < b(1));
+}
+
+// This implementation is based on Andrew's monotone chain 2D convex hull algorithm
+Polygon
+convex_hull(Points points)
+{
+ assert(points.size() >= 3);
+ // sort input points
+ std::sort(points.begin(), points.end(), sort_points);
+
+ int n = points.size(), k = 0;
+ Polygon hull;
+
+ if (n >= 3) {
+ hull.points.resize(2 * n);
+
+ // Build lower hull
+ for (int i = 0; i < n; i++) {
+ while (k >= 2 && points[i].ccw(hull[k-2], hull[k-1]) <= 0) k--;
+ hull[k++] = points[i];
+ }
+
+ // Build upper hull
+ for (int i = n-2, t = k+1; i >= 0; i--) {
+ while (k >= t && points[i].ccw(hull[k-2], hull[k-1]) <= 0) k--;
+ hull[k++] = points[i];
+ }
+
+ hull.points.resize(k);
+
+ assert(hull.points.front() == hull.points.back());
+ hull.points.pop_back();
+ }
+
+ return hull;
+}
+
+Pointf3s
+convex_hull(Pointf3s points)
+{
+ assert(points.size() >= 3);
+ // sort input points
+ std::sort(points.begin(), points.end(), sort_pointfs);
+
+ int n = points.size(), k = 0;
+ Pointf3s hull;
+
+ if (n >= 3)
+ {
+ hull.resize(2 * n);
+
+ // Build lower hull
+ for (int i = 0; i < n; ++i)
+ {
+ Point p = Point::new_scale(points[i](0), points[i](1));
+ while (k >= 2)
+ {
+ Point k1 = Point::new_scale(hull[k - 1](0), hull[k - 1](1));
+ Point k2 = Point::new_scale(hull[k - 2](0), hull[k - 2](1));
+
+ if (p.ccw(k2, k1) <= 0)
+ --k;
+ else
+ break;
+ }
+
+ hull[k++] = points[i];
+ }
+
+ // Build upper hull
+ for (int i = n - 2, t = k + 1; i >= 0; --i)
+ {
+ Point p = Point::new_scale(points[i](0), points[i](1));
+ while (k >= t)
+ {
+ Point k1 = Point::new_scale(hull[k - 1](0), hull[k - 1](1));
+ Point k2 = Point::new_scale(hull[k - 2](0), hull[k - 2](1));
+
+ if (p.ccw(k2, k1) <= 0)
+ --k;
+ else
+ break;
+ }
+
+ hull[k++] = points[i];
+ }
+
+ hull.resize(k);
+
+ assert(hull.front() == hull.back());
+ hull.pop_back();
+ }
+
+ return hull;
+}
+
+Polygon
+convex_hull(const Polygons &polygons)
+{
+ Points pp;
+ for (Polygons::const_iterator p = polygons.begin(); p != polygons.end(); ++p) {
+ pp.insert(pp.end(), p->points.begin(), p->points.end());
+ }
+ return convex_hull(std::move(pp));
+}
+
+/* accepts an arrayref of points and returns a list of indices
+ according to a nearest-neighbor walk */
+void
+chained_path(const Points &points, std::vector<Points::size_type> &retval, Point start_near)
+{
+ PointConstPtrs my_points;
+ std::map<const Point*,Points::size_type> indices;
+ my_points.reserve(points.size());
+ for (Points::const_iterator it = points.begin(); it != points.end(); ++it) {
+ my_points.push_back(&*it);
+ indices[&*it] = it - points.begin();
+ }
+
+ retval.reserve(points.size());
+ while (!my_points.empty()) {
+ Points::size_type idx = start_near.nearest_point_index(my_points);
+ start_near = *my_points[idx];
+ retval.push_back(indices[ my_points[idx] ]);
+ my_points.erase(my_points.begin() + idx);
+ }
+}
+
+void
+chained_path(const Points &points, std::vector<Points::size_type> &retval)
+{
+ if (points.empty()) return; // can't call front() on empty vector
+ chained_path(points, retval, points.front());
+}
+
+/* retval and items must be different containers */
+template<class T>
+void
+chained_path_items(Points &points, T &items, T &retval)
+{
+ std::vector<Points::size_type> indices;
+ chained_path(points, indices);
+ for (std::vector<Points::size_type>::const_iterator it = indices.begin(); it != indices.end(); ++it)
+ retval.push_back(items[*it]);
+}
+template void chained_path_items(Points &points, ClipperLib::PolyNodes &items, ClipperLib::PolyNodes &retval);
+
+bool
+directions_parallel(double angle1, double angle2, double max_diff)
+{
+ double diff = fabs(angle1 - angle2);
+ max_diff += EPSILON;
+ return diff < max_diff || fabs(diff - PI) < max_diff;
+}
+
+template<class T>
+bool
+contains(const std::vector<T> &vector, const Point &point)
+{
+ for (typename std::vector<T>::const_iterator it = vector.begin(); it != vector.end(); ++it) {
+ if (it->contains(point)) return true;
+ }
+ return false;
+}
+template bool contains(const ExPolygons &vector, const Point &point);
+
+double
+rad2deg(double angle)
+{
+ return angle / PI * 180.0;
+}
+
+double
+rad2deg_dir(double angle)
+{
+ angle = (angle < PI) ? (-angle + PI/2.0) : (angle + PI/2.0);
+ if (angle < 0) angle += PI;
+ return rad2deg(angle);
+}
+
+void
+simplify_polygons(const Polygons &polygons, double tolerance, Polygons* retval)
+{
+ Polygons pp;
+ for (Polygons::const_iterator it = polygons.begin(); it != polygons.end(); ++it) {
+ Polygon p = *it;
+ p.points.push_back(p.points.front());
+ p.points = MultiPoint::_douglas_peucker(p.points, tolerance);
+ p.points.pop_back();
+ pp.push_back(p);
+ }
+ *retval = Slic3r::simplify_polygons(pp);
+}
+
+double
+linint(double value, double oldmin, double oldmax, double newmin, double newmax)
+{
+ return (value - oldmin) * (newmax - newmin) / (oldmax - oldmin) + newmin;
+}
+
+#if 0
+// Point with a weight, by which the points are sorted.
+// If the points have the same weight, sort them lexicographically by their positions.
+struct ArrangeItem {
+ ArrangeItem() {}
+ Vec2d pos;
+ coordf_t weight;
+ bool operator<(const ArrangeItem &other) const {
+ return weight < other.weight ||
+ ((weight == other.weight) && (pos(1) < other.pos(1) || (pos(1) == other.pos(1) && pos(0) < other.pos(0))));
+ }
+};
+
+Pointfs arrange(size_t num_parts, const Vec2d &part_size, coordf_t gap, const BoundingBoxf* bed_bounding_box)
+{
+ // Use actual part size (the largest) plus separation distance (half on each side) in spacing algorithm.
+ const Vec2d cell_size(part_size(0) + gap, part_size(1) + gap);
+
+ const BoundingBoxf bed_bbox = (bed_bounding_box != NULL && bed_bounding_box->defined) ?
+ *bed_bounding_box :
+ // Bogus bed size, large enough not to trigger the unsufficient bed size error.
+ BoundingBoxf(
+ Vec2d(0, 0),
+ Vec2d(cell_size(0) * num_parts, cell_size(1) * num_parts));
+
+ // This is how many cells we have available into which to put parts.
+ size_t cellw = size_t(floor((bed_bbox.size()(0) + gap) / cell_size(0)));
+ size_t cellh = size_t(floor((bed_bbox.size()(1) + gap) / cell_size(1)));
+ if (num_parts > cellw * cellh)
+ throw std::invalid_argument(PRINTF_ZU " parts won't fit in your print area!\n", num_parts);
+
+ // Get a bounding box of cellw x cellh cells, centered at the center of the bed.
+ Vec2d cells_size(cellw * cell_size(0) - gap, cellh * cell_size(1) - gap);
+ Vec2d cells_offset(bed_bbox.center() - 0.5 * cells_size);
+ BoundingBoxf cells_bb(cells_offset, cells_size + cells_offset);
+
+ // List of cells, sorted by distance from center.
+ std::vector<ArrangeItem> cellsorder(cellw * cellh, ArrangeItem());
+ for (size_t j = 0; j < cellh; ++ j) {
+ // Center of the jth row on the bed.
+ coordf_t cy = linint(j + 0.5, 0., double(cellh), cells_bb.min(1), cells_bb.max(1));
+ // Offset from the bed center.
+ coordf_t yd = cells_bb.center()(1) - cy;
+ for (size_t i = 0; i < cellw; ++ i) {
+ // Center of the ith column on the bed.
+ coordf_t cx = linint(i + 0.5, 0., double(cellw), cells_bb.min(0), cells_bb.max(0));
+ // Offset from the bed center.
+ coordf_t xd = cells_bb.center()(0) - cx;
+ // Cell with a distance from the bed center.
+ ArrangeItem &ci = cellsorder[j * cellw + i];
+ // Cell center
+ ci.pos(0) = cx;
+ ci.pos(1) = cy;
+ // Square distance of the cell center to the bed center.
+ ci.weight = xd * xd + yd * yd;
+ }
+ }
+ // Sort the cells lexicographically by their distances to the bed center and left to right / bttom to top.
+ std::sort(cellsorder.begin(), cellsorder.end());
+ cellsorder.erase(cellsorder.begin() + num_parts, cellsorder.end());
+
+ // Return the (left,top) corners of the cells.
+ Pointfs positions;
+ positions.reserve(num_parts);
+ for (std::vector<ArrangeItem>::const_iterator it = cellsorder.begin(); it != cellsorder.end(); ++ it)
+ positions.push_back(Vec2d(it->pos(0) - 0.5 * part_size(0), it->pos(1) - 0.5 * part_size(1)));
+ return positions;
+}
+#else
+class ArrangeItem {
+public:
+ Vec2d pos = Vec2d::Zero();
+ size_t index_x, index_y;
+ coordf_t dist;
+};
+class ArrangeItemIndex {
+public:
+ coordf_t index;
+ ArrangeItem item;
+ ArrangeItemIndex(coordf_t _index, ArrangeItem _item) : index(_index), item(_item) {};
+};
+
+bool
+arrange(size_t total_parts, const Vec2d &part_size, coordf_t dist, const BoundingBoxf* bb, Pointfs &positions)
+{
+ positions.clear();
+
+ Vec2d part = part_size;
+
+ // use actual part size (the largest) plus separation distance (half on each side) in spacing algorithm
+ part(0) += dist;
+ part(1) += dist;
+
+ Vec2d area(Vec2d::Zero());
+ if (bb != NULL && bb->defined) {
+ area = bb->size();
+ } else {
+ // bogus area size, large enough not to trigger the error below
+ area(0) = part(0) * total_parts;
+ area(1) = part(1) * total_parts;
+ }
+
+ // this is how many cells we have available into which to put parts
+ size_t cellw = floor((area(0) + dist) / part(0));
+ size_t cellh = floor((area(1) + dist) / part(1));
+ if (total_parts > (cellw * cellh))
+ return false;
+
+ // total space used by cells
+ Vec2d cells(cellw * part(0), cellh * part(1));
+
+ // bounding box of total space used by cells
+ BoundingBoxf cells_bb;
+ cells_bb.merge(Vec2d(0,0)); // min
+ cells_bb.merge(cells); // max
+
+ // center bounding box to area
+ cells_bb.translate(
+ (area(0) - cells(0)) / 2,
+ (area(1) - cells(1)) / 2
+ );
+
+ // list of cells, sorted by distance from center
+ std::vector<ArrangeItemIndex> cellsorder;
+
+ // work out distance for all cells, sort into list
+ for (size_t i = 0; i <= cellw-1; ++i) {
+ for (size_t j = 0; j <= cellh-1; ++j) {
+ coordf_t cx = linint(i + 0.5, 0, cellw, cells_bb.min(0), cells_bb.max(0));
+ coordf_t cy = linint(j + 0.5, 0, cellh, cells_bb.min(1), cells_bb.max(1));
+
+ coordf_t xd = fabs((area(0) / 2) - cx);
+ coordf_t yd = fabs((area(1) / 2) - cy);
+
+ ArrangeItem c;
+ c.pos(0) = cx;
+ c.pos(1) = cy;
+ c.index_x = i;
+ c.index_y = j;
+ c.dist = xd * xd + yd * yd - fabs((cellw / 2) - (i + 0.5));
+
+ // binary insertion sort
+ {
+ coordf_t index = c.dist;
+ size_t low = 0;
+ size_t high = cellsorder.size();
+ while (low < high) {
+ size_t mid = (low + ((high - low) / 2)) | 0;
+ coordf_t midval = cellsorder[mid].index;
+
+ if (midval < index) {
+ low = mid + 1;
+ } else if (midval > index) {
+ high = mid;
+ } else {
+ cellsorder.insert(cellsorder.begin() + mid, ArrangeItemIndex(index, c));
+ goto ENDSORT;
+ }
+ }
+ cellsorder.insert(cellsorder.begin() + low, ArrangeItemIndex(index, c));
+ }
+ ENDSORT: ;
+ }
+ }
+
+ // the extents of cells actually used by objects
+ coordf_t lx = 0;
+ coordf_t ty = 0;
+ coordf_t rx = 0;
+ coordf_t by = 0;
+
+ // now find cells actually used by objects, map out the extents so we can position correctly
+ for (size_t i = 1; i <= total_parts; ++i) {
+ ArrangeItemIndex c = cellsorder[i - 1];
+ coordf_t cx = c.item.index_x;
+ coordf_t cy = c.item.index_y;
+ if (i == 1) {
+ lx = rx = cx;
+ ty = by = cy;
+ } else {
+ if (cx > rx) rx = cx;
+ if (cx < lx) lx = cx;
+ if (cy > by) by = cy;
+ if (cy < ty) ty = cy;
+ }
+ }
+ // now we actually place objects into cells, positioned such that the left and bottom borders are at 0
+ for (size_t i = 1; i <= total_parts; ++i) {
+ ArrangeItemIndex c = cellsorder.front();
+ cellsorder.erase(cellsorder.begin());
+ coordf_t cx = c.item.index_x - lx;
+ coordf_t cy = c.item.index_y - ty;
+
+ positions.push_back(Vec2d(cx * part(0), cy * part(1)));
+ }
+
+ if (bb != NULL && bb->defined) {
+ for (Pointfs::iterator p = positions.begin(); p != positions.end(); ++p) {
+ p->x() += bb->min(0);
+ p->y() += bb->min(1);
+ }
+ }
+
+ return true;
+}
+#endif
+
+#ifdef SLIC3R_DEBUG
+// The following code for the visualization of the boost Voronoi diagram is based on:
+//
+// Boost.Polygon library voronoi_visualizer.cpp file
+// Copyright Andrii Sydorchuk 2010-2012.
+// Distributed under the Boost Software License, Version 1.0.
+// (See accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt)
+namespace Voronoi { namespace Internal {
+
+ typedef double coordinate_type;
+ typedef boost::polygon::point_data<coordinate_type> point_type;
+ typedef boost::polygon::segment_data<coordinate_type> segment_type;
+ typedef boost::polygon::rectangle_data<coordinate_type> rect_type;
+// typedef voronoi_builder<int> VB;
+ typedef boost::polygon::voronoi_diagram<coordinate_type> VD;
+ typedef VD::cell_type cell_type;
+ typedef VD::cell_type::source_index_type source_index_type;
+ typedef VD::cell_type::source_category_type source_category_type;
+ typedef VD::edge_type edge_type;
+ typedef VD::cell_container_type cell_container_type;
+ typedef VD::cell_container_type vertex_container_type;
+ typedef VD::edge_container_type edge_container_type;
+ typedef VD::const_cell_iterator const_cell_iterator;
+ typedef VD::const_vertex_iterator const_vertex_iterator;
+ typedef VD::const_edge_iterator const_edge_iterator;
+
+ static const std::size_t EXTERNAL_COLOR = 1;
+
+ inline void color_exterior(const VD::edge_type* edge)
+ {
+ if (edge->color() == EXTERNAL_COLOR)
+ return;
+ edge->color(EXTERNAL_COLOR);
+ edge->twin()->color(EXTERNAL_COLOR);
+ const VD::vertex_type* v = edge->vertex1();
+ if (v == NULL || !edge->is_primary())
+ return;
+ v->color(EXTERNAL_COLOR);
+ const VD::edge_type* e = v->incident_edge();
+ do {
+ color_exterior(e);
+ e = e->rot_next();
+ } while (e != v->incident_edge());
+ }
+
+ inline point_type retrieve_point(const std::vector<segment_type> &segments, const cell_type& cell)
+ {
+ assert(cell.source_category() == SOURCE_CATEGORY_SEGMENT_START_POINT || cell.source_category() == SOURCE_CATEGORY_SEGMENT_END_POINT);
+ return (cell.source_category() == SOURCE_CATEGORY_SEGMENT_START_POINT) ? low(segments[cell.source_index()]) : high(segments[cell.source_index()]);
+ }
+
+ inline void clip_infinite_edge(const std::vector<segment_type> &segments, const edge_type& edge, coordinate_type bbox_max_size, std::vector<point_type>* clipped_edge)
+ {
+ const cell_type& cell1 = *edge.cell();
+ const cell_type& cell2 = *edge.twin()->cell();
+ point_type origin, direction;
+ // Infinite edges could not be created by two segment sites.
+ if (cell1.contains_point() && cell2.contains_point()) {
+ point_type p1 = retrieve_point(segments, cell1);
+ point_type p2 = retrieve_point(segments, cell2);
+ origin.x((p1(0) + p2(0)) * 0.5);
+ origin.y((p1(1) + p2(1)) * 0.5);
+ direction.x(p1(1) - p2(1));
+ direction.y(p2(0) - p1(0));
+ } else {
+ origin = cell1.contains_segment() ? retrieve_point(segments, cell2) : retrieve_point(segments, cell1);
+ segment_type segment = cell1.contains_segment() ? segments[cell1.source_index()] : segments[cell2.source_index()];
+ coordinate_type dx = high(segment)(0) - low(segment)(0);
+ coordinate_type dy = high(segment)(1) - low(segment)(1);
+ if ((low(segment) == origin) ^ cell1.contains_point()) {
+ direction.x(dy);
+ direction.y(-dx);
+ } else {
+ direction.x(-dy);
+ direction.y(dx);
+ }
+ }
+ coordinate_type koef = bbox_max_size / (std::max)(fabs(direction(0)), fabs(direction(1)));
+ if (edge.vertex0() == NULL) {
+ clipped_edge->push_back(point_type(
+ origin(0) - direction(0) * koef,
+ origin(1) - direction(1) * koef));
+ } else {
+ clipped_edge->push_back(
+ point_type(edge.vertex0()->x(), edge.vertex0()->y()));
+ }
+ if (edge.vertex1() == NULL) {
+ clipped_edge->push_back(point_type(
+ origin(0) + direction(0) * koef,
+ origin(1) + direction(1) * koef));
+ } else {
+ clipped_edge->push_back(
+ point_type(edge.vertex1()->x(), edge.vertex1()->y()));
+ }
+ }
+
+ inline void sample_curved_edge(const std::vector<segment_type> &segments, const edge_type& edge, std::vector<point_type> &sampled_edge, coordinate_type max_dist)
+ {
+ point_type point = edge.cell()->contains_point() ?
+ retrieve_point(segments, *edge.cell()) :
+ retrieve_point(segments, *edge.twin()->cell());
+ segment_type segment = edge.cell()->contains_point() ?
+ segments[edge.twin()->cell()->source_index()] :
+ segments[edge.cell()->source_index()];
+ ::boost::polygon::voronoi_visual_utils<coordinate_type>::discretize(point, segment, max_dist, &sampled_edge);
+ }
+
+} /* namespace Internal */ } // namespace Voronoi
+
+static inline void dump_voronoi_to_svg(const Lines &lines, /* const */ voronoi_diagram<double> &vd, const ThickPolylines *polylines, const char *path)
+{
+ const double scale = 0.2;
+ const std::string inputSegmentPointColor = "lightseagreen";
+ const coord_t inputSegmentPointRadius = coord_t(0.09 * scale / SCALING_FACTOR);
+ const std::string inputSegmentColor = "lightseagreen";
+ const coord_t inputSegmentLineWidth = coord_t(0.03 * scale / SCALING_FACTOR);
+
+ const std::string voronoiPointColor = "black";
+ const coord_t voronoiPointRadius = coord_t(0.06 * scale / SCALING_FACTOR);
+ const std::string voronoiLineColorPrimary = "black";
+ const std::string voronoiLineColorSecondary = "green";
+ const std::string voronoiArcColor = "red";
+ const coord_t voronoiLineWidth = coord_t(0.02 * scale / SCALING_FACTOR);
+
+ const bool internalEdgesOnly = false;
+ const bool primaryEdgesOnly = false;
+
+ BoundingBox bbox = BoundingBox(lines);
+ bbox.min(0) -= coord_t(1. / SCALING_FACTOR);
+ bbox.min(1) -= coord_t(1. / SCALING_FACTOR);
+ bbox.max(0) += coord_t(1. / SCALING_FACTOR);
+ bbox.max(1) += coord_t(1. / SCALING_FACTOR);
+
+ ::Slic3r::SVG svg(path, bbox);
+
+ if (polylines != NULL)
+ svg.draw(*polylines, "lime", "lime", voronoiLineWidth);
+
+// bbox.scale(1.2);
+ // For clipping of half-lines to some reasonable value.
+ // The line will then be clipped by the SVG viewer anyway.
+ const double bbox_dim_max = double(bbox.max(0) - bbox.min(0)) + double(bbox.max(1) - bbox.min(1));
+ // For the discretization of the Voronoi parabolic segments.
+ const double discretization_step = 0.0005 * bbox_dim_max;
+
+ // Make a copy of the input segments with the double type.
+ std::vector<Voronoi::Internal::segment_type> segments;
+ for (Lines::const_iterator it = lines.begin(); it != lines.end(); ++ it)
+ segments.push_back(Voronoi::Internal::segment_type(
+ Voronoi::Internal::point_type(double(it->a(0)), double(it->a(1))),
+ Voronoi::Internal::point_type(double(it->b(0)), double(it->b(1)))));
+
+ // Color exterior edges.
+ for (voronoi_diagram<double>::const_edge_iterator it = vd.edges().begin(); it != vd.edges().end(); ++it)
+ if (!it->is_finite())
+ Voronoi::Internal::color_exterior(&(*it));
+
+ // Draw the end points of the input polygon.
+ for (Lines::const_iterator it = lines.begin(); it != lines.end(); ++it) {
+ svg.draw(it->a, inputSegmentPointColor, inputSegmentPointRadius);
+ svg.draw(it->b, inputSegmentPointColor, inputSegmentPointRadius);
+ }
+ // Draw the input polygon.
+ for (Lines::const_iterator it = lines.begin(); it != lines.end(); ++it)
+ svg.draw(Line(Point(coord_t(it->a(0)), coord_t(it->a(1))), Point(coord_t(it->b(0)), coord_t(it->b(1)))), inputSegmentColor, inputSegmentLineWidth);
+
+#if 1
+ // Draw voronoi vertices.
+ for (voronoi_diagram<double>::const_vertex_iterator it = vd.vertices().begin(); it != vd.vertices().end(); ++it)
+ if (! internalEdgesOnly || it->color() != Voronoi::Internal::EXTERNAL_COLOR)
+ svg.draw(Point(coord_t((*it)(0)), coord_t((*it)(1))), voronoiPointColor, voronoiPointRadius);
+
+ for (voronoi_diagram<double>::const_edge_iterator it = vd.edges().begin(); it != vd.edges().end(); ++it) {
+ if (primaryEdgesOnly && !it->is_primary())
+ continue;
+ if (internalEdgesOnly && (it->color() == Voronoi::Internal::EXTERNAL_COLOR))
+ continue;
+ std::vector<Voronoi::Internal::point_type> samples;
+ std::string color = voronoiLineColorPrimary;
+ if (!it->is_finite()) {
+ Voronoi::Internal::clip_infinite_edge(segments, *it, bbox_dim_max, &samples);
+ if (! it->is_primary())
+ color = voronoiLineColorSecondary;
+ } else {
+ // Store both points of the segment into samples. sample_curved_edge will split the initial line
+ // until the discretization_step is reached.
+ samples.push_back(Voronoi::Internal::point_type(it->vertex0()->x(), it->vertex0()->y()));
+ samples.push_back(Voronoi::Internal::point_type(it->vertex1()->x(), it->vertex1()->y()));
+ if (it->is_curved()) {
+ Voronoi::Internal::sample_curved_edge(segments, *it, samples, discretization_step);
+ color = voronoiArcColor;
+ } else if (! it->is_primary())
+ color = voronoiLineColorSecondary;
+ }
+ for (std::size_t i = 0; i + 1 < samples.size(); ++i)
+ svg.draw(Line(Point(coord_t(samples[i](0)), coord_t(samples[i](1))), Point(coord_t(samples[i+1](0)), coord_t(samples[i+1](1)))), color, voronoiLineWidth);
+ }
+#endif
+
+ if (polylines != NULL)
+ svg.draw(*polylines, "blue", voronoiLineWidth);
+
+ svg.Close();
+}
+#endif /* SLIC3R_DEBUG */
+
+// Euclidian distance of two boost::polygon points.
+template<typename T>
+T dist(const boost::polygon::point_data<T> &p1,const boost::polygon::point_data<T> &p2)
+{
+ T dx = p2(0) - p1(0);
+ T dy = p2(1) - p1(1);
+ return sqrt(dx*dx+dy*dy);
+}
+
+// Find a foot point of "px" on a segment "seg".
+template<typename segment_type, typename point_type>
+inline point_type project_point_to_segment(segment_type &seg, point_type &px)
+{
+ typedef typename point_type::coordinate_type T;
+ const point_type &p0 = low(seg);
+ const point_type &p1 = high(seg);
+ const point_type dir(p1(0)-p0(0), p1(1)-p0(1));
+ const point_type dproj(px(0)-p0(0), px(1)-p0(1));
+ const T t = (dir(0)*dproj(0) + dir(1)*dproj(1)) / (dir(0)*dir(0) + dir(1)*dir(1));
+ assert(t >= T(-1e-6) && t <= T(1. + 1e-6));
+ return point_type(p0(0) + t*dir(0), p0(1) + t*dir(1));
+}
+
+template<typename VD, typename SEGMENTS>
+inline const typename VD::point_type retrieve_cell_point(const typename VD::cell_type& cell, const SEGMENTS &segments)
+{
+ assert(cell.source_category() == SOURCE_CATEGORY_SEGMENT_START_POINT || cell.source_category() == SOURCE_CATEGORY_SEGMENT_END_POINT);
+ return (cell.source_category() == SOURCE_CATEGORY_SEGMENT_START_POINT) ? low(segments[cell.source_index()]) : high(segments[cell.source_index()]);
+}
+
+template<typename VD, typename SEGMENTS>
+inline std::pair<typename VD::coord_type, typename VD::coord_type>
+measure_edge_thickness(const VD &vd, const typename VD::edge_type& edge, const SEGMENTS &segments)
+{
+ typedef typename VD::coord_type T;
+ const typename VD::point_type pa(edge.vertex0()->x(), edge.vertex0()->y());
+ const typename VD::point_type pb(edge.vertex1()->x(), edge.vertex1()->y());
+ const typename VD::cell_type &cell1 = *edge.cell();
+ const typename VD::cell_type &cell2 = *edge.twin()->cell();
+ if (cell1.contains_segment()) {
+ if (cell2.contains_segment()) {
+ // Both cells contain a linear segment, the left / right cells are symmetric.
+ // Project pa, pb to the left segment.
+ const typename VD::segment_type segment1 = segments[cell1.source_index()];
+ const typename VD::point_type p1a = project_point_to_segment(segment1, pa);
+ const typename VD::point_type p1b = project_point_to_segment(segment1, pb);
+ return std::pair<T, T>(T(2.)*dist(pa, p1a), T(2.)*dist(pb, p1b));
+ } else {
+ // 1st cell contains a linear segment, 2nd cell contains a point.
+ // The medial axis between the cells is a parabolic arc.
+ // Project pa, pb to the left segment.
+ const typename VD::point_type p2 = retrieve_cell_point<VD>(cell2, segments);
+ return std::pair<T, T>(T(2.)*dist(pa, p2), T(2.)*dist(pb, p2));
+ }
+ } else if (cell2.contains_segment()) {
+ // 1st cell contains a point, 2nd cell contains a linear segment.
+ // The medial axis between the cells is a parabolic arc.
+ const typename VD::point_type p1 = retrieve_cell_point<VD>(cell1, segments);
+ return std::pair<T, T>(T(2.)*dist(pa, p1), T(2.)*dist(pb, p1));
+ } else {
+ // Both cells contain a point. The left / right regions are triangular and symmetric.
+ const typename VD::point_type p1 = retrieve_cell_point<VD>(cell1, segments);
+ return std::pair<T, T>(T(2.)*dist(pa, p1), T(2.)*dist(pb, p1));
+ }
+}
+
+// Converts the Line instances of Lines vector to VD::segment_type.
+template<typename VD>
+class Lines2VDSegments
+{
+public:
+ Lines2VDSegments(const Lines &alines) : lines(alines) {}
+ typename VD::segment_type operator[](size_t idx) const {
+ return typename VD::segment_type(
+ typename VD::point_type(typename VD::coord_type(lines[idx].a(0)), typename VD::coord_type(lines[idx].a(1))),
+ typename VD::point_type(typename VD::coord_type(lines[idx].b(0)), typename VD::coord_type(lines[idx].b(1))));
+ }
+private:
+ const Lines &lines;
+};
+
+void
+MedialAxis::build(ThickPolylines* polylines)
+{
+ construct_voronoi(this->lines.begin(), this->lines.end(), &this->vd);
+
+ /*
+ // DEBUG: dump all Voronoi edges
+ {
+ for (VD::const_edge_iterator edge = this->vd.edges().begin(); edge != this->vd.edges().end(); ++edge) {
+ if (edge->is_infinite()) continue;
+
+ ThickPolyline polyline;
+ polyline.points.push_back(Point( edge->vertex0()->x(), edge->vertex0()->y() ));
+ polyline.points.push_back(Point( edge->vertex1()->x(), edge->vertex1()->y() ));
+ polylines->push_back(polyline);
+ }
+ return;
+ }
+ */
+
+ typedef const VD::vertex_type vert_t;
+ typedef const VD::edge_type edge_t;
+
+ // collect valid edges (i.e. prune those not belonging to MAT)
+ // note: this keeps twins, so it inserts twice the number of the valid edges
+ this->valid_edges.clear();
+ {
+ std::set<const VD::edge_type*> seen_edges;
+ for (VD::const_edge_iterator edge = this->vd.edges().begin(); edge != this->vd.edges().end(); ++edge) {
+ // if we only process segments representing closed loops, none if the
+ // infinite edges (if any) would be part of our MAT anyway
+ if (edge->is_secondary() || edge->is_infinite()) continue;
+
+ // don't re-validate twins
+ if (seen_edges.find(&*edge) != seen_edges.end()) continue; // TODO: is this needed?
+ seen_edges.insert(&*edge);
+ seen_edges.insert(edge->twin());
+
+ if (!this->validate_edge(&*edge)) continue;
+ this->valid_edges.insert(&*edge);
+ this->valid_edges.insert(edge->twin());
+ }
+ }
+ this->edges = this->valid_edges;
+
+ // iterate through the valid edges to build polylines
+ while (!this->edges.empty()) {
+ const edge_t* edge = *this->edges.begin();
+
+ // start a polyline
+ ThickPolyline polyline;
+ polyline.points.push_back(Point( edge->vertex0()->x(), edge->vertex0()->y() ));
+ polyline.points.push_back(Point( edge->vertex1()->x(), edge->vertex1()->y() ));
+ polyline.width.push_back(this->thickness[edge].first);
+ polyline.width.push_back(this->thickness[edge].second);
+
+ // remove this edge and its twin from the available edges
+ (void)this->edges.erase(edge);
+ (void)this->edges.erase(edge->twin());
+
+ // get next points
+ this->process_edge_neighbors(edge, &polyline);
+
+ // get previous points
+ {
+ ThickPolyline rpolyline;
+ this->process_edge_neighbors(edge->twin(), &rpolyline);
+ polyline.points.insert(polyline.points.begin(), rpolyline.points.rbegin(), rpolyline.points.rend());
+ polyline.width.insert(polyline.width.begin(), rpolyline.width.rbegin(), rpolyline.width.rend());
+ polyline.endpoints.first = rpolyline.endpoints.second;
+ }
+
+ assert(polyline.width.size() == polyline.points.size()*2 - 2);
+
+ // prevent loop endpoints from being extended
+ if (polyline.first_point() == polyline.last_point()) {
+ polyline.endpoints.first = false;
+ polyline.endpoints.second = false;
+ }
+
+ // append polyline to result
+ polylines->push_back(polyline);
+ }
+
+ #ifdef SLIC3R_DEBUG
+ {
+ static int iRun = 0;
+ dump_voronoi_to_svg(this->lines, this->vd, polylines, debug_out_path("MedialAxis-%d.svg", iRun ++).c_str());
+ printf("Thick lines: ");
+ for (ThickPolylines::const_iterator it = polylines->begin(); it != polylines->end(); ++ it) {
+ ThickLines lines = it->thicklines();
+ for (ThickLines::const_iterator it2 = lines.begin(); it2 != lines.end(); ++ it2) {
+ printf("%f,%f ", it2->a_width, it2->b_width);
+ }
+ }
+ printf("\n");
+ }
+ #endif /* SLIC3R_DEBUG */
+}
+
+void
+MedialAxis::build(Polylines* polylines)
+{
+ ThickPolylines tp;
+ this->build(&tp);
+ polylines->insert(polylines->end(), tp.begin(), tp.end());
+}
+
+void
+MedialAxis::process_edge_neighbors(const VD::edge_type* edge, ThickPolyline* polyline)
+{
+ while (true) {
+ // Since rot_next() works on the edge starting point but we want
+ // to find neighbors on the ending point, we just swap edge with
+ // its twin.
+ const VD::edge_type* twin = edge->twin();
+
+ // count neighbors for this edge
+ std::vector<const VD::edge_type*> neighbors;
+ for (const VD::edge_type* neighbor = twin->rot_next(); neighbor != twin;
+ neighbor = neighbor->rot_next()) {
+ if (this->valid_edges.count(neighbor) > 0) neighbors.push_back(neighbor);
+ }
+
+ // if we have a single neighbor then we can continue recursively
+ if (neighbors.size() == 1) {
+ const VD::edge_type* neighbor = neighbors.front();
+
+ // break if this is a closed loop
+ if (this->edges.count(neighbor) == 0) return;
+
+ Point new_point(neighbor->vertex1()->x(), neighbor->vertex1()->y());
+ polyline->points.push_back(new_point);
+ polyline->width.push_back(this->thickness[neighbor].first);
+ polyline->width.push_back(this->thickness[neighbor].second);
+ (void)this->edges.erase(neighbor);
+ (void)this->edges.erase(neighbor->twin());
+ edge = neighbor;
+ } else if (neighbors.size() == 0) {
+ polyline->endpoints.second = true;
+ return;
+ } else {
+ // T-shaped or star-shaped joint
+ return;
+ }
+ }
+}
+
+bool
+MedialAxis::validate_edge(const VD::edge_type* edge)
+{
+ // prevent overflows and detect almost-infinite edges
+ if (std::abs(edge->vertex0()->x()) > double(CLIPPER_MAX_COORD_UNSCALED) ||
+ std::abs(edge->vertex0()->y()) > double(CLIPPER_MAX_COORD_UNSCALED) ||
+ std::abs(edge->vertex1()->x()) > double(CLIPPER_MAX_COORD_UNSCALED) ||
+ std::abs(edge->vertex1()->y()) > double(CLIPPER_MAX_COORD_UNSCALED))
+ return false;
+
+ // construct the line representing this edge of the Voronoi diagram
+ const Line line(
+ Point( edge->vertex0()->x(), edge->vertex0()->y() ),
+ Point( edge->vertex1()->x(), edge->vertex1()->y() )
+ );
+
+ // discard edge if it lies outside the supplied shape
+ // this could maybe be optimized (checking inclusion of the endpoints
+ // might give false positives as they might belong to the contour itself)
+ if (this->expolygon != NULL) {
+ if (line.a == line.b) {
+ // in this case, contains(line) returns a false positive
+ if (!this->expolygon->contains(line.a)) return false;
+ } else {
+ if (!this->expolygon->contains(line)) return false;
+ }
+ }
+
+ // retrieve the original line segments which generated the edge we're checking
+ const VD::cell_type* cell_l = edge->cell();
+ const VD::cell_type* cell_r = edge->twin()->cell();
+ const Line &segment_l = this->retrieve_segment(cell_l);
+ const Line &segment_r = this->retrieve_segment(cell_r);
+
+ /*
+ SVG svg("edge.svg");
+ svg.draw(*this->expolygon);
+ svg.draw(line);
+ svg.draw(segment_l, "red");
+ svg.draw(segment_r, "blue");
+ svg.Close();
+ */
+
+ /* Calculate thickness of the cross-section at both the endpoints of this edge.
+ Our Voronoi edge is part of a CCW sequence going around its Voronoi cell
+ located on the left side. (segment_l).
+ This edge's twin goes around segment_r. Thus, segment_r is
+ oriented in the same direction as our main edge, and segment_l is oriented
+ in the same direction as our twin edge.
+ We used to only consider the (half-)distances to segment_r, and that works
+ whenever segment_l and segment_r are almost specular and facing. However,
+ at curves they are staggered and they only face for a very little length
+ (our very short edge represents such visibility).
+ Both w0 and w1 can be calculated either towards cell_l or cell_r with equal
+ results by Voronoi definition.
+ When cell_l or cell_r don't refer to the segment but only to an endpoint, we
+ calculate the distance to that endpoint instead. */
+
+ coordf_t w0 = cell_r->contains_segment()
+ ? segment_r.distance_to(line.a)*2
+ : (this->retrieve_endpoint(cell_r) - line.a).cast<double>().norm()*2;
+
+ coordf_t w1 = cell_l->contains_segment()
+ ? segment_l.distance_to(line.b)*2
+ : (this->retrieve_endpoint(cell_l) - line.b).cast<double>().norm()*2;
+
+ if (cell_l->contains_segment() && cell_r->contains_segment()) {
+ // calculate the relative angle between the two boundary segments
+ double angle = fabs(segment_r.orientation() - segment_l.orientation());
+ if (angle > PI) angle = 2*PI - angle;
+ assert(angle >= 0 && angle <= PI);
+
+ // fabs(angle) ranges from 0 (collinear, same direction) to PI (collinear, opposite direction)
+ // we're interested only in segments close to the second case (facing segments)
+ // so we allow some tolerance.
+ // this filter ensures that we're dealing with a narrow/oriented area (longer than thick)
+ // we don't run it on edges not generated by two segments (thus generated by one segment
+ // and the endpoint of another segment), since their orientation would not be meaningful
+ if (PI - angle > PI/8) {
+ // angle is not narrow enough
+
+ // only apply this filter to segments that are not too short otherwise their
+ // angle could possibly be not meaningful
+ if (w0 < SCALED_EPSILON || w1 < SCALED_EPSILON || line.length() >= this->min_width)
+ return false;
+ }
+ } else {
+ if (w0 < SCALED_EPSILON || w1 < SCALED_EPSILON)
+ return false;
+ }
+
+ if (w0 < this->min_width && w1 < this->min_width)
+ return false;
+
+ if (w0 > this->max_width && w1 > this->max_width)
+ return false;
+
+ this->thickness[edge] = std::make_pair(w0, w1);
+ this->thickness[edge->twin()] = std::make_pair(w1, w0);
+
+ return true;
+}
+
+const Line&
+MedialAxis::retrieve_segment(const VD::cell_type* cell) const
+{
+ return this->lines[cell->source_index()];
+}
+
+const Point&
+MedialAxis::retrieve_endpoint(const VD::cell_type* cell) const
+{
+ const Line& line = this->retrieve_segment(cell);
+ if (cell->source_category() == SOURCE_CATEGORY_SEGMENT_START_POINT) {
+ return line.a;
+ } else {
+ return line.b;
+ }
+}
+
+} }