Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'src/libslic3r/Int128.hpp')
-rw-r--r--src/libslic3r/Int128.hpp290
1 files changed, 290 insertions, 0 deletions
diff --git a/src/libslic3r/Int128.hpp b/src/libslic3r/Int128.hpp
new file mode 100644
index 000000000..d54b75342
--- /dev/null
+++ b/src/libslic3r/Int128.hpp
@@ -0,0 +1,290 @@
+// This is an excerpt of from the Clipper library by Angus Johnson, see the license below,
+// implementing a 64 x 64 -> 128bit multiply, and 128bit addition, subtraction and compare
+// operations, to be used with exact geometric predicates.
+// The code has been extended by Vojtech Bubnik to use 128 bit intrinsic types
+// and/or 64x64->128 intrinsic functions where possible.
+
+/*******************************************************************************
+* *
+* Author : Angus Johnson *
+* Version : 6.2.9 *
+* Date : 16 February 2015 *
+* Website : http://www.angusj.com *
+* Copyright : Angus Johnson 2010-2015 *
+* *
+* License: *
+* Use, modification & distribution is subject to Boost Software License Ver 1. *
+* http://www.boost.org/LICENSE_1_0.txt *
+* *
+* Attributions: *
+* The code in this library is an extension of Bala Vatti's clipping algorithm: *
+* "A generic solution to polygon clipping" *
+* Communications of the ACM, Vol 35, Issue 7 (July 1992) pp 56-63. *
+* http://portal.acm.org/citation.cfm?id=129906 *
+* *
+* Computer graphics and geometric modeling: implementation and algorithms *
+* By Max K. Agoston *
+* Springer; 1 edition (January 4, 2005) *
+* http://books.google.com/books?q=vatti+clipping+agoston *
+* *
+* See also: *
+* "Polygon Offsetting by Computing Winding Numbers" *
+* Paper no. DETC2005-85513 pp. 565-575 *
+* ASME 2005 International Design Engineering Technical Conferences *
+* and Computers and Information in Engineering Conference (IDETC/CIE2005) *
+* September 24-28, 2005 , Long Beach, California, USA *
+* http://www.me.berkeley.edu/~mcmains/pubs/DAC05OffsetPolygon.pdf *
+* *
+*******************************************************************************/
+
+// #define SLIC3R_DEBUG
+
+// Make assert active if SLIC3R_DEBUG
+#ifdef SLIC3R_DEBUG
+ #undef NDEBUG
+ #define DEBUG
+ #define _DEBUG
+ #undef assert
+#endif
+
+#include <cassert>
+
+#if ! defined(_MSC_VER) && defined(__SIZEOF_INT128__)
+ #define HAS_INTRINSIC_128_TYPE
+#endif
+
+//------------------------------------------------------------------------------
+// Int128 class (enables safe math on signed 64bit integers)
+// eg Int128 val1((int64_t)9223372036854775807); //ie 2^63 -1
+// Int128 val2((int64_t)9223372036854775807);
+// Int128 val3 = val1 * val2;
+//------------------------------------------------------------------------------
+
+class Int128
+{
+
+#ifdef HAS_INTRINSIC_128_TYPE
+
+/******************************************** Using the intrinsic 128bit x 128bit multiply ************************************************/
+
+public:
+ __int128 value;
+
+ Int128(int64_t lo = 0) : value(lo) {}
+ Int128(const Int128 &v) : value(v.value) {}
+
+ Int128& operator=(const int64_t &rhs) { value = rhs; return *this; }
+
+ uint64_t lo() const { return uint64_t(value); }
+ int64_t hi() const { return int64_t(value >> 64); }
+ int sign() const { return (value > 0) - (value < 0); }
+
+ bool operator==(const Int128 &rhs) const { return value == rhs.value; }
+ bool operator!=(const Int128 &rhs) const { return value != rhs.value; }
+ bool operator> (const Int128 &rhs) const { return value > rhs.value; }
+ bool operator< (const Int128 &rhs) const { return value < rhs.value; }
+ bool operator>=(const Int128 &rhs) const { return value >= rhs.value; }
+ bool operator<=(const Int128 &rhs) const { return value <= rhs.value; }
+
+ Int128& operator+=(const Int128 &rhs) { value += rhs.value; return *this; }
+ Int128 operator+ (const Int128 &rhs) const { return Int128(value + rhs.value); }
+ Int128& operator-=(const Int128 &rhs) { value -= rhs.value; return *this; }
+ Int128 operator -(const Int128 &rhs) const { return Int128(value - rhs.value); }
+ Int128 operator -() const { return Int128(- value); }
+
+ operator double() const { return double(value); }
+
+ static inline Int128 multiply(int64_t lhs, int64_t rhs) { return Int128(__int128(lhs) * __int128(rhs)); }
+
+ // Evaluate signum of a 2x2 determinant.
+ static int sign_determinant_2x2(int64_t a11, int64_t a12, int64_t a21, int64_t a22)
+ {
+ __int128 det = __int128(a11) * __int128(a22) - __int128(a12) * __int128(a21);
+ return (det > 0) - (det < 0);
+ }
+
+ // Compare two rational numbers.
+ static int compare_rationals(int64_t p1, int64_t q1, int64_t p2, int64_t q2)
+ {
+ int invert = ((q1 < 0) == (q2 < 0)) ? 1 : -1;
+ __int128 det = __int128(p1) * __int128(q2) - __int128(p2) * __int128(q1);
+ return ((det > 0) - (det < 0)) * invert;
+ }
+
+#else /* HAS_INTRINSIC_128_TYPE */
+
+/******************************************** Splitting the 128bit number into two 64bit words *********************************************/
+
+ Int128(int64_t lo = 0) : m_lo((uint64_t)lo), m_hi((lo < 0) ? -1 : 0) {}
+ Int128(const Int128 &val) : m_lo(val.m_lo), m_hi(val.m_hi) {}
+ Int128(const int64_t& hi, const uint64_t& lo) : m_lo(lo), m_hi(hi) {}
+
+ Int128& operator = (const int64_t &val)
+ {
+ m_lo = (uint64_t)val;
+ m_hi = (val < 0) ? -1 : 0;
+ return *this;
+ }
+
+ uint64_t lo() const { return m_lo; }
+ int64_t hi() const { return m_hi; }
+ int sign() const { return (m_hi == 0) ? (m_lo > 0) : (m_hi > 0) - (m_hi < 0); }
+
+ bool operator == (const Int128 &val) const { return m_hi == val.m_hi && m_lo == val.m_lo; }
+ bool operator != (const Int128 &val) const { return ! (*this == val); }
+ bool operator > (const Int128 &val) const { return (m_hi == val.m_hi) ? m_lo > val.m_lo : m_hi > val.m_hi; }
+ bool operator < (const Int128 &val) const { return (m_hi == val.m_hi) ? m_lo < val.m_lo : m_hi < val.m_hi; }
+ bool operator >= (const Int128 &val) const { return ! (*this < val); }
+ bool operator <= (const Int128 &val) const { return ! (*this > val); }
+
+ Int128& operator += (const Int128 &rhs)
+ {
+ m_hi += rhs.m_hi;
+ m_lo += rhs.m_lo;
+ if (m_lo < rhs.m_lo) m_hi++;
+ return *this;
+ }
+
+ Int128 operator + (const Int128 &rhs) const
+ {
+ Int128 result(*this);
+ result+= rhs;
+ return result;
+ }
+
+ Int128& operator -= (const Int128 &rhs)
+ {
+ *this += -rhs;
+ return *this;
+ }
+
+ Int128 operator - (const Int128 &rhs) const
+ {
+ Int128 result(*this);
+ result -= rhs;
+ return result;
+ }
+
+ Int128 operator-() const { return (m_lo == 0) ? Int128(-m_hi, 0) : Int128(~m_hi, ~m_lo + 1); }
+
+ operator double() const
+ {
+ const double shift64 = 18446744073709551616.0; //2^64
+ return (m_hi < 0) ?
+ ((m_lo == 0) ?
+ (double)m_hi * shift64 :
+ -(double)(~m_lo + ~m_hi * shift64)) :
+ (double)(m_lo + m_hi * shift64);
+ }
+
+ static inline Int128 multiply(int64_t lhs, int64_t rhs)
+ {
+#if defined(_MSC_VER) && defined(_WIN64)
+ // On Visual Studio 64bit, use the _mul128() intrinsic function.
+ Int128 result;
+ result.m_lo = (uint64_t)_mul128(lhs, rhs, &result.m_hi);
+ return result;
+#else
+ // This branch should only be executed in case there is neither __int16 type nor _mul128 intrinsic
+ // function available. This is mostly on 32bit operating systems.
+ // Use a pure C implementation of _mul128().
+
+ int negate = (lhs < 0) != (rhs < 0);
+
+ if (lhs < 0)
+ lhs = -lhs;
+ uint64_t int1Hi = uint64_t(lhs) >> 32;
+ uint64_t int1Lo = uint64_t(lhs & 0xFFFFFFFF);
+
+ if (rhs < 0)
+ rhs = -rhs;
+ uint64_t int2Hi = uint64_t(rhs) >> 32;
+ uint64_t int2Lo = uint64_t(rhs & 0xFFFFFFFF);
+
+ //because the high (sign) bits in both int1Hi & int2Hi have been zeroed,
+ //there's no risk of 64 bit overflow in the following assignment
+ //(ie: $7FFFFFFF*$FFFFFFFF + $7FFFFFFF*$FFFFFFFF < 64bits)
+ uint64_t a = int1Hi * int2Hi;
+ uint64_t b = int1Lo * int2Lo;
+ //Result = A shl 64 + C shl 32 + B ...
+ uint64_t c = int1Hi * int2Lo + int1Lo * int2Hi;
+
+ Int128 tmp;
+ tmp.m_hi = int64_t(a + (c >> 32));
+ tmp.m_lo = int64_t(c << 32);
+ tmp.m_lo += int64_t(b);
+ if (tmp.m_lo < b)
+ ++ tmp.m_hi;
+ if (negate)
+ tmp = - tmp;
+ return tmp;
+#endif
+ }
+
+ // Evaluate signum of a 2x2 determinant.
+ static int sign_determinant_2x2(int64_t a11, int64_t a12, int64_t a21, int64_t a22)
+ {
+ return (Int128::multiply(a11, a22) - Int128::multiply(a12, a21)).sign();
+ }
+
+ // Compare two rational numbers.
+ static int compare_rationals(int64_t p1, int64_t q1, int64_t p2, int64_t q2)
+ {
+ int invert = ((q1 < 0) == (q2 < 0)) ? 1 : -1;
+ Int128 det = Int128::multiply(p1, q2) - Int128::multiply(p2, q1);
+ return det.sign() * invert;
+ }
+
+private:
+ uint64_t m_lo;
+ int64_t m_hi;
+
+
+#endif /* HAS_INTRINSIC_128_TYPE */
+
+
+/******************************************** Common methods ************************************************/
+
+public:
+
+ // Evaluate signum of a 2x2 determinant, use a numeric filter to avoid 128 bit multiply if possible.
+ static int sign_determinant_2x2_filtered(int64_t a11, int64_t a12, int64_t a21, int64_t a22)
+ {
+ // First try to calculate the determinant over the upper 31 bits.
+ // Round p1, p2, q1, q2 to 31 bits.
+ int64_t a11s = (a11 + (1 << 31)) >> 32;
+ int64_t a12s = (a12 + (1 << 31)) >> 32;
+ int64_t a21s = (a21 + (1 << 31)) >> 32;
+ int64_t a22s = (a22 + (1 << 31)) >> 32;
+ // Result fits 63 bits, it is an approximate of the determinant divided by 2^64.
+ int64_t det = a11s * a22s - a12s * a21s;
+ // Maximum absolute of the remainder of the exact determinant, divided by 2^64.
+ int64_t err = ((std::abs(a11s) + std::abs(a12s) + std::abs(a21s) + std::abs(a22s)) << 1) + 1;
+ assert(std::abs(det) <= err || ((det > 0) ? 1 : -1) == sign_determinant_2x2(a11, a12, a21, a22));
+ return (std::abs(det) > err) ?
+ ((det > 0) ? 1 : -1) :
+ sign_determinant_2x2(a11, a12, a21, a22);
+ }
+
+ // Compare two rational numbers, use a numeric filter to avoid 128 bit multiply if possible.
+ static int compare_rationals_filtered(int64_t p1, int64_t q1, int64_t p2, int64_t q2)
+ {
+ // First try to calculate the determinant over the upper 31 bits.
+ // Round p1, p2, q1, q2 to 31 bits.
+ int invert = ((q1 < 0) == (q2 < 0)) ? 1 : -1;
+ int64_t q1s = (q1 + (1 << 31)) >> 32;
+ int64_t q2s = (q2 + (1 << 31)) >> 32;
+ if (q1s != 0 && q2s != 0) {
+ int64_t p1s = (p1 + (1 << 31)) >> 32;
+ int64_t p2s = (p2 + (1 << 31)) >> 32;
+ // Result fits 63 bits, it is an approximate of the determinant divided by 2^64.
+ int64_t det = p1s * q2s - p2s * q1s;
+ // Maximum absolute of the remainder of the exact determinant, divided by 2^64.
+ int64_t err = ((std::abs(p1s) + std::abs(q1s) + std::abs(p2s) + std::abs(q2s)) << 1) + 1;
+ assert(std::abs(det) <= err || ((det > 0) ? 1 : -1) * invert == compare_rationals(p1, q1, p2, q2));
+ if (std::abs(det) > err)
+ return ((det > 0) ? 1 : -1) * invert;
+ }
+ return sign_determinant_2x2(p1, q1, p2, q2) * invert;
+ }
+};