Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'src/libslic3r/ModelArrange.hpp')
-rw-r--r--src/libslic3r/ModelArrange.hpp825
1 files changed, 825 insertions, 0 deletions
diff --git a/src/libslic3r/ModelArrange.hpp b/src/libslic3r/ModelArrange.hpp
new file mode 100644
index 000000000..372689c39
--- /dev/null
+++ b/src/libslic3r/ModelArrange.hpp
@@ -0,0 +1,825 @@
+#ifndef MODELARRANGE_HPP
+#define MODELARRANGE_HPP
+
+#include "Model.hpp"
+#include "SVG.hpp"
+#include <libnest2d.h>
+
+#include <numeric>
+#include <ClipperUtils.hpp>
+
+#include <boost/geometry/index/rtree.hpp>
+
+namespace Slic3r {
+namespace arr {
+
+using namespace libnest2d;
+
+std::string toString(const Model& model, bool holes = true) {
+ std::stringstream ss;
+
+ ss << "{\n";
+
+ for(auto objptr : model.objects) {
+ if(!objptr) continue;
+
+ auto rmesh = objptr->raw_mesh();
+
+ for(auto objinst : objptr->instances) {
+ if(!objinst) continue;
+
+ Slic3r::TriangleMesh tmpmesh = rmesh;
+ tmpmesh.scale(objinst->scaling_factor);
+ objinst->transform_mesh(&tmpmesh);
+ ExPolygons expolys = tmpmesh.horizontal_projection();
+ for(auto& expoly_complex : expolys) {
+
+ auto tmp = expoly_complex.simplify(1.0/SCALING_FACTOR);
+ if(tmp.empty()) continue;
+ auto expoly = tmp.front();
+ expoly.contour.make_clockwise();
+ for(auto& h : expoly.holes) h.make_counter_clockwise();
+
+ ss << "\t{\n";
+ ss << "\t\t{\n";
+
+ for(auto v : expoly.contour.points) ss << "\t\t\t{"
+ << v(0) << ", "
+ << v(1) << "},\n";
+ {
+ auto v = expoly.contour.points.front();
+ ss << "\t\t\t{" << v(0) << ", " << v(1) << "},\n";
+ }
+ ss << "\t\t},\n";
+
+ // Holes:
+ ss << "\t\t{\n";
+ if(holes) for(auto h : expoly.holes) {
+ ss << "\t\t\t{\n";
+ for(auto v : h.points) ss << "\t\t\t\t{"
+ << v(0) << ", "
+ << v(1) << "},\n";
+ {
+ auto v = h.points.front();
+ ss << "\t\t\t\t{" << v(0) << ", " << v(1) << "},\n";
+ }
+ ss << "\t\t\t},\n";
+ }
+ ss << "\t\t},\n";
+
+ ss << "\t},\n";
+ }
+ }
+ }
+
+ ss << "}\n";
+
+ return ss.str();
+}
+
+void toSVG(SVG& svg, const Model& model) {
+ for(auto objptr : model.objects) {
+ if(!objptr) continue;
+
+ auto rmesh = objptr->raw_mesh();
+
+ for(auto objinst : objptr->instances) {
+ if(!objinst) continue;
+
+ Slic3r::TriangleMesh tmpmesh = rmesh;
+ tmpmesh.scale(objinst->scaling_factor);
+ objinst->transform_mesh(&tmpmesh);
+ ExPolygons expolys = tmpmesh.horizontal_projection();
+ svg.draw(expolys);
+ }
+ }
+}
+
+namespace bgi = boost::geometry::index;
+
+using SpatElement = std::pair<Box, unsigned>;
+using SpatIndex = bgi::rtree< SpatElement, bgi::rstar<16, 4> >;
+using ItemGroup = std::vector<std::reference_wrapper<Item>>;
+template<class TBin>
+using TPacker = typename placers::_NofitPolyPlacer<PolygonImpl, TBin>;
+
+const double BIG_ITEM_TRESHOLD = 0.02;
+
+Box boundingBox(const Box& pilebb, const Box& ibb ) {
+ auto& pminc = pilebb.minCorner();
+ auto& pmaxc = pilebb.maxCorner();
+ auto& iminc = ibb.minCorner();
+ auto& imaxc = ibb.maxCorner();
+ PointImpl minc, maxc;
+
+ setX(minc, std::min(getX(pminc), getX(iminc)));
+ setY(minc, std::min(getY(pminc), getY(iminc)));
+
+ setX(maxc, std::max(getX(pmaxc), getX(imaxc)));
+ setY(maxc, std::max(getY(pmaxc), getY(imaxc)));
+ return Box(minc, maxc);
+}
+
+std::tuple<double /*score*/, Box /*farthest point from bin center*/>
+objfunc(const PointImpl& bincenter,
+ const shapelike::Shapes<PolygonImpl>& merged_pile,
+ const Box& pilebb,
+ const ItemGroup& items,
+ const Item &item,
+ double bin_area,
+ double norm, // A norming factor for physical dimensions
+ // a spatial index to quickly get neighbors of the candidate item
+ const SpatIndex& spatindex,
+ const SpatIndex& smalls_spatindex,
+ const ItemGroup& remaining
+ )
+{
+ using Coord = TCoord<PointImpl>;
+
+ static const double ROUNDNESS_RATIO = 0.5;
+ static const double DENSITY_RATIO = 1.0 - ROUNDNESS_RATIO;
+
+ // We will treat big items (compared to the print bed) differently
+ auto isBig = [bin_area](double a) {
+ return a/bin_area > BIG_ITEM_TRESHOLD ;
+ };
+
+ // Candidate item bounding box
+ auto ibb = sl::boundingBox(item.transformedShape());
+
+ // Calculate the full bounding box of the pile with the candidate item
+ auto fullbb = boundingBox(pilebb, ibb);
+
+ // The bounding box of the big items (they will accumulate in the center
+ // of the pile
+ Box bigbb;
+ if(spatindex.empty()) bigbb = fullbb;
+ else {
+ auto boostbb = spatindex.bounds();
+ boost::geometry::convert(boostbb, bigbb);
+ }
+
+ // Will hold the resulting score
+ double score = 0;
+
+ if(isBig(item.area()) || spatindex.empty()) {
+ // This branch is for the bigger items..
+
+ auto minc = ibb.minCorner(); // bottom left corner
+ auto maxc = ibb.maxCorner(); // top right corner
+
+ // top left and bottom right corners
+ auto top_left = PointImpl{getX(minc), getY(maxc)};
+ auto bottom_right = PointImpl{getX(maxc), getY(minc)};
+
+ // Now the distance of the gravity center will be calculated to the
+ // five anchor points and the smallest will be chosen.
+ std::array<double, 5> dists;
+ auto cc = fullbb.center(); // The gravity center
+ dists[0] = pl::distance(minc, cc);
+ dists[1] = pl::distance(maxc, cc);
+ dists[2] = pl::distance(ibb.center(), cc);
+ dists[3] = pl::distance(top_left, cc);
+ dists[4] = pl::distance(bottom_right, cc);
+
+ // The smalles distance from the arranged pile center:
+ auto dist = *(std::min_element(dists.begin(), dists.end())) / norm;
+ auto bindist = pl::distance(ibb.center(), bincenter) / norm;
+ dist = 0.8*dist + 0.2*bindist;
+
+ // Density is the pack density: how big is the arranged pile
+ double density = 0;
+
+ if(remaining.empty()) {
+
+ auto mp = merged_pile;
+ mp.emplace_back(item.transformedShape());
+ auto chull = sl::convexHull(mp);
+
+ placers::EdgeCache<PolygonImpl> ec(chull);
+
+ double circ = ec.circumference() / norm;
+ double bcirc = 2.0*(fullbb.width() + fullbb.height()) / norm;
+ score = 0.5*circ + 0.5*bcirc;
+
+ } else {
+ // Prepare a variable for the alignment score.
+ // This will indicate: how well is the candidate item aligned with
+ // its neighbors. We will check the alignment with all neighbors and
+ // return the score for the best alignment. So it is enough for the
+ // candidate to be aligned with only one item.
+ auto alignment_score = 1.0;
+
+ density = std::sqrt((fullbb.width() / norm )*
+ (fullbb.height() / norm));
+ auto querybb = item.boundingBox();
+
+ // Query the spatial index for the neighbors
+ std::vector<SpatElement> result;
+ result.reserve(spatindex.size());
+ if(isBig(item.area())) {
+ spatindex.query(bgi::intersects(querybb),
+ std::back_inserter(result));
+ } else {
+ smalls_spatindex.query(bgi::intersects(querybb),
+ std::back_inserter(result));
+ }
+
+ for(auto& e : result) { // now get the score for the best alignment
+ auto idx = e.second;
+ Item& p = items[idx];
+ auto parea = p.area();
+ if(std::abs(1.0 - parea/item.area()) < 1e-6) {
+ auto bb = boundingBox(p.boundingBox(), ibb);
+ auto bbarea = bb.area();
+ auto ascore = 1.0 - (item.area() + parea)/bbarea;
+
+ if(ascore < alignment_score) alignment_score = ascore;
+ }
+ }
+
+ // The final mix of the score is the balance between the distance
+ // from the full pile center, the pack density and the
+ // alignment with the neighbors
+ if(result.empty())
+ score = 0.5 * dist + 0.5 * density;
+ else
+ score = 0.40 * dist + 0.40 * density + 0.2 * alignment_score;
+ }
+ } else {
+ // Here there are the small items that should be placed around the
+ // already processed bigger items.
+ // No need to play around with the anchor points, the center will be
+ // just fine for small items
+ score = pl::distance(ibb.center(), bigbb.center()) / norm;
+ }
+
+ return std::make_tuple(score, fullbb);
+}
+
+template<class PConf>
+void fillConfig(PConf& pcfg) {
+
+ // Align the arranged pile into the center of the bin
+ pcfg.alignment = PConf::Alignment::CENTER;
+
+ // Start placing the items from the center of the print bed
+ pcfg.starting_point = PConf::Alignment::CENTER;
+
+ // TODO cannot use rotations until multiple objects of same geometry can
+ // handle different rotations
+ // arranger.useMinimumBoundigBoxRotation();
+ pcfg.rotations = { 0.0 };
+
+ // The accuracy of optimization.
+ // Goes from 0.0 to 1.0 and scales performance as well
+ pcfg.accuracy = 0.65f;
+
+ pcfg.parallel = true;
+}
+
+template<class TBin>
+class AutoArranger {};
+
+template<class TBin>
+class _ArrBase {
+protected:
+
+ using Placer = TPacker<TBin>;
+ using Selector = FirstFitSelection;
+ using Packer = Nester<Placer, Selector>;
+ using PConfig = typename Packer::PlacementConfig;
+ using Distance = TCoord<PointImpl>;
+ using Pile = sl::Shapes<PolygonImpl>;
+
+ Packer pck_;
+ PConfig pconf_; // Placement configuration
+ double bin_area_;
+ SpatIndex rtree_;
+ SpatIndex smallsrtree_;
+ double norm_;
+ Pile merged_pile_;
+ Box pilebb_;
+ ItemGroup remaining_;
+ ItemGroup items_;
+public:
+
+ _ArrBase(const TBin& bin, Distance dist,
+ std::function<void(unsigned)> progressind,
+ std::function<bool(void)> stopcond):
+ pck_(bin, dist), bin_area_(sl::area(bin)),
+ norm_(std::sqrt(sl::area(bin)))
+ {
+ fillConfig(pconf_);
+
+ pconf_.before_packing =
+ [this](const Pile& merged_pile, // merged pile
+ const ItemGroup& items, // packed items
+ const ItemGroup& remaining) // future items to be packed
+ {
+ items_ = items;
+ merged_pile_ = merged_pile;
+ remaining_ = remaining;
+
+ pilebb_ = sl::boundingBox(merged_pile);
+
+ rtree_.clear();
+ smallsrtree_.clear();
+
+ // We will treat big items (compared to the print bed) differently
+ auto isBig = [this](double a) {
+ return a/bin_area_ > BIG_ITEM_TRESHOLD ;
+ };
+
+ for(unsigned idx = 0; idx < items.size(); ++idx) {
+ Item& itm = items[idx];
+ if(isBig(itm.area())) rtree_.insert({itm.boundingBox(), idx});
+ smallsrtree_.insert({itm.boundingBox(), idx});
+ }
+ };
+
+ pck_.progressIndicator(progressind);
+ pck_.stopCondition(stopcond);
+ }
+
+ template<class...Args> inline IndexedPackGroup operator()(Args&&...args) {
+ rtree_.clear();
+ return pck_.executeIndexed(std::forward<Args>(args)...);
+ }
+};
+
+template<>
+class AutoArranger<Box>: public _ArrBase<Box> {
+public:
+
+ AutoArranger(const Box& bin, Distance dist,
+ std::function<void(unsigned)> progressind,
+ std::function<bool(void)> stopcond):
+ _ArrBase<Box>(bin, dist, progressind, stopcond)
+ {
+
+ pconf_.object_function = [this, bin] (const Item &item) {
+
+ auto result = objfunc(bin.center(),
+ merged_pile_,
+ pilebb_,
+ items_,
+ item,
+ bin_area_,
+ norm_,
+ rtree_,
+ smallsrtree_,
+ remaining_);
+
+ double score = std::get<0>(result);
+ auto& fullbb = std::get<1>(result);
+
+ double miss = Placer::overfit(fullbb, bin);
+ miss = miss > 0? miss : 0;
+ score += miss*miss;
+
+ return score;
+ };
+
+ pck_.configure(pconf_);
+ }
+};
+
+using lnCircle = libnest2d::_Circle<libnest2d::PointImpl>;
+
+template<>
+class AutoArranger<lnCircle>: public _ArrBase<lnCircle> {
+public:
+
+ AutoArranger(const lnCircle& bin, Distance dist,
+ std::function<void(unsigned)> progressind,
+ std::function<bool(void)> stopcond):
+ _ArrBase<lnCircle>(bin, dist, progressind, stopcond) {
+
+ pconf_.object_function = [this, &bin] (const Item &item) {
+
+ auto result = objfunc(bin.center(),
+ merged_pile_,
+ pilebb_,
+ items_,
+ item,
+ bin_area_,
+ norm_,
+ rtree_,
+ smallsrtree_,
+ remaining_);
+
+ double score = std::get<0>(result);
+
+ auto isBig = [this](const Item& itm) {
+ return itm.area()/bin_area_ > BIG_ITEM_TRESHOLD ;
+ };
+
+ if(isBig(item)) {
+ auto mp = merged_pile_;
+ mp.push_back(item.transformedShape());
+ auto chull = sl::convexHull(mp);
+ double miss = Placer::overfit(chull, bin);
+ if(miss < 0) miss = 0;
+ score += miss*miss;
+ }
+
+ return score;
+ };
+
+ pck_.configure(pconf_);
+ }
+};
+
+template<>
+class AutoArranger<PolygonImpl>: public _ArrBase<PolygonImpl> {
+public:
+ AutoArranger(const PolygonImpl& bin, Distance dist,
+ std::function<void(unsigned)> progressind,
+ std::function<bool(void)> stopcond):
+ _ArrBase<PolygonImpl>(bin, dist, progressind, stopcond)
+ {
+ pconf_.object_function = [this, &bin] (const Item &item) {
+
+ auto binbb = sl::boundingBox(bin);
+ auto result = objfunc(binbb.center(),
+ merged_pile_,
+ pilebb_,
+ items_,
+ item,
+ bin_area_,
+ norm_,
+ rtree_,
+ smallsrtree_,
+ remaining_);
+ double score = std::get<0>(result);
+
+ return score;
+ };
+
+ pck_.configure(pconf_);
+ }
+};
+
+template<> // Specialization with no bin
+class AutoArranger<bool>: public _ArrBase<Box> {
+public:
+
+ AutoArranger(Distance dist, std::function<void(unsigned)> progressind,
+ std::function<bool(void)> stopcond):
+ _ArrBase<Box>(Box(0, 0), dist, progressind, stopcond)
+ {
+ this->pconf_.object_function = [this] (const Item &item) {
+
+ auto result = objfunc({0, 0},
+ merged_pile_,
+ pilebb_,
+ items_,
+ item,
+ 0,
+ norm_,
+ rtree_,
+ smallsrtree_,
+ remaining_);
+ return std::get<0>(result);
+ };
+
+ this->pck_.configure(pconf_);
+ }
+};
+
+// A container which stores a pointer to the 3D object and its projected
+// 2D shape from top view.
+using ShapeData2D =
+ std::vector<std::pair<Slic3r::ModelInstance*, Item>>;
+
+ShapeData2D projectModelFromTop(const Slic3r::Model &model) {
+ ShapeData2D ret;
+
+ auto s = std::accumulate(model.objects.begin(), model.objects.end(), 0,
+ [](size_t s, ModelObject* o){
+ return s + o->instances.size();
+ });
+
+ ret.reserve(s);
+
+ for(auto objptr : model.objects) {
+ if(objptr) {
+
+ auto rmesh = objptr->raw_mesh();
+
+ for(auto objinst : objptr->instances) {
+ if(objinst) {
+ Slic3r::TriangleMesh tmpmesh = rmesh;
+ ClipperLib::PolygonImpl pn;
+
+ tmpmesh.scale(objinst->scaling_factor);
+
+ // TODO export the exact 2D projection
+ auto p = tmpmesh.convex_hull();
+
+ p.make_clockwise();
+ p.append(p.first_point());
+ pn.Contour = Slic3rMultiPoint_to_ClipperPath( p );
+
+ // Efficient conversion to item.
+ Item item(std::move(pn));
+
+ // Invalid geometries would throw exceptions when arranging
+ if(item.vertexCount() > 3) {
+ item.rotation(objinst->rotation);
+ item.translation( {
+#if ENABLE_MODELINSTANCE_3D_OFFSET
+ ClipperLib::cInt(objinst->get_offset(X) / SCALING_FACTOR),
+ ClipperLib::cInt(objinst->get_offset(Y) / SCALING_FACTOR)
+#else
+ ClipperLib::cInt(objinst->offset(0)/SCALING_FACTOR),
+ ClipperLib::cInt(objinst->offset(1)/SCALING_FACTOR)
+#endif // ENABLE_MODELINSTANCE_3D_OFFSET
+ });
+ ret.emplace_back(objinst, item);
+ }
+ }
+ }
+ }
+ }
+
+ return ret;
+}
+
+class Circle {
+ Point center_;
+ double radius_;
+public:
+
+ inline Circle(): center_(0, 0), radius_(std::nan("")) {}
+ inline Circle(const Point& c, double r): center_(c), radius_(r) {}
+
+ inline double radius() const { return radius_; }
+ inline const Point& center() const { return center_; }
+ inline operator bool() { return !std::isnan(radius_); }
+ inline operator lnCircle() {
+ return lnCircle({center_(0), center_(1)}, radius_);
+ }
+};
+
+enum class BedShapeType {
+ BOX,
+ CIRCLE,
+ IRREGULAR,
+ WHO_KNOWS
+};
+
+struct BedShapeHint {
+ BedShapeType type;
+ /*union*/ struct { // I know but who cares...
+ Circle circ;
+ BoundingBox box;
+ Polyline polygon;
+ } shape;
+};
+
+BedShapeHint bedShape(const Polyline& bed) {
+ BedShapeHint ret;
+
+ auto x = [](const Point& p) { return p(0); };
+ auto y = [](const Point& p) { return p(1); };
+
+ auto width = [x](const BoundingBox& box) {
+ return x(box.max) - x(box.min);
+ };
+
+ auto height = [y](const BoundingBox& box) {
+ return y(box.max) - y(box.min);
+ };
+
+ auto area = [&width, &height](const BoundingBox& box) {
+ double w = width(box);
+ double h = height(box);
+ return w*h;
+ };
+
+ auto poly_area = [](Polyline p) {
+ Polygon pp; pp.points.reserve(p.points.size() + 1);
+ pp.points = std::move(p.points);
+ pp.points.emplace_back(pp.points.front());
+ return std::abs(pp.area());
+ };
+
+ auto distance_to = [x, y](const Point& p1, const Point& p2) {
+ double dx = x(p2) - x(p1);
+ double dy = y(p2) - y(p1);
+ return std::sqrt(dx*dx + dy*dy);
+ };
+
+ auto bb = bed.bounding_box();
+
+ auto isCircle = [bb, distance_to](const Polyline& polygon) {
+ auto center = bb.center();
+ std::vector<double> vertex_distances;
+ double avg_dist = 0;
+ for (auto pt: polygon.points)
+ {
+ double distance = distance_to(center, pt);
+ vertex_distances.push_back(distance);
+ avg_dist += distance;
+ }
+
+ avg_dist /= vertex_distances.size();
+
+ Circle ret(center, avg_dist);
+ for (auto el: vertex_distances)
+ {
+ if (abs(el - avg_dist) > 10 * SCALED_EPSILON)
+ ret = Circle();
+ break;
+ }
+
+ return ret;
+ };
+
+ auto parea = poly_area(bed);
+
+ if( (1.0 - parea/area(bb)) < 1e-3 ) {
+ ret.type = BedShapeType::BOX;
+ ret.shape.box = bb;
+ }
+ else if(auto c = isCircle(bed)) {
+ ret.type = BedShapeType::CIRCLE;
+ ret.shape.circ = c;
+ } else {
+ ret.type = BedShapeType::IRREGULAR;
+ ret.shape.polygon = bed;
+ }
+
+ // Determine the bed shape by hand
+ return ret;
+}
+
+void applyResult(
+ IndexedPackGroup::value_type& group,
+ Coord batch_offset,
+ ShapeData2D& shapemap)
+{
+ for(auto& r : group) {
+ auto idx = r.first; // get the original item index
+ Item& item = r.second; // get the item itself
+
+ // Get the model instance from the shapemap using the index
+ ModelInstance *inst_ptr = shapemap[idx].first;
+
+ // Get the tranformation data from the item object and scale it
+ // appropriately
+ auto off = item.translation();
+ Radians rot = item.rotation();
+#if ENABLE_MODELINSTANCE_3D_OFFSET
+ Vec3d foff(off.X*SCALING_FACTOR + batch_offset, off.Y*SCALING_FACTOR, 0.0);
+#else
+ Vec2d foff(off.X*SCALING_FACTOR + batch_offset, off.Y*SCALING_FACTOR);
+#endif // ENABLE_MODELINSTANCE_3D_OFFSET
+
+ // write the tranformation data into the model instance
+ inst_ptr->rotation = rot;
+#if ENABLE_MODELINSTANCE_3D_OFFSET
+ inst_ptr->set_offset(foff);
+#else
+ inst_ptr->offset = foff;
+#endif // ENABLE_MODELINSTANCE_3D_OFFSET
+ }
+}
+
+
+/**
+ * \brief Arranges the model objects on the screen.
+ *
+ * The arrangement considers multiple bins (aka. print beds) for placing all
+ * the items provided in the model argument. If the items don't fit on one
+ * print bed, the remaining will be placed onto newly created print beds.
+ * The first_bin_only parameter, if set to true, disables this behaviour and
+ * makes sure that only one print bed is filled and the remaining items will be
+ * untouched. When set to false, the items which could not fit onto the
+ * print bed will be placed next to the print bed so the user should see a
+ * pile of items on the print bed and some other piles outside the print
+ * area that can be dragged later onto the print bed as a group.
+ *
+ * \param model The model object with the 3D content.
+ * \param dist The minimum distance which is allowed for any pair of items
+ * on the print bed in any direction.
+ * \param bb The bounding box of the print bed. It corresponds to the 'bin'
+ * for bin packing.
+ * \param first_bin_only This parameter controls whether to place the
+ * remaining items which do not fit onto the print area next to the print
+ * bed or leave them untouched (let the user arrange them by hand or remove
+ * them).
+ * \param progressind Progress indicator callback called when an object gets
+ * packed. The unsigned argument is the number of items remaining to pack.
+ * \param stopcondition A predicate returning true if abort is needed.
+ */
+bool arrange(Model &model, coordf_t min_obj_distance,
+ const Slic3r::Polyline& bed,
+ BedShapeHint bedhint,
+ bool first_bin_only,
+ std::function<void(unsigned)> progressind,
+ std::function<bool(void)> stopcondition)
+{
+ using ArrangeResult = _IndexedPackGroup<PolygonImpl>;
+
+ bool ret = true;
+
+ // Get the 2D projected shapes with their 3D model instance pointers
+ auto shapemap = arr::projectModelFromTop(model);
+
+ // Copy the references for the shapes only as the arranger expects a
+ // sequence of objects convertible to Item or ClipperPolygon
+ std::vector<std::reference_wrapper<Item>> shapes;
+ shapes.reserve(shapemap.size());
+ std::for_each(shapemap.begin(), shapemap.end(),
+ [&shapes] (ShapeData2D::value_type& it)
+ {
+ shapes.push_back(std::ref(it.second));
+ });
+
+ IndexedPackGroup result;
+
+ if(bedhint.type == BedShapeType::WHO_KNOWS) bedhint = bedShape(bed);
+
+ BoundingBox bbb(bed);
+
+ auto& cfn = stopcondition;
+
+ auto binbb = Box({
+ static_cast<libnest2d::Coord>(bbb.min(0)),
+ static_cast<libnest2d::Coord>(bbb.min(1))
+ },
+ {
+ static_cast<libnest2d::Coord>(bbb.max(0)),
+ static_cast<libnest2d::Coord>(bbb.max(1))
+ });
+
+ switch(bedhint.type) {
+ case BedShapeType::BOX: {
+
+ // Create the arranger for the box shaped bed
+ AutoArranger<Box> arrange(binbb, min_obj_distance, progressind, cfn);
+
+ // Arrange and return the items with their respective indices within the
+ // input sequence.
+ result = arrange(shapes.begin(), shapes.end());
+ break;
+ }
+ case BedShapeType::CIRCLE: {
+
+ auto c = bedhint.shape.circ;
+ auto cc = lnCircle(c);
+
+ AutoArranger<lnCircle> arrange(cc, min_obj_distance, progressind, cfn);
+ result = arrange(shapes.begin(), shapes.end());
+ break;
+ }
+ case BedShapeType::IRREGULAR:
+ case BedShapeType::WHO_KNOWS: {
+
+ using P = libnest2d::PolygonImpl;
+
+ auto ctour = Slic3rMultiPoint_to_ClipperPath(bed);
+ P irrbed = sl::create<PolygonImpl>(std::move(ctour));
+
+ AutoArranger<P> arrange(irrbed, min_obj_distance, progressind, cfn);
+
+ // Arrange and return the items with their respective indices within the
+ // input sequence.
+ result = arrange(shapes.begin(), shapes.end());
+ break;
+ }
+ };
+
+ if(result.empty() || stopcondition()) return false;
+
+ if(first_bin_only) {
+ applyResult(result.front(), 0, shapemap);
+ } else {
+
+ const auto STRIDE_PADDING = 1.2;
+
+ Coord stride = static_cast<Coord>(STRIDE_PADDING*
+ binbb.width()*SCALING_FACTOR);
+ Coord batch_offset = 0;
+
+ for(auto& group : result) {
+ applyResult(group, batch_offset, shapemap);
+
+ // Only the first pack group can be placed onto the print bed. The
+ // other objects which could not fit will be placed next to the
+ // print bed
+ batch_offset += stride;
+ }
+ }
+
+ for(auto objptr : model.objects) objptr->invalidate_bounding_box();
+
+ return ret && result.size() == 1;
+}
+
+}
+}
+#endif // MODELARRANGE_HPP