Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'src/libslic3r/MotionPlanner.cpp')
-rw-r--r--src/libslic3r/MotionPlanner.cpp362
1 files changed, 362 insertions, 0 deletions
diff --git a/src/libslic3r/MotionPlanner.cpp b/src/libslic3r/MotionPlanner.cpp
new file mode 100644
index 000000000..ff3475ed8
--- /dev/null
+++ b/src/libslic3r/MotionPlanner.cpp
@@ -0,0 +1,362 @@
+#include "BoundingBox.hpp"
+#include "MotionPlanner.hpp"
+#include "MutablePriorityQueue.hpp"
+#include "Utils.hpp"
+
+#include <limits> // for numeric_limits
+#include <assert.h>
+
+#include "boost/polygon/voronoi.hpp"
+using boost::polygon::voronoi_builder;
+using boost::polygon::voronoi_diagram;
+
+namespace Slic3r {
+
+MotionPlanner::MotionPlanner(const ExPolygons &islands) : m_initialized(false)
+{
+ ExPolygons expp;
+ for (const ExPolygon &island : islands) {
+ island.simplify(SCALED_EPSILON, &expp);
+ for (ExPolygon &island : expp)
+ m_islands.emplace_back(MotionPlannerEnv(island));
+ expp.clear();
+ }
+}
+
+void MotionPlanner::initialize()
+{
+ // prevent initialization of empty BoundingBox
+ if (m_initialized || m_islands.empty())
+ return;
+
+ // loop through islands in order to create inner expolygons and collect their contours.
+ Polygons outer_holes;
+ for (MotionPlannerEnv &island : m_islands) {
+ // Generate the internal env boundaries by shrinking the island
+ // we'll use these inner rings for motion planning (endpoints of the Voronoi-based
+ // graph, visibility check) in order to avoid moving too close to the boundaries.
+ island.m_env = ExPolygonCollection(offset_ex(island.m_island, -MP_INNER_MARGIN));
+ // Island contours are holes of our external environment.
+ outer_holes.push_back(island.m_island.contour);
+ }
+
+ // Generate a box contour around everyting.
+ Polygons contour = offset(get_extents(outer_holes).polygon(), +MP_OUTER_MARGIN*2);
+ assert(contour.size() == 1);
+ // make expolygon for outer environment
+ ExPolygons outer = diff_ex(contour, outer_holes);
+ assert(outer.size() == 1);
+ // If some of the islands are nested, then the 0th contour is the outer contour due to the order of conversion
+ // from Clipper data structure into the Slic3r expolygons inside diff_ex().
+ m_outer = MotionPlannerEnv(outer.front());
+ m_outer.m_env = ExPolygonCollection(diff_ex(contour, offset(outer_holes, +MP_OUTER_MARGIN)));
+ m_graphs.resize(m_islands.size() + 1);
+ m_initialized = true;
+}
+
+Polyline MotionPlanner::shortest_path(const Point &from, const Point &to)
+{
+ // If we have an empty configuration space, return a straight move.
+ if (m_islands.empty())
+ return Polyline(from, to);
+
+ // Are both points in the same island?
+ int island_idx_from = -1;
+ int island_idx_to = -1;
+ int island_idx = -1;
+ for (MotionPlannerEnv &island : m_islands) {
+ int idx = &island - m_islands.data();
+ if (island.island_contains(from))
+ island_idx_from = idx;
+ if (island.island_contains(to))
+ island_idx_to = idx;
+ if (island_idx_from == idx && island_idx_to == idx) {
+ // Since both points are in the same island, is a direct move possible?
+ // If so, we avoid generating the visibility environment.
+ if (island.m_island.contains(Line(from, to)))
+ return Polyline(from, to);
+ // Both points are inside a single island, but the straight line crosses the island boundary.
+ island_idx = idx;
+ break;
+ }
+ }
+
+ // lazy generation of configuration space.
+ this->initialize();
+
+ // Get environment. If the from / to points do not share an island, then they cross an open space,
+ // therefore island_idx == -1 and env will be set to the environment of the empty space.
+ const MotionPlannerEnv &env = this->get_env(island_idx);
+ if (env.m_env.expolygons.empty()) {
+ // if this environment is empty (probably because it's too small), perform straight move
+ // and avoid running the algorithms on empty dataset
+ return Polyline(from, to);
+ }
+
+ // Now check whether points are inside the environment.
+ Point inner_from = from;
+ Point inner_to = to;
+
+ if (island_idx == -1) {
+ // The end points do not share the same island. In that case some of the travel
+ // will be likely performed inside the empty space.
+ // TODO: instead of using the nearest_env_point() logic, we should
+ // create a temporary graph where we connect 'from' and 'to' to the
+ // nodes which don't require more than one crossing, and let Dijkstra
+ // figure out the entire path - this should also replace the call to
+ // find_node() below
+ if (island_idx_from != -1)
+ // The start point is inside some island. Find the closest point at the empty space to start from.
+ inner_from = env.nearest_env_point(from, to);
+ if (island_idx_to != -1)
+ // The start point is inside some island. Find the closest point at the empty space to start from.
+ inner_to = env.nearest_env_point(to, inner_from);
+ }
+
+ // Perform a path search either in the open space, or in a common island of from/to.
+ const MotionPlannerGraph &graph = this->init_graph(island_idx);
+ // If no path exists without crossing perimeters, returns a straight segment.
+ Polyline polyline = graph.shortest_path(inner_from, inner_to);
+ polyline.points.insert(polyline.points.begin(), from);
+ polyline.points.emplace_back(to);
+
+ {
+ // grow our environment slightly in order for simplify_by_visibility()
+ // to work best by considering moves on boundaries valid as well
+ ExPolygonCollection grown_env(offset_ex(env.m_env.expolygons, float(+SCALED_EPSILON)));
+
+ if (island_idx == -1) {
+ /* If 'from' or 'to' are not inside our env, they were connected using the
+ nearest_env_point() search which maybe produce ugly paths since it does not
+ include the endpoint in the Dijkstra search; the simplify_by_visibility()
+ call below will not work in many cases where the endpoint is not contained in
+ grown_env (whose contour was arbitrarily constructed with MP_OUTER_MARGIN,
+ which may not be enough for, say, including a skirt point). So we prune
+ the extra points manually. */
+ if (! grown_env.contains(from)) {
+ // delete second point while the line connecting first to third crosses the
+ // boundaries as many times as the current first to second
+ while (polyline.points.size() > 2 && intersection_ln(Line(from, polyline.points[2]), grown_env).size() == 1)
+ polyline.points.erase(polyline.points.begin() + 1);
+ }
+ if (! grown_env.contains(to))
+ while (polyline.points.size() > 2 && intersection_ln(Line(*(polyline.points.end() - 3), to), grown_env).size() == 1)
+ polyline.points.erase(polyline.points.end() - 2);
+ }
+
+ // Perform some quick simplification (simplify_by_visibility() would make this
+ // unnecessary, but this is much faster)
+ polyline.simplify(MP_INNER_MARGIN/10);
+
+ // remove unnecessary vertices
+ // Note: this is computationally intensive and does not look very necessary
+ // now that we prune the endpoints with the logic above,
+ // so we comment it for now until a good test case arises
+ //polyline.simplify_by_visibility(grown_env);
+
+ /*
+ SVG svg("shortest_path.svg");
+ svg.draw(grown_env.expolygons);
+ svg.arrows = false;
+ for (MotionPlannerGraph::adjacency_list_t::const_iterator it = graph->adjacency_list.begin(); it != graph->adjacency_list.end(); ++it) {
+ Point a = graph->nodes[it - graph->adjacency_list.begin()];
+ for (std::vector<MotionPlannerGraph::Neighbor>::const_iterator n = it->begin(); n != it->end(); ++n) {
+ Point b = graph->nodes[n->target];
+ svg.draw(Line(a, b));
+ }
+ }
+ svg.arrows = true;
+ svg.draw(from);
+ svg.draw(inner_from, "red");
+ svg.draw(to);
+ svg.draw(inner_to, "red");
+ svg.draw(polyline, "red");
+ svg.Close();
+ */
+ }
+
+ return polyline;
+}
+
+const MotionPlannerGraph& MotionPlanner::init_graph(int island_idx)
+{
+ // 0th graph is the graph for m_outer. Other graphs are 1 indexed.
+ MotionPlannerGraph *graph = m_graphs[island_idx + 1].get();
+ if (graph == nullptr) {
+ // If this graph doesn't exist, initialize it.
+ m_graphs[island_idx + 1] = make_unique<MotionPlannerGraph>();
+ graph = m_graphs[island_idx + 1].get();
+
+ /* We don't add polygon boundaries as graph edges, because we'd need to connect
+ them to the Voronoi-generated edges by recognizing coinciding nodes. */
+
+ typedef voronoi_diagram<double> VD;
+ VD vd;
+ // Mapping between Voronoi vertices and graph nodes.
+ std::map<const VD::vertex_type*, size_t> vd_vertices;
+ // get boundaries as lines
+ const MotionPlannerEnv &env = this->get_env(island_idx);
+ Lines lines = env.m_env.lines();
+ boost::polygon::construct_voronoi(lines.begin(), lines.end(), &vd);
+ // traverse the Voronoi diagram and generate graph nodes and edges
+ for (const VD::edge_type &edge : vd.edges()) {
+ if (edge.is_infinite())
+ continue;
+ const VD::vertex_type* v0 = edge.vertex0();
+ const VD::vertex_type* v1 = edge.vertex1();
+ Point p0(v0->x(), v0->y());
+ Point p1(v1->x(), v1->y());
+ // Insert only Voronoi edges fully contained in the island.
+ //FIXME This test has a terrible O(n^2) time complexity.
+ if (env.island_contains_b(p0) && env.island_contains_b(p1)) {
+ // Find v0 in the graph, allocate a new node if v0 does not exist in the graph yet.
+ auto i_v0 = vd_vertices.find(v0);
+ size_t v0_idx;
+ if (i_v0 == vd_vertices.end())
+ vd_vertices[v0] = v0_idx = graph->add_node(p0);
+ else
+ v0_idx = i_v0->second;
+ // Find v1 in the graph, allocate a new node if v0 does not exist in the graph yet.
+ auto i_v1 = vd_vertices.find(v1);
+ size_t v1_idx;
+ if (i_v1 == vd_vertices.end())
+ vd_vertices[v1] = v1_idx = graph->add_node(p1);
+ else
+ v1_idx = i_v1->second;
+ // Euclidean distance is used as weight for the graph edge
+ graph->add_edge(v0_idx, v1_idx, (p1 - p0).cast<double>().norm());
+ }
+ }
+ }
+
+ return *graph;
+}
+
+// Find a middle point on the path from start_point to end_point with the shortest path.
+static inline size_t nearest_waypoint_index(const Point &start_point, const Points &middle_points, const Point &end_point)
+{
+ size_t idx = size_t(-1);
+ double dmin = std::numeric_limits<double>::infinity();
+ for (const Point &p : middle_points) {
+ double d = (p - start_point).cast<double>().norm() + (end_point - p).cast<double>().norm();
+ if (d < dmin) {
+ idx = &p - middle_points.data();
+ dmin = d;
+ if (dmin < EPSILON)
+ break;
+ }
+ }
+ return idx;
+}
+
+Point MotionPlannerEnv::nearest_env_point(const Point &from, const Point &to) const
+{
+ /* In order to ensure that the move between 'from' and the initial env point does
+ not violate any of the configuration space boundaries, we limit our search to
+ the points that satisfy this condition. */
+
+ /* Assume that this method is never called when 'env' contains 'from';
+ so 'from' is either inside a hole or outside all contours */
+
+ // get the points of the hole containing 'from', if any
+ Points pp;
+ for (const ExPolygon &ex : m_env.expolygons) {
+ for (const Polygon &hole : ex.holes)
+ if (hole.contains(from))
+ pp = hole;
+ if (! pp.empty())
+ break;
+ }
+
+ // If 'from' is not inside a hole, it's outside of all contours, so take all contours' points.
+ if (pp.empty())
+ for (const ExPolygon &ex : m_env.expolygons)
+ append(pp, ex.contour.points);
+
+ // Find the candidate result and check that it doesn't cross too many boundaries.
+ while (pp.size() > 1) {
+ // find the point in pp that is closest to both 'from' and 'to'
+ size_t result = nearest_waypoint_index(from, pp, to);
+ // as we assume 'from' is outside env, any node will require at least one crossing
+ if (intersection_ln(Line(from, pp[result]), m_island).size() > 1) {
+ // discard result
+ pp.erase(pp.begin() + result);
+ } else
+ return pp[result];
+ }
+
+ // if we're here, return last point if any (better than nothing)
+ // if we have no points at all, then we have an empty environment and we
+ // make this method behave as a no-op (we shouldn't get here by the way)
+ return pp.empty() ? from : pp.front();
+}
+
+// Add a new directed edge to the adjacency graph.
+void MotionPlannerGraph::add_edge(size_t from, size_t to, double weight)
+{
+ // Extend adjacency list until this start node.
+ if (m_adjacency_list.size() < from + 1) {
+ // Reserve in powers of two to avoid repeated reallocation.
+ m_adjacency_list.reserve(std::max<size_t>(8, next_highest_power_of_2(from + 1)));
+ // Allocate new empty adjacency vectors.
+ m_adjacency_list.resize(from + 1);
+ }
+ m_adjacency_list[from].emplace_back(Neighbor(node_t(to), weight));
+}
+
+// Dijkstra's shortest path in a weighted graph from node_start to node_end.
+// The returned path contains the end points.
+// If no path exists from node_start to node_end, a straight segment is returned.
+Polyline MotionPlannerGraph::shortest_path(size_t node_start, size_t node_end) const
+{
+ // This prevents a crash in case for some reason we got here with an empty adjacency list.
+ if (this->empty())
+ return Polyline();
+
+ // Dijkstra algorithm, previous node of the current node 'u' in the shortest path towards node_start.
+ std::vector<node_t> previous(m_adjacency_list.size(), -1);
+ std::vector<weight_t> distance(m_adjacency_list.size(), std::numeric_limits<weight_t>::infinity());
+ std::vector<size_t> map_node_to_queue_id(m_adjacency_list.size(), size_t(-1));
+ distance[node_start] = 0.;
+
+ auto queue = make_mutable_priority_queue<node_t>(
+ [&map_node_to_queue_id](const node_t node, size_t idx) { map_node_to_queue_id[node] = idx; },
+ [&distance](const node_t node1, const node_t node2) { return distance[node1] < distance[node2]; });
+ queue.reserve(m_adjacency_list.size());
+ for (size_t i = 0; i < m_adjacency_list.size(); ++ i)
+ queue.push(node_t(i));
+
+ while (! queue.empty()) {
+ // Get the next node with the lowest distance to node_start.
+ node_t u = node_t(queue.top());
+ queue.pop();
+ map_node_to_queue_id[u] = size_t(-1);
+ // Stop searching if we reached our destination.
+ if (u == node_end)
+ break;
+ // Visit each edge starting at node u.
+ for (const Neighbor& neighbor : m_adjacency_list[u])
+ if (map_node_to_queue_id[neighbor.target] != size_t(-1)) {
+ weight_t alt = distance[u] + neighbor.weight;
+ // If total distance through u is shorter than the previous
+ // distance (if any) between node_start and neighbor.target, replace it.
+ if (alt < distance[neighbor.target]) {
+ distance[neighbor.target] = alt;
+ previous[neighbor.target] = u;
+ queue.update(map_node_to_queue_id[neighbor.target]);
+ }
+ }
+ }
+
+ // In case the end point was not reached, previous[node_end] contains -1
+ // and a straight line from node_start to node_end is returned.
+ Polyline polyline;
+ polyline.points.reserve(m_adjacency_list.size());
+ for (node_t vertex = node_t(node_end); vertex != -1; vertex = previous[vertex])
+ polyline.points.emplace_back(m_nodes[vertex]);
+ polyline.points.emplace_back(m_nodes[node_start]);
+ polyline.reverse();
+ return polyline;
+}
+
+}