Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'src/libslic3r/Point.cpp')
-rw-r--r--src/libslic3r/Point.cpp210
1 files changed, 210 insertions, 0 deletions
diff --git a/src/libslic3r/Point.cpp b/src/libslic3r/Point.cpp
new file mode 100644
index 000000000..c2417d0dc
--- /dev/null
+++ b/src/libslic3r/Point.cpp
@@ -0,0 +1,210 @@
+#include "Point.hpp"
+#include "Line.hpp"
+#include "MultiPoint.hpp"
+#include "Int128.hpp"
+#include <algorithm>
+
+namespace Slic3r {
+
+std::vector<Vec3f> transform(const std::vector<Vec3f>& points, const Transform3f& t)
+{
+ unsigned int vertices_count = (unsigned int)points.size();
+ if (vertices_count == 0)
+ return std::vector<Vec3f>();
+
+ unsigned int data_size = 3 * vertices_count * sizeof(float);
+
+ Eigen::MatrixXf src(3, vertices_count);
+ ::memcpy((void*)src.data(), (const void*)points.data(), data_size);
+
+ Eigen::MatrixXf dst(3, vertices_count);
+ dst = t * src.colwise().homogeneous();
+
+ std::vector<Vec3f> ret_points(vertices_count, Vec3f::Zero());
+ ::memcpy((void*)ret_points.data(), (const void*)dst.data(), data_size);
+ return ret_points;
+}
+
+Pointf3s transform(const Pointf3s& points, const Transform3d& t)
+{
+ unsigned int vertices_count = (unsigned int)points.size();
+ if (vertices_count == 0)
+ return Pointf3s();
+
+ unsigned int data_size = 3 * vertices_count * sizeof(double);
+
+ Eigen::MatrixXd src(3, vertices_count);
+ ::memcpy((void*)src.data(), (const void*)points.data(), data_size);
+
+ Eigen::MatrixXd dst(3, vertices_count);
+ dst = t * src.colwise().homogeneous();
+
+ Pointf3s ret_points(vertices_count, Vec3d::Zero());
+ ::memcpy((void*)ret_points.data(), (const void*)dst.data(), data_size);
+ return ret_points;
+}
+
+void Point::rotate(double angle)
+{
+ double cur_x = (double)(*this)(0);
+ double cur_y = (double)(*this)(1);
+ double s = ::sin(angle);
+ double c = ::cos(angle);
+ (*this)(0) = (coord_t)round(c * cur_x - s * cur_y);
+ (*this)(1) = (coord_t)round(c * cur_y + s * cur_x);
+}
+
+void Point::rotate(double angle, const Point &center)
+{
+ double cur_x = (double)(*this)(0);
+ double cur_y = (double)(*this)(1);
+ double s = ::sin(angle);
+ double c = ::cos(angle);
+ double dx = cur_x - (double)center(0);
+ double dy = cur_y - (double)center(1);
+ (*this)(0) = (coord_t)round( (double)center(0) + c * dx - s * dy );
+ (*this)(1) = (coord_t)round( (double)center(1) + c * dy + s * dx );
+}
+
+int Point::nearest_point_index(const Points &points) const
+{
+ PointConstPtrs p;
+ p.reserve(points.size());
+ for (Points::const_iterator it = points.begin(); it != points.end(); ++it)
+ p.push_back(&*it);
+ return this->nearest_point_index(p);
+}
+
+int Point::nearest_point_index(const PointConstPtrs &points) const
+{
+ int idx = -1;
+ double distance = -1; // double because long is limited to 2147483647 on some platforms and it's not enough
+
+ for (PointConstPtrs::const_iterator it = points.begin(); it != points.end(); ++it) {
+ /* If the X distance of the candidate is > than the total distance of the
+ best previous candidate, we know we don't want it */
+ double d = sqr<double>((*this)(0) - (*it)->x());
+ if (distance != -1 && d > distance) continue;
+
+ /* If the Y distance of the candidate is > than the total distance of the
+ best previous candidate, we know we don't want it */
+ d += sqr<double>((*this)(1) - (*it)->y());
+ if (distance != -1 && d > distance) continue;
+
+ idx = it - points.begin();
+ distance = d;
+
+ if (distance < EPSILON) break;
+ }
+
+ return idx;
+}
+
+int Point::nearest_point_index(const PointPtrs &points) const
+{
+ PointConstPtrs p;
+ p.reserve(points.size());
+ for (PointPtrs::const_iterator it = points.begin(); it != points.end(); ++it)
+ p.push_back(*it);
+ return this->nearest_point_index(p);
+}
+
+bool Point::nearest_point(const Points &points, Point* point) const
+{
+ int idx = this->nearest_point_index(points);
+ if (idx == -1) return false;
+ *point = points.at(idx);
+ return true;
+}
+
+/* Three points are a counter-clockwise turn if ccw > 0, clockwise if
+ * ccw < 0, and collinear if ccw = 0 because ccw is a determinant that
+ * gives the signed area of the triangle formed by p1, p2 and this point.
+ * In other words it is the 2D cross product of p1-p2 and p1-this, i.e.
+ * z-component of their 3D cross product.
+ * We return double because it must be big enough to hold 2*max(|coordinate|)^2
+ */
+double Point::ccw(const Point &p1, const Point &p2) const
+{
+ return (double)(p2(0) - p1(0))*(double)((*this)(1) - p1(1)) - (double)(p2(1) - p1(1))*(double)((*this)(0) - p1(0));
+}
+
+double Point::ccw(const Line &line) const
+{
+ return this->ccw(line.a, line.b);
+}
+
+// returns the CCW angle between this-p1 and this-p2
+// i.e. this assumes a CCW rotation from p1 to p2 around this
+double Point::ccw_angle(const Point &p1, const Point &p2) const
+{
+ double angle = atan2(p1(0) - (*this)(0), p1(1) - (*this)(1))
+ - atan2(p2(0) - (*this)(0), p2(1) - (*this)(1));
+
+ // we only want to return only positive angles
+ return angle <= 0 ? angle + 2*PI : angle;
+}
+
+Point Point::projection_onto(const MultiPoint &poly) const
+{
+ Point running_projection = poly.first_point();
+ double running_min = (running_projection - *this).cast<double>().norm();
+
+ Lines lines = poly.lines();
+ for (Lines::const_iterator line = lines.begin(); line != lines.end(); ++line) {
+ Point point_temp = this->projection_onto(*line);
+ if ((point_temp - *this).cast<double>().norm() < running_min) {
+ running_projection = point_temp;
+ running_min = (running_projection - *this).cast<double>().norm();
+ }
+ }
+ return running_projection;
+}
+
+Point Point::projection_onto(const Line &line) const
+{
+ if (line.a == line.b) return line.a;
+
+ /*
+ (Ported from VisiLibity by Karl J. Obermeyer)
+ The projection of point_temp onto the line determined by
+ line_segment_temp can be represented as an affine combination
+ expressed in the form projection of
+ Point = theta*line_segment_temp.first + (1.0-theta)*line_segment_temp.second.
+ If theta is outside the interval [0,1], then one of the Line_Segment's endpoints
+ must be closest to calling Point.
+ */
+ double lx = (double)(line.b(0) - line.a(0));
+ double ly = (double)(line.b(1) - line.a(1));
+ double theta = ( (double)(line.b(0) - (*this)(0))*lx + (double)(line.b(1)- (*this)(1))*ly )
+ / ( sqr<double>(lx) + sqr<double>(ly) );
+
+ if (0.0 <= theta && theta <= 1.0)
+ return (theta * line.a.cast<coordf_t>() + (1.0-theta) * line.b.cast<coordf_t>()).cast<coord_t>();
+
+ // Else pick closest endpoint.
+ return ((line.a - *this).cast<double>().squaredNorm() < (line.b - *this).cast<double>().squaredNorm()) ? line.a : line.b;
+}
+
+std::ostream& operator<<(std::ostream &stm, const Vec2d &pointf)
+{
+ return stm << pointf(0) << "," << pointf(1);
+}
+
+namespace int128 {
+
+int orient(const Vec2crd &p1, const Vec2crd &p2, const Vec2crd &p3)
+{
+ Slic3r::Vector v1(p2 - p1);
+ Slic3r::Vector v2(p3 - p1);
+ return Int128::sign_determinant_2x2_filtered(v1(0), v1(1), v2(0), v2(1));
+}
+
+int cross(const Vec2crd &v1, const Vec2crd &v2)
+{
+ return Int128::sign_determinant_2x2_filtered(v1(0), v1(1), v2(0), v2(1));
+}
+
+}
+
+}