Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'src/libslic3r/Point.hpp')
-rw-r--r--src/libslic3r/Point.hpp265
1 files changed, 265 insertions, 0 deletions
diff --git a/src/libslic3r/Point.hpp b/src/libslic3r/Point.hpp
new file mode 100644
index 000000000..6d9d82d25
--- /dev/null
+++ b/src/libslic3r/Point.hpp
@@ -0,0 +1,265 @@
+#ifndef slic3r_Point_hpp_
+#define slic3r_Point_hpp_
+
+#include "libslic3r.h"
+#include <cstddef>
+#include <vector>
+#include <cmath>
+#include <string>
+#include <sstream>
+#include <unordered_map>
+
+#include <Eigen/Geometry>
+
+namespace Slic3r {
+
+class Line;
+class MultiPoint;
+class Point;
+typedef Point Vector;
+
+// Eigen types, to replace the Slic3r's own types in the future.
+// Vector types with a fixed point coordinate base type.
+typedef Eigen::Matrix<coord_t, 2, 1, Eigen::DontAlign> Vec2crd;
+typedef Eigen::Matrix<coord_t, 3, 1, Eigen::DontAlign> Vec3crd;
+typedef Eigen::Matrix<int, 3, 1, Eigen::DontAlign> Vec3i;
+typedef Eigen::Matrix<int64_t, 2, 1, Eigen::DontAlign> Vec2i64;
+typedef Eigen::Matrix<int64_t, 3, 1, Eigen::DontAlign> Vec3i64;
+
+// Vector types with a double coordinate base type.
+typedef Eigen::Matrix<float, 2, 1, Eigen::DontAlign> Vec2f;
+typedef Eigen::Matrix<float, 3, 1, Eigen::DontAlign> Vec3f;
+typedef Eigen::Matrix<double, 2, 1, Eigen::DontAlign> Vec2d;
+typedef Eigen::Matrix<double, 3, 1, Eigen::DontAlign> Vec3d;
+
+typedef std::vector<Point> Points;
+typedef std::vector<Point*> PointPtrs;
+typedef std::vector<const Point*> PointConstPtrs;
+typedef std::vector<Vec3crd> Points3;
+typedef std::vector<Vec2d> Pointfs;
+typedef std::vector<Vec3d> Pointf3s;
+
+typedef Eigen::Transform<float, 2, Eigen::Affine, Eigen::DontAlign> Transform2f;
+typedef Eigen::Transform<double, 2, Eigen::Affine, Eigen::DontAlign> Transform2d;
+typedef Eigen::Transform<float, 3, Eigen::Affine, Eigen::DontAlign> Transform3f;
+typedef Eigen::Transform<double, 3, Eigen::Affine, Eigen::DontAlign> Transform3d;
+
+inline bool operator<(const Vec2d &lhs, const Vec2d &rhs) { return lhs(0) < rhs(0) || (lhs(0) == rhs(0) && lhs(1) < rhs(1)); }
+
+inline int64_t cross2(const Vec2i64 &v1, const Vec2i64 &v2) { return v1(0) * v2(1) - v1(1) * v2(0); }
+inline coord_t cross2(const Vec2crd &v1, const Vec2crd &v2) { return v1(0) * v2(1) - v1(1) * v2(0); }
+inline float cross2(const Vec2f &v1, const Vec2f &v2) { return v1(0) * v2(1) - v1(1) * v2(0); }
+inline double cross2(const Vec2d &v1, const Vec2d &v2) { return v1(0) * v2(1) - v1(1) * v2(0); }
+
+inline Vec2crd to_2d(const Vec3crd &pt3) { return Vec2crd(pt3(0), pt3(1)); }
+inline Vec2i64 to_2d(const Vec3i64 &pt3) { return Vec2i64(pt3(0), pt3(1)); }
+inline Vec2f to_2d(const Vec3f &pt3) { return Vec2f (pt3(0), pt3(1)); }
+inline Vec2d to_2d(const Vec3d &pt3) { return Vec2d (pt3(0), pt3(1)); }
+
+inline Vec2d unscale(coord_t x, coord_t y) { return Vec2d(unscale<double>(x), unscale<double>(y)); }
+inline Vec2d unscale(const Vec2crd &pt) { return Vec2d(unscale<double>(pt(0)), unscale<double>(pt(1))); }
+inline Vec2d unscale(const Vec2d &pt) { return Vec2d(unscale<double>(pt(0)), unscale<double>(pt(1))); }
+inline Vec3d unscale(coord_t x, coord_t y, coord_t z) { return Vec3d(unscale<double>(x), unscale<double>(y), unscale<double>(z)); }
+inline Vec3d unscale(const Vec3crd &pt) { return Vec3d(unscale<double>(pt(0)), unscale<double>(pt(1)), unscale<double>(pt(2))); }
+inline Vec3d unscale(const Vec3d &pt) { return Vec3d(unscale<double>(pt(0)), unscale<double>(pt(1)), unscale<double>(pt(2))); }
+
+inline std::string to_string(const Vec2crd &pt) { return std::string("[") + std::to_string(pt(0)) + ", " + std::to_string(pt(1)) + "]"; }
+inline std::string to_string(const Vec2d &pt) { return std::string("[") + std::to_string(pt(0)) + ", " + std::to_string(pt(1)) + "]"; }
+inline std::string to_string(const Vec3crd &pt) { return std::string("[") + std::to_string(pt(0)) + ", " + std::to_string(pt(1)) + ", " + std::to_string(pt(2)) + "]"; }
+inline std::string to_string(const Vec3d &pt) { return std::string("[") + std::to_string(pt(0)) + ", " + std::to_string(pt(1)) + ", " + std::to_string(pt(2)) + "]"; }
+
+std::vector<Vec3f> transform(const std::vector<Vec3f>& points, const Transform3f& t);
+Pointf3s transform(const Pointf3s& points, const Transform3d& t);
+
+class Point : public Vec2crd
+{
+public:
+ typedef coord_t coord_type;
+
+ Point() : Vec2crd() { (*this)(0) = 0; (*this)(1) = 0; }
+ Point(coord_t x, coord_t y) { (*this)(0) = x; (*this)(1) = y; }
+ Point(int64_t x, int64_t y) { (*this)(0) = coord_t(x); (*this)(1) = coord_t(y); } // for Clipper
+ Point(double x, double y) { (*this)(0) = coord_t(lrint(x)); (*this)(1) = coord_t(lrint(y)); }
+ Point(const Point &rhs) { *this = rhs; }
+ // This constructor allows you to construct Point from Eigen expressions
+ template<typename OtherDerived>
+ Point(const Eigen::MatrixBase<OtherDerived> &other) : Vec2crd(other) {}
+ static Point new_scale(coordf_t x, coordf_t y) { return Point(coord_t(scale_(x)), coord_t(scale_(y))); }
+
+ // This method allows you to assign Eigen expressions to MyVectorType
+ template<typename OtherDerived>
+ Point& operator=(const Eigen::MatrixBase<OtherDerived> &other)
+ {
+ this->Vec2crd::operator=(other);
+ return *this;
+ }
+
+ bool operator< (const Point& rhs) const { return (*this)(0) < rhs(0) || ((*this)(0) == rhs(0) && (*this)(1) < rhs(1)); }
+
+ Point& operator+=(const Point& rhs) { (*this)(0) += rhs(0); (*this)(1) += rhs(1); return *this; }
+ Point& operator-=(const Point& rhs) { (*this)(0) -= rhs(0); (*this)(1) -= rhs(1); return *this; }
+ Point& operator*=(const double &rhs) { (*this)(0) *= rhs; (*this)(1) *= rhs; return *this; }
+
+ void rotate(double angle);
+ void rotate(double angle, const Point &center);
+ Point rotated(double angle) const { Point res(*this); res.rotate(angle); return res; }
+ Point rotated(double angle, const Point &center) const { Point res(*this); res.rotate(angle, center); return res; }
+ int nearest_point_index(const Points &points) const;
+ int nearest_point_index(const PointConstPtrs &points) const;
+ int nearest_point_index(const PointPtrs &points) const;
+ bool nearest_point(const Points &points, Point* point) const;
+ double ccw(const Point &p1, const Point &p2) const;
+ double ccw(const Line &line) const;
+ double ccw_angle(const Point &p1, const Point &p2) const;
+ Point projection_onto(const MultiPoint &poly) const;
+ Point projection_onto(const Line &line) const;
+};
+
+namespace int128 {
+ // Exact orientation predicate,
+ // returns +1: CCW, 0: collinear, -1: CW.
+ int orient(const Vec2crd &p1, const Vec2crd &p2, const Vec2crd &p3);
+ // Exact orientation predicate,
+ // returns +1: CCW, 0: collinear, -1: CW.
+ int cross(const Vec2crd &v1, const Vec2crd &v2);
+}
+
+// To be used by std::unordered_map, std::unordered_multimap and friends.
+struct PointHash {
+ size_t operator()(const Vec2crd &pt) const {
+ return std::hash<coord_t>()(pt(0)) ^ std::hash<coord_t>()(pt(1));
+ }
+};
+
+// A generic class to search for a closest Point in a given radius.
+// It uses std::unordered_multimap to implement an efficient 2D spatial hashing.
+// The PointAccessor has to return const Point*.
+// If a nullptr is returned, it is ignored by the query.
+template<typename ValueType, typename PointAccessor> class ClosestPointInRadiusLookup
+{
+public:
+ ClosestPointInRadiusLookup(coord_t search_radius, PointAccessor point_accessor = PointAccessor()) :
+ m_search_radius(search_radius), m_point_accessor(point_accessor), m_grid_log2(0)
+ {
+ // Resolution of a grid, twice the search radius + some epsilon.
+ coord_t gridres = 2 * m_search_radius + 4;
+ m_grid_resolution = gridres;
+ assert(m_grid_resolution > 0);
+ assert(m_grid_resolution < (coord_t(1) << 30));
+ // Compute m_grid_log2 = log2(m_grid_resolution)
+ if (m_grid_resolution > 32767) {
+ m_grid_resolution >>= 16;
+ m_grid_log2 += 16;
+ }
+ if (m_grid_resolution > 127) {
+ m_grid_resolution >>= 8;
+ m_grid_log2 += 8;
+ }
+ if (m_grid_resolution > 7) {
+ m_grid_resolution >>= 4;
+ m_grid_log2 += 4;
+ }
+ if (m_grid_resolution > 1) {
+ m_grid_resolution >>= 2;
+ m_grid_log2 += 2;
+ }
+ if (m_grid_resolution > 0)
+ ++ m_grid_log2;
+ m_grid_resolution = 1 << m_grid_log2;
+ assert(m_grid_resolution >= gridres);
+ assert(gridres > m_grid_resolution / 2);
+ }
+
+ void insert(const ValueType &value) {
+ const Vec2crd *pt = m_point_accessor(value);
+ if (pt != nullptr)
+ m_map.emplace(std::make_pair(Vec2crd(pt->x()>>m_grid_log2, pt->y()>>m_grid_log2), value));
+ }
+
+ void insert(ValueType &&value) {
+ const Vec2crd *pt = m_point_accessor(value);
+ if (pt != nullptr)
+ m_map.emplace(std::make_pair(Vec2crd(pt->x()>>m_grid_log2, pt->y()>>m_grid_log2), std::move(value)));
+ }
+
+ // Return a pair of <ValueType*, distance_squared>
+ std::pair<const ValueType*, double> find(const Vec2crd &pt) {
+ // Iterate over 4 closest grid cells around pt,
+ // find the closest start point inside these cells to pt.
+ const ValueType *value_min = nullptr;
+ double dist_min = std::numeric_limits<double>::max();
+ // Round pt to a closest grid_cell corner.
+ Vec2crd grid_corner((pt(0)+(m_grid_resolution>>1))>>m_grid_log2, (pt(1)+(m_grid_resolution>>1))>>m_grid_log2);
+ // For four neighbors of grid_corner:
+ for (coord_t neighbor_y = -1; neighbor_y < 1; ++ neighbor_y) {
+ for (coord_t neighbor_x = -1; neighbor_x < 1; ++ neighbor_x) {
+ // Range of fragment starts around grid_corner, close to pt.
+ auto range = m_map.equal_range(Vec2crd(grid_corner(0) + neighbor_x, grid_corner(1) + neighbor_y));
+ // Find the map entry closest to pt.
+ for (auto it = range.first; it != range.second; ++it) {
+ const ValueType &value = it->second;
+ const Vec2crd *pt2 = m_point_accessor(value);
+ if (pt2 != nullptr) {
+ const double d2 = (pt - *pt2).squaredNorm();
+ if (d2 < dist_min) {
+ dist_min = d2;
+ value_min = &value;
+ }
+ }
+ }
+ }
+ }
+ return (value_min != nullptr && dist_min < coordf_t(m_search_radius * m_search_radius)) ?
+ std::make_pair(value_min, dist_min) :
+ std::make_pair(nullptr, std::numeric_limits<double>::max());
+ }
+
+private:
+ typedef typename std::unordered_multimap<Vec2crd, ValueType, PointHash> map_type;
+ PointAccessor m_point_accessor;
+ map_type m_map;
+ coord_t m_search_radius;
+ coord_t m_grid_resolution;
+ coord_t m_grid_log2;
+};
+
+std::ostream& operator<<(std::ostream &stm, const Vec2d &pointf);
+
+} // namespace Slic3r
+
+// start Boost
+#include <boost/version.hpp>
+#include <boost/polygon/polygon.hpp>
+namespace boost { namespace polygon {
+ template <>
+ struct geometry_concept<Slic3r::Point> { typedef point_concept type; };
+
+ template <>
+ struct point_traits<Slic3r::Point> {
+ typedef coord_t coordinate_type;
+
+ static inline coordinate_type get(const Slic3r::Point& point, orientation_2d orient) {
+ return (orient == HORIZONTAL) ? (coordinate_type)point(0) : (coordinate_type)point(1);
+ }
+ };
+
+ template <>
+ struct point_mutable_traits<Slic3r::Point> {
+ typedef coord_t coordinate_type;
+ static inline void set(Slic3r::Point& point, orientation_2d orient, coord_t value) {
+ if (orient == HORIZONTAL)
+ point(0) = value;
+ else
+ point(1) = value;
+ }
+ static inline Slic3r::Point construct(coord_t x_value, coord_t y_value) {
+ Slic3r::Point retval;
+ retval(0) = x_value;
+ retval(1) = y_value;
+ return retval;
+ }
+ };
+} }
+// end Boost
+
+#endif