Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'src/libslic3r/PrintObject.cpp')
-rw-r--r--src/libslic3r/PrintObject.cpp2263
1 files changed, 2263 insertions, 0 deletions
diff --git a/src/libslic3r/PrintObject.cpp b/src/libslic3r/PrintObject.cpp
new file mode 100644
index 000000000..ef2364dc4
--- /dev/null
+++ b/src/libslic3r/PrintObject.cpp
@@ -0,0 +1,2263 @@
+#include "Print.hpp"
+#include "BoundingBox.hpp"
+#include "ClipperUtils.hpp"
+#include "Geometry.hpp"
+#include "SupportMaterial.hpp"
+#include "Surface.hpp"
+#include "Slicing.hpp"
+
+#include <utility>
+#include <boost/log/trivial.hpp>
+#include <float.h>
+
+#include <tbb/task_scheduler_init.h>
+#include <tbb/parallel_for.h>
+#include <tbb/atomic.h>
+
+#include <Shiny/Shiny.h>
+
+#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
+#define SLIC3R_DEBUG
+#endif
+
+// #define SLIC3R_DEBUG
+
+// Make assert active if SLIC3R_DEBUG
+#ifdef SLIC3R_DEBUG
+ #undef NDEBUG
+ #define DEBUG
+ #define _DEBUG
+ #include "SVG.hpp"
+ #undef assert
+ #include <cassert>
+#endif
+
+namespace Slic3r {
+
+PrintObject::PrintObject(Print* print, ModelObject* model_object, const BoundingBoxf3 &modobj_bbox) :
+ typed_slices(false),
+ m_print(print),
+ m_model_object(model_object),
+ size(Vec3crd::Zero()),
+ layer_height_profile_valid(false)
+{
+ // Compute the translation to be applied to our meshes so that we work with smaller coordinates
+ {
+ // Translate meshes so that our toolpath generation algorithms work with smaller
+ // XY coordinates; this translation is an optimization and not strictly required.
+ // A cloned mesh will be aligned to 0 before slicing in _slice_region() since we
+ // don't assume it's already aligned and we don't alter the original position in model.
+ // We store the XY translation so that we can place copies correctly in the output G-code
+ // (copies are expressed in G-code coordinates and this translation is not publicly exposed).
+ m_copies_shift = Point::new_scale(modobj_bbox.min(0), modobj_bbox.min(1));
+ // Scale the object size and store it
+ this->size = (modobj_bbox.size() * (1. / SCALING_FACTOR)).cast<coord_t>();
+ }
+
+ this->reload_model_instances();
+ this->layer_height_ranges = model_object->layer_height_ranges;
+ this->layer_height_profile = model_object->layer_height_profile;
+}
+
+void PrintObject::set_started(PrintObjectStep step)
+{
+ m_state.set_started(step, m_print->m_mutex);
+}
+
+void PrintObject::set_done(PrintObjectStep step)
+{
+ m_state.set_done(step, m_print->m_mutex);
+}
+
+bool PrintObject::add_copy(const Vec2d &point)
+{
+ tbb::mutex::scoped_lock lock(m_print->m_mutex);
+ Points points = m_copies;
+ points.push_back(Point::new_scale(point(0), point(1)));
+ return this->set_copies(points);
+}
+
+bool PrintObject::delete_last_copy()
+{
+ tbb::mutex::scoped_lock lock(m_print->m_mutex);
+ Points points = m_copies;
+ points.pop_back();
+ return this->set_copies(points);
+}
+
+bool PrintObject::set_copies(const Points &points)
+{
+ bool copies_num_changed = m_copies.size() != points.size();
+
+ // order copies with a nearest neighbor search and translate them by _copies_shift
+ m_copies.clear();
+ m_copies.reserve(points.size());
+
+ // order copies with a nearest-neighbor search
+ std::vector<Points::size_type> ordered_copies;
+ Slic3r::Geometry::chained_path(points, ordered_copies);
+
+ for (size_t point_idx : ordered_copies)
+ m_copies.push_back(points[point_idx] + m_copies_shift);
+
+ bool invalidated = m_print->invalidate_step(psSkirt);
+ invalidated |= m_print->invalidate_step(psBrim);
+ if (copies_num_changed)
+ invalidated |= m_print->invalidate_step(psWipeTower);
+ return invalidated;
+}
+
+bool PrintObject::reload_model_instances()
+{
+ Points copies;
+ copies.reserve(m_model_object->instances.size());
+ for (const ModelInstance *mi : m_model_object->instances)
+ {
+#if ENABLE_MODELINSTANCE_3D_OFFSET
+ if (mi->is_printable())
+ {
+ const Vec3d& offset = mi->get_offset();
+ copies.emplace_back(Point::new_scale(offset(0), offset(1)));
+ }
+#else
+ if (mi->is_printable())
+ copies.emplace_back(Point::new_scale(mi->offset(0), mi->offset(1)));
+#endif // ENABLE_MODELINSTANCE_3D_OFFSET
+ }
+ return this->set_copies(copies);
+}
+
+// 1) Decides Z positions of the layers,
+// 2) Initializes layers and their regions
+// 3) Slices the object meshes
+// 4) Slices the modifier meshes and reclassifies the slices of the object meshes by the slices of the modifier meshes
+// 5) Applies size compensation (offsets the slices in XY plane)
+// 6) Replaces bad slices by the slices reconstructed from the upper/lower layer
+// Resulting expolygons of layer regions are marked as Internal.
+//
+// this should be idempotent
+void PrintObject::slice()
+{
+ if (this->is_step_done(posSlice))
+ return;
+ this->set_started(posSlice);
+ m_print->set_status(10, "Processing triangulated mesh");
+ this->_slice();
+ m_print->throw_if_canceled();
+ // Fix the model.
+ //FIXME is this the right place to do? It is done repeateadly at the UI and now here at the backend.
+ std::string warning = this->_fix_slicing_errors();
+ m_print->throw_if_canceled();
+ if (! warning.empty())
+ BOOST_LOG_TRIVIAL(info) << warning;
+ // Simplify slices if required.
+ if (m_print->config().resolution)
+ this->_simplify_slices(scale_(this->print()->config().resolution));
+ if (m_layers.empty())
+ throw std::runtime_error("No layers were detected. You might want to repair your STL file(s) or check their size or thickness and retry.\n");
+ this->set_done(posSlice);
+}
+
+// 1) Merges typed region slices into stInternal type.
+// 2) Increases an "extra perimeters" counter at region slices where needed.
+// 3) Generates perimeters, gap fills and fill regions (fill regions of type stInternal).
+void PrintObject::make_perimeters()
+{
+ // prerequisites
+ this->slice();
+
+ if (this->is_step_done(posPerimeters))
+ return;
+
+ this->set_started(posPerimeters);
+ m_print->set_status(20, "Generating perimeters");
+ BOOST_LOG_TRIVIAL(info) << "Generating perimeters...";
+
+ // merge slices if they were split into types
+ if (this->typed_slices) {
+ FOREACH_LAYER(this, layer_it) {
+ (*layer_it)->merge_slices();
+ m_print->throw_if_canceled();
+ }
+ this->typed_slices = false;
+ }
+
+ // compare each layer to the one below, and mark those slices needing
+ // one additional inner perimeter, like the top of domed objects-
+
+ // this algorithm makes sure that at least one perimeter is overlapping
+ // but we don't generate any extra perimeter if fill density is zero, as they would be floating
+ // inside the object - infill_only_where_needed should be the method of choice for printing
+ // hollow objects
+ for (size_t region_id = 0; region_id < m_print->regions().size(); ++ region_id) {
+ const PrintRegion &region = *m_print->regions()[region_id];
+ if (! region.config().extra_perimeters || region.config().perimeters == 0 || region.config().fill_density == 0 || this->layer_count() < 2)
+ continue;
+
+ BOOST_LOG_TRIVIAL(debug) << "Generating extra perimeters for region " << region_id << " in parallel - start";
+ tbb::parallel_for(
+ tbb::blocked_range<size_t>(0, m_layers.size() - 1),
+ [this, &region, region_id](const tbb::blocked_range<size_t>& range) {
+ for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
+ m_print->throw_if_canceled();
+ LayerRegion &layerm = *m_layers[layer_idx]->m_regions[region_id];
+ const LayerRegion &upper_layerm = *m_layers[layer_idx+1]->m_regions[region_id];
+ const Polygons upper_layerm_polygons = upper_layerm.slices;
+ // Filter upper layer polygons in intersection_ppl by their bounding boxes?
+ // my $upper_layerm_poly_bboxes= [ map $_->bounding_box, @{$upper_layerm_polygons} ];
+ const double total_loop_length = total_length(upper_layerm_polygons);
+ const coord_t perimeter_spacing = layerm.flow(frPerimeter).scaled_spacing();
+ const Flow ext_perimeter_flow = layerm.flow(frExternalPerimeter);
+ const coord_t ext_perimeter_width = ext_perimeter_flow.scaled_width();
+ const coord_t ext_perimeter_spacing = ext_perimeter_flow.scaled_spacing();
+
+ for (Surface &slice : layerm.slices.surfaces) {
+ for (;;) {
+ // compute the total thickness of perimeters
+ const coord_t perimeters_thickness = ext_perimeter_width/2 + ext_perimeter_spacing/2
+ + (region.config().perimeters-1 + slice.extra_perimeters) * perimeter_spacing;
+ // define a critical area where we don't want the upper slice to fall into
+ // (it should either lay over our perimeters or outside this area)
+ const coord_t critical_area_depth = coord_t(perimeter_spacing * 1.5);
+ const Polygons critical_area = diff(
+ offset(slice.expolygon, float(- perimeters_thickness)),
+ offset(slice.expolygon, float(- perimeters_thickness - critical_area_depth))
+ );
+ // check whether a portion of the upper slices falls inside the critical area
+ const Polylines intersection = intersection_pl(to_polylines(upper_layerm_polygons), critical_area);
+ // only add an additional loop if at least 30% of the slice loop would benefit from it
+ if (total_length(intersection) <= total_loop_length*0.3)
+ break;
+ /*
+ if (0) {
+ require "Slic3r/SVG.pm";
+ Slic3r::SVG::output(
+ "extra.svg",
+ no_arrows => 1,
+ expolygons => union_ex($critical_area),
+ polylines => [ map $_->split_at_first_point, map $_->p, @{$upper_layerm->slices} ],
+ );
+ }
+ */
+ ++ slice.extra_perimeters;
+ }
+ #ifdef DEBUG
+ if (slice.extra_perimeters > 0)
+ printf(" adding %d more perimeter(s) at layer %zu\n", slice.extra_perimeters, layer_idx);
+ #endif
+ }
+ }
+ });
+ m_print->throw_if_canceled();
+ BOOST_LOG_TRIVIAL(debug) << "Generating extra perimeters for region " << region_id << " in parallel - end";
+ }
+
+ BOOST_LOG_TRIVIAL(debug) << "Generating perimeters in parallel - start";
+ tbb::parallel_for(
+ tbb::blocked_range<size_t>(0, m_layers.size()),
+ [this](const tbb::blocked_range<size_t>& range) {
+ for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
+ m_print->throw_if_canceled();
+ m_layers[layer_idx]->make_perimeters();
+ }
+ }
+ );
+ m_print->throw_if_canceled();
+ BOOST_LOG_TRIVIAL(debug) << "Generating perimeters in parallel - end";
+
+ /*
+ simplify slices (both layer and region slices),
+ we only need the max resolution for perimeters
+ ### This makes this method not-idempotent, so we keep it disabled for now.
+ ###$self->_simplify_slices(&Slic3r::SCALED_RESOLUTION);
+ */
+
+ this->set_done(posPerimeters);
+}
+
+void PrintObject::prepare_infill()
+{
+ if (this->is_step_done(posPrepareInfill))
+ return;
+
+ this->set_started(posPrepareInfill);
+ m_print->set_status(30, "Preparing infill");
+
+ // This will assign a type (top/bottom/internal) to $layerm->slices.
+ // Then the classifcation of $layerm->slices is transfered onto
+ // the $layerm->fill_surfaces by clipping $layerm->fill_surfaces
+ // by the cummulative area of the previous $layerm->fill_surfaces.
+ this->detect_surfaces_type();
+ m_print->throw_if_canceled();
+
+ // Decide what surfaces are to be filled.
+ // Here the S_TYPE_TOP / S_TYPE_BOTTOMBRIDGE / S_TYPE_BOTTOM infill is turned to just S_TYPE_INTERNAL if zero top / bottom infill layers are configured.
+ // Also tiny S_TYPE_INTERNAL surfaces are turned to S_TYPE_INTERNAL_SOLID.
+ BOOST_LOG_TRIVIAL(info) << "Preparing fill surfaces...";
+ for (auto *layer : m_layers)
+ for (auto *region : layer->m_regions) {
+ region->prepare_fill_surfaces();
+ m_print->throw_if_canceled();
+ }
+
+ // this will detect bridges and reverse bridges
+ // and rearrange top/bottom/internal surfaces
+ // It produces enlarged overlapping bridging areas.
+ //
+ // 1) S_TYPE_BOTTOMBRIDGE / S_TYPE_BOTTOM infill is grown by 3mm and clipped by the total infill area. Bridges are detected. The areas may overlap.
+ // 2) S_TYPE_TOP is grown by 3mm and clipped by the grown bottom areas. The areas may overlap.
+ // 3) Clip the internal surfaces by the grown top/bottom surfaces.
+ // 4) Merge surfaces with the same style. This will mostly get rid of the overlaps.
+ //FIXME This does not likely merge surfaces, which are supported by a material with different colors, but same properties.
+ this->process_external_surfaces();
+ m_print->throw_if_canceled();
+
+ // Add solid fills to ensure the shell vertical thickness.
+ this->discover_vertical_shells();
+ m_print->throw_if_canceled();
+
+ // Debugging output.
+#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
+ for (size_t region_id = 0; region_id < this->print()->regions().size(); ++ region_id) {
+ for (const Layer *layer : m_layers) {
+ LayerRegion *layerm = layer->m_regions[region_id];
+ layerm->export_region_slices_to_svg_debug("6_discover_vertical_shells-final");
+ layerm->export_region_fill_surfaces_to_svg_debug("6_discover_vertical_shells-final");
+ } // for each layer
+ } // for each region
+#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
+
+ // Detect, which fill surfaces are near external layers.
+ // They will be split in internal and internal-solid surfaces.
+ // The purpose is to add a configurable number of solid layers to support the TOP surfaces
+ // and to add a configurable number of solid layers above the BOTTOM / BOTTOMBRIDGE surfaces
+ // to close these surfaces reliably.
+ //FIXME Vojtech: Is this a good place to add supporting infills below sloping perimeters?
+ this->discover_horizontal_shells();
+ m_print->throw_if_canceled();
+
+#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
+ for (size_t region_id = 0; region_id < this->print()->regions().size(); ++ region_id) {
+ for (const Layer *layer : m_layers) {
+ LayerRegion *layerm = layer->m_regions[region_id];
+ layerm->export_region_slices_to_svg_debug("7_discover_horizontal_shells-final");
+ layerm->export_region_fill_surfaces_to_svg_debug("7_discover_horizontal_shells-final");
+ } // for each layer
+ } // for each region
+#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
+
+ // Only active if config->infill_only_where_needed. This step trims the sparse infill,
+ // so it acts as an internal support. It maintains all other infill types intact.
+ // Here the internal surfaces and perimeters have to be supported by the sparse infill.
+ //FIXME The surfaces are supported by a sparse infill, but the sparse infill is only as large as the area to support.
+ // Likely the sparse infill will not be anchored correctly, so it will not work as intended.
+ // Also one wishes the perimeters to be supported by a full infill.
+ this->clip_fill_surfaces();
+ m_print->throw_if_canceled();
+
+#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
+ for (size_t region_id = 0; region_id < this->print()->regions().size(); ++ region_id) {
+ for (const Layer *layer : m_layers) {
+ LayerRegion *layerm = layer->m_regions[region_id];
+ layerm->export_region_slices_to_svg_debug("8_clip_surfaces-final");
+ layerm->export_region_fill_surfaces_to_svg_debug("8_clip_surfaces-final");
+ } // for each layer
+ } // for each region
+#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
+
+ // the following step needs to be done before combination because it may need
+ // to remove only half of the combined infill
+ this->bridge_over_infill();
+ m_print->throw_if_canceled();
+
+ // combine fill surfaces to honor the "infill every N layers" option
+ this->combine_infill();
+ m_print->throw_if_canceled();
+
+#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
+ for (size_t region_id = 0; region_id < this->print()->regions().size(); ++ region_id) {
+ for (const Layer *layer : m_layers) {
+ LayerRegion *layerm = layer->m_regions[region_id];
+ layerm->export_region_slices_to_svg_debug("9_prepare_infill-final");
+ layerm->export_region_fill_surfaces_to_svg_debug("9_prepare_infill-final");
+ } // for each layer
+ } // for each region
+ for (const Layer *layer : m_layers) {
+ layer->export_region_slices_to_svg_debug("9_prepare_infill-final");
+ layer->export_region_fill_surfaces_to_svg_debug("9_prepare_infill-final");
+ } // for each layer
+#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
+
+ this->set_done(posPrepareInfill);
+}
+
+void PrintObject::infill()
+{
+ if (! this->is_printable())
+ return;
+
+ // prerequisites
+ this->prepare_infill();
+
+ if (! this->is_step_done(posInfill)) {
+ this->set_started(posInfill);
+ BOOST_LOG_TRIVIAL(debug) << "Filling layers in parallel - start";
+ tbb::parallel_for(
+ tbb::blocked_range<size_t>(0, m_layers.size()),
+ [this](const tbb::blocked_range<size_t>& range) {
+ for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
+ m_print->throw_if_canceled();
+ m_layers[layer_idx]->make_fills();
+ }
+ }
+ );
+ m_print->throw_if_canceled();
+ BOOST_LOG_TRIVIAL(debug) << "Filling layers in parallel - end";
+ /* we could free memory now, but this would make this step not idempotent
+ ### $_->fill_surfaces->clear for map @{$_->regions}, @{$object->layers};
+ */
+ this->set_done(posInfill);
+ }
+}
+
+void PrintObject::generate_support_material()
+{
+ if (! this->is_step_done(posSupportMaterial)) {
+ this->set_started(posSupportMaterial);
+ this->clear_support_layers();
+ if ((m_config.support_material || m_config.raft_layers > 0) && m_layers.size() > 1) {
+ m_print->set_status(85, "Generating support material");
+ this->_generate_support_material();
+ m_print->throw_if_canceled();
+ }
+ this->set_done(posSupportMaterial);
+ }
+}
+
+void PrintObject::clear_layers()
+{
+ for (Layer *l : m_layers)
+ delete l;
+ m_layers.clear();
+}
+
+Layer* PrintObject::add_layer(int id, coordf_t height, coordf_t print_z, coordf_t slice_z)
+{
+ m_layers.emplace_back(new Layer(id, this, height, print_z, slice_z));
+ return m_layers.back();
+}
+
+void PrintObject::clear_support_layers()
+{
+ for (Layer *l : m_support_layers)
+ delete l;
+ m_support_layers.clear();
+}
+
+SupportLayer* PrintObject::add_support_layer(int id, coordf_t height, coordf_t print_z)
+{
+ m_support_layers.emplace_back(new SupportLayer(id, this, height, print_z, -1));
+ return m_support_layers.back();
+}
+
+SupportLayerPtrs::const_iterator PrintObject::insert_support_layer(SupportLayerPtrs::const_iterator pos, int id, coordf_t height, coordf_t print_z, coordf_t slice_z)
+{
+ return m_support_layers.insert(pos, new SupportLayer(id, this, height, print_z, slice_z));
+}
+
+// Called by Print::apply_config().
+// This method only accepts PrintObjectConfig and PrintRegionConfig option keys.
+bool PrintObject::invalidate_state_by_config_options(const std::vector<t_config_option_key> &opt_keys)
+{
+ if (opt_keys.empty())
+ return false;
+
+ std::vector<PrintObjectStep> steps;
+ bool invalidated = false;
+ for (const t_config_option_key &opt_key : opt_keys) {
+ if ( opt_key == "perimeters"
+ || opt_key == "extra_perimeters"
+ || opt_key == "gap_fill_speed"
+ || opt_key == "overhangs"
+ || opt_key == "first_layer_extrusion_width"
+ || opt_key == "perimeter_extrusion_width"
+ || opt_key == "infill_overlap"
+ || opt_key == "thin_walls"
+ || opt_key == "external_perimeters_first") {
+ steps.emplace_back(posPerimeters);
+ } else if (
+ opt_key == "layer_height"
+ || opt_key == "first_layer_height"
+ || opt_key == "raft_layers") {
+ steps.emplace_back(posSlice);
+ this->reset_layer_height_profile();
+ }
+ else if (
+ opt_key == "clip_multipart_objects"
+ || opt_key == "elefant_foot_compensation"
+ || opt_key == "support_material_contact_distance"
+ || opt_key == "xy_size_compensation") {
+ steps.emplace_back(posSlice);
+ } else if (
+ opt_key == "support_material"
+ || opt_key == "support_material_auto"
+ || opt_key == "support_material_angle"
+ || opt_key == "support_material_buildplate_only"
+ || opt_key == "support_material_enforce_layers"
+ || opt_key == "support_material_extruder"
+ || opt_key == "support_material_extrusion_width"
+ || opt_key == "support_material_interface_layers"
+ || opt_key == "support_material_interface_contact_loops"
+ || opt_key == "support_material_interface_extruder"
+ || opt_key == "support_material_interface_spacing"
+ || opt_key == "support_material_pattern"
+ || opt_key == "support_material_xy_spacing"
+ || opt_key == "support_material_spacing"
+ || opt_key == "support_material_synchronize_layers"
+ || opt_key == "support_material_threshold"
+ || opt_key == "support_material_with_sheath"
+ || opt_key == "dont_support_bridges"
+ || opt_key == "first_layer_extrusion_width") {
+ steps.emplace_back(posSupportMaterial);
+ } else if (
+ opt_key == "interface_shells"
+ || opt_key == "infill_only_where_needed"
+ || opt_key == "infill_every_layers"
+ || opt_key == "solid_infill_every_layers"
+ || opt_key == "bottom_solid_layers"
+ || opt_key == "top_solid_layers"
+ || opt_key == "solid_infill_below_area"
+ || opt_key == "infill_extruder"
+ || opt_key == "solid_infill_extruder"
+ || opt_key == "infill_extrusion_width"
+ || opt_key == "ensure_vertical_shell_thickness"
+ || opt_key == "bridge_angle") {
+ steps.emplace_back(posPrepareInfill);
+ } else if (
+ opt_key == "external_fill_pattern"
+ || opt_key == "external_fill_link_max_length"
+ || opt_key == "fill_angle"
+ || opt_key == "fill_pattern"
+ || opt_key == "fill_link_max_length"
+ || opt_key == "top_infill_extrusion_width"
+ || opt_key == "first_layer_extrusion_width") {
+ steps.emplace_back(posInfill);
+ } else if (
+ opt_key == "fill_density"
+ || opt_key == "solid_infill_extrusion_width") {
+ steps.emplace_back(posPerimeters);
+ steps.emplace_back(posPrepareInfill);
+ } else if (
+ opt_key == "external_perimeter_extrusion_width"
+ || opt_key == "perimeter_extruder") {
+ steps.emplace_back(posPerimeters);
+ steps.emplace_back(posSupportMaterial);
+ } else if (opt_key == "bridge_flow_ratio") {
+ steps.emplace_back(posPerimeters);
+ steps.emplace_back(posInfill);
+ } else if (
+ opt_key == "seam_position"
+ || opt_key == "seam_preferred_direction"
+ || opt_key == "seam_preferred_direction_jitter"
+ || opt_key == "support_material_speed"
+ || opt_key == "support_material_interface_speed"
+ || opt_key == "bridge_speed"
+ || opt_key == "external_perimeter_speed"
+ || opt_key == "infill_speed"
+ || opt_key == "perimeter_speed"
+ || opt_key == "small_perimeter_speed"
+ || opt_key == "solid_infill_speed"
+ || opt_key == "top_solid_infill_speed"
+ || opt_key == "wipe_into_infill" // when these these two are changed, we only need to invalidate the wipe tower,
+ || opt_key == "wipe_into_objects" // which we already did at the very beginning - nothing more to be done
+ ) {
+ // these options only affect G-code export, so nothing to invalidate
+ } else {
+ // for legacy, if we can't handle this option let's invalidate all steps
+ this->invalidate_all_steps();
+ this->reset_layer_height_profile();
+ invalidated = true;
+ }
+ }
+
+ sort_remove_duplicates(steps);
+ for (PrintObjectStep step : steps)
+ invalidated |= this->invalidate_step(step);
+ return invalidated;
+}
+
+bool PrintObject::invalidate_step(PrintObjectStep step)
+{
+ bool invalidated = m_state.invalidate(step, m_print->m_mutex, m_print->m_cancel_callback);
+
+ // propagate to dependent steps
+ if (step == posPerimeters) {
+ invalidated |= this->invalidate_step(posPrepareInfill);
+ invalidated |= m_print->invalidate_step(psSkirt);
+ invalidated |= m_print->invalidate_step(psBrim);
+ } else if (step == posPrepareInfill) {
+ invalidated |= this->invalidate_step(posInfill);
+ } else if (step == posInfill) {
+ invalidated |= m_print->invalidate_step(psSkirt);
+ invalidated |= m_print->invalidate_step(psBrim);
+ } else if (step == posSlice) {
+ invalidated |= this->invalidate_step(posPerimeters);
+ invalidated |= this->invalidate_step(posSupportMaterial);
+ invalidated |= m_print->invalidate_step(psWipeTower);
+ } else if (step == posSupportMaterial) {
+ invalidated |= m_print->invalidate_step(psSkirt);
+ invalidated |= m_print->invalidate_step(psBrim);
+ }
+
+ // Wipe tower depends on the ordering of extruders, which in turn depends on everything.
+ // It also decides about what the wipe_into_infill / wipe_into_object features will do,
+ // and that too depends on many of the settings.
+ invalidated |= m_print->invalidate_step(psWipeTower);
+ return invalidated;
+}
+
+bool PrintObject::invalidate_all_steps()
+{
+ return m_state.invalidate_all(m_print->m_mutex, m_print->m_cancel_callback);
+}
+
+bool PrintObject::has_support_material() const
+{
+ return m_config.support_material
+ || m_config.raft_layers > 0
+ || m_config.support_material_enforce_layers > 0;
+}
+
+// This function analyzes slices of a region (SurfaceCollection slices).
+// Each region slice (instance of Surface) is analyzed, whether it is supported or whether it is the top surface.
+// Initially all slices are of type stInternal.
+// Slices are compared against the top / bottom slices and regions and classified to the following groups:
+// stTop - Part of a region, which is not covered by any upper layer. This surface will be filled with a top solid infill.
+// stBottomBridge - Part of a region, which is not fully supported, but it hangs in the air, or it hangs losely on a support or a raft.
+// stBottom - Part of a region, which is not supported by the same region, but it is supported either by another region, or by a soluble interface layer.
+// stInternal - Part of a region, which is supported by the same region type.
+// If a part of a region is of stBottom and stTop, the stBottom wins.
+void PrintObject::detect_surfaces_type()
+{
+ BOOST_LOG_TRIVIAL(info) << "Detecting solid surfaces...";
+
+ // Interface shells: the intersecting parts are treated as self standing objects supporting each other.
+ // Each of the objects will have a full number of top / bottom layers, even if these top / bottom layers
+ // are completely hidden inside a collective body of intersecting parts.
+ // This is useful if one of the parts is to be dissolved, or if it is transparent and the internal shells
+ // should be visible.
+ bool interface_shells = m_config.interface_shells.value;
+
+ for (int idx_region = 0; idx_region < m_print->m_regions.size(); ++ idx_region) {
+ BOOST_LOG_TRIVIAL(debug) << "Detecting solid surfaces for region " << idx_region << " in parallel - start";
+#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
+ for (Layer *layer : m_layers)
+ layer->m_regions[idx_region]->export_region_fill_surfaces_to_svg_debug("1_detect_surfaces_type-initial");
+#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
+
+ // If interface shells are allowed, the region->surfaces cannot be overwritten as they may be used by other threads.
+ // Cache the result of the following parallel_loop.
+ std::vector<Surfaces> surfaces_new;
+ if (interface_shells)
+ surfaces_new.assign(m_layers.size(), Surfaces());
+
+ tbb::parallel_for(
+ tbb::blocked_range<size_t>(0, m_layers.size()),
+ [this, idx_region, interface_shells, &surfaces_new](const tbb::blocked_range<size_t>& range) {
+ // If we have raft layers, consider bottom layer as a bridge just like any other bottom surface lying on the void.
+ SurfaceType surface_type_bottom_1st =
+ (m_config.raft_layers.value > 0 && m_config.support_material_contact_distance.value > 0) ?
+ stBottomBridge : stBottom;
+ // If we have soluble support material, don't bridge. The overhang will be squished against a soluble layer separating
+ // the support from the print.
+ SurfaceType surface_type_bottom_other =
+ (m_config.support_material.value && m_config.support_material_contact_distance.value == 0) ?
+ stBottom : stBottomBridge;
+ for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
+ m_print->throw_if_canceled();
+ // BOOST_LOG_TRIVIAL(trace) << "Detecting solid surfaces for region " << idx_region << " and layer " << layer->print_z;
+ Layer *layer = m_layers[idx_layer];
+ LayerRegion *layerm = layer->get_region(idx_region);
+ // comparison happens against the *full* slices (considering all regions)
+ // unless internal shells are requested
+ Layer *upper_layer = (idx_layer + 1 < this->layer_count()) ? m_layers[idx_layer + 1] : nullptr;
+ Layer *lower_layer = (idx_layer > 0) ? m_layers[idx_layer - 1] : nullptr;
+ // collapse very narrow parts (using the safety offset in the diff is not enough)
+ float offset = layerm->flow(frExternalPerimeter).scaled_width() / 10.f;
+
+ Polygons layerm_slices_surfaces = to_polygons(layerm->slices.surfaces);
+
+ // find top surfaces (difference between current surfaces
+ // of current layer and upper one)
+ Surfaces top;
+ if (upper_layer) {
+ Polygons upper_slices = interface_shells ?
+ to_polygons(upper_layer->get_region(idx_region)->slices.surfaces) :
+ to_polygons(upper_layer->slices);
+ surfaces_append(top,
+ //FIXME implement offset2_ex working over ExPolygons, that should be a bit more efficient than calling offset_ex twice.
+ offset_ex(offset_ex(diff_ex(layerm_slices_surfaces, upper_slices, true), -offset), offset),
+ stTop);
+ } else {
+ // if no upper layer, all surfaces of this one are solid
+ // we clone surfaces because we're going to clear the slices collection
+ top = layerm->slices.surfaces;
+ for (Surface &surface : top)
+ surface.surface_type = stTop;
+ }
+
+ // Find bottom surfaces (difference between current surfaces of current layer and lower one).
+ Surfaces bottom;
+ if (lower_layer) {
+#if 0
+ //FIXME Why is this branch failing t\multi.t ?
+ Polygons lower_slices = interface_shells ?
+ to_polygons(lower_layer->get_region(idx_region)->slices.surfaces) :
+ to_polygons(lower_layer->slices);
+ surfaces_append(bottom,
+ offset2_ex(diff(layerm_slices_surfaces, lower_slices, true), -offset, offset),
+ surface_type_bottom_other);
+#else
+ // Any surface lying on the void is a true bottom bridge (an overhang)
+ surfaces_append(
+ bottom,
+ offset2_ex(
+ diff(layerm_slices_surfaces, to_polygons(lower_layer->slices), true),
+ -offset, offset),
+ surface_type_bottom_other);
+ // if user requested internal shells, we need to identify surfaces
+ // lying on other slices not belonging to this region
+ if (interface_shells) {
+ // non-bridging bottom surfaces: any part of this layer lying
+ // on something else, excluding those lying on our own region
+ surfaces_append(
+ bottom,
+ offset2_ex(
+ diff(
+ intersection(layerm_slices_surfaces, to_polygons(lower_layer->slices)), // supported
+ to_polygons(lower_layer->get_region(idx_region)->slices.surfaces),
+ true),
+ -offset, offset),
+ stBottom);
+ }
+#endif
+ } else {
+ // if no lower layer, all surfaces of this one are solid
+ // we clone surfaces because we're going to clear the slices collection
+ bottom = layerm->slices.surfaces;
+ for (Surface &surface : bottom)
+ surface.surface_type = surface_type_bottom_1st;
+ }
+
+ // now, if the object contained a thin membrane, we could have overlapping bottom
+ // and top surfaces; let's do an intersection to discover them and consider them
+ // as bottom surfaces (to allow for bridge detection)
+ if (! top.empty() && ! bottom.empty()) {
+ // Polygons overlapping = intersection(to_polygons(top), to_polygons(bottom));
+ // Slic3r::debugf " layer %d contains %d membrane(s)\n", $layerm->layer->id, scalar(@$overlapping)
+ // if $Slic3r::debug;
+ Polygons top_polygons = to_polygons(std::move(top));
+ top.clear();
+ surfaces_append(top,
+ diff_ex(top_polygons, to_polygons(bottom), false),
+ stTop);
+ }
+
+ #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
+ {
+ static int iRun = 0;
+ std::vector<std::pair<Slic3r::ExPolygons, SVG::ExPolygonAttributes>> expolygons_with_attributes;
+ expolygons_with_attributes.emplace_back(std::make_pair(union_ex(top), SVG::ExPolygonAttributes("green")));
+ expolygons_with_attributes.emplace_back(std::make_pair(union_ex(bottom), SVG::ExPolygonAttributes("brown")));
+ expolygons_with_attributes.emplace_back(std::make_pair(to_expolygons(layerm->slices.surfaces), SVG::ExPolygonAttributes("black")));
+ SVG::export_expolygons(debug_out_path("1_detect_surfaces_type_%d_region%d-layer_%f.svg", iRun ++, idx_region, layer->print_z).c_str(), expolygons_with_attributes);
+ }
+ #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
+
+ // save surfaces to layer
+ Surfaces &surfaces_out = interface_shells ? surfaces_new[idx_layer] : layerm->slices.surfaces;
+ surfaces_out.clear();
+
+ // find internal surfaces (difference between top/bottom surfaces and others)
+ {
+ Polygons topbottom = to_polygons(top);
+ polygons_append(topbottom, to_polygons(bottom));
+ surfaces_append(surfaces_out,
+ diff_ex(layerm_slices_surfaces, topbottom, false),
+ stInternal);
+ }
+
+ surfaces_append(surfaces_out, std::move(top));
+ surfaces_append(surfaces_out, std::move(bottom));
+
+ // Slic3r::debugf " layer %d has %d bottom, %d top and %d internal surfaces\n",
+ // $layerm->layer->id, scalar(@bottom), scalar(@top), scalar(@internal) if $Slic3r::debug;
+
+ #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
+ layerm->export_region_slices_to_svg_debug("detect_surfaces_type-final");
+ #endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
+ }
+ }
+ ); // for each layer of a region
+ m_print->throw_if_canceled();
+
+ if (interface_shells) {
+ // Move surfaces_new to layerm->slices.surfaces
+ for (size_t idx_layer = 0; idx_layer < m_layers.size(); ++ idx_layer)
+ m_layers[idx_layer]->get_region(idx_region)->slices.surfaces = std::move(surfaces_new[idx_layer]);
+ }
+
+ BOOST_LOG_TRIVIAL(debug) << "Detecting solid surfaces for region " << idx_region << " - clipping in parallel - start";
+ // Fill in layerm->fill_surfaces by trimming the layerm->slices by the cummulative layerm->fill_surfaces.
+ tbb::parallel_for(
+ tbb::blocked_range<size_t>(0, m_layers.size()),
+ [this, idx_region, interface_shells, &surfaces_new](const tbb::blocked_range<size_t>& range) {
+ for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
+ m_print->throw_if_canceled();
+ LayerRegion *layerm = m_layers[idx_layer]->get_region(idx_region);
+ layerm->slices_to_fill_surfaces_clipped();
+#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
+ layerm->export_region_fill_surfaces_to_svg_debug("1_detect_surfaces_type-final");
+#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
+ } // for each layer of a region
+ });
+ m_print->throw_if_canceled();
+ BOOST_LOG_TRIVIAL(debug) << "Detecting solid surfaces for region " << idx_region << " - clipping in parallel - end";
+ } // for each this->print->region_count
+
+ // Mark the object to have the region slices classified (typed, which also means they are split based on whether they are supported, bridging, top layers etc.)
+ this->typed_slices = true;
+}
+
+void PrintObject::process_external_surfaces()
+{
+ BOOST_LOG_TRIVIAL(info) << "Processing external surfaces...";
+
+ for (size_t region_id = 0; region_id < m_print->regions().size(); ++ region_id) {
+ const PrintRegion &region = *m_print->regions()[region_id];
+
+ BOOST_LOG_TRIVIAL(debug) << "Processing external surfaces for region " << region_id << " in parallel - start";
+ tbb::parallel_for(
+ tbb::blocked_range<size_t>(0, m_layers.size()),
+ [this, region_id](const tbb::blocked_range<size_t>& range) {
+ for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
+ m_print->throw_if_canceled();
+ // BOOST_LOG_TRIVIAL(trace) << "Processing external surface, layer" << m_layers[layer_idx]->print_z;
+ m_layers[layer_idx]->get_region(region_id)->process_external_surfaces((layer_idx == 0) ? NULL : m_layers[layer_idx - 1]);
+ }
+ }
+ );
+ m_print->throw_if_canceled();
+ BOOST_LOG_TRIVIAL(debug) << "Processing external surfaces for region " << region_id << " in parallel - end";
+ }
+}
+
+void PrintObject::discover_vertical_shells()
+{
+ PROFILE_FUNC();
+
+ BOOST_LOG_TRIVIAL(info) << "Discovering vertical shells...";
+
+ struct DiscoverVerticalShellsCacheEntry
+ {
+ // Collected polygons, offsetted
+ Polygons top_surfaces;
+ Polygons bottom_surfaces;
+ Polygons holes;
+ };
+ std::vector<DiscoverVerticalShellsCacheEntry> cache_top_botom_regions(m_layers.size(), DiscoverVerticalShellsCacheEntry());
+ bool top_bottom_surfaces_all_regions = m_print->regions().size() > 1 && ! m_config.interface_shells.value;
+ if (top_bottom_surfaces_all_regions) {
+ // This is a multi-material print and interface_shells are disabled, meaning that the vertical shell thickness
+ // is calculated over all materials.
+ // Is the "ensure vertical wall thickness" applicable to any region?
+ bool has_extra_layers = false;
+ for (size_t idx_region = 0; idx_region < m_print->regions().size(); ++ idx_region) {
+ const PrintRegion &region = *m_print->get_region(idx_region);
+ if (region.config().ensure_vertical_shell_thickness.value &&
+ (region.config().top_solid_layers.value > 1 || region.config().bottom_solid_layers.value > 1)) {
+ has_extra_layers = true;
+ }
+ }
+ if (! has_extra_layers)
+ // The "ensure vertical wall thickness" feature is not applicable to any of the regions. Quit.
+ return;
+ BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells in parallel - start : cache top / bottom";
+ //FIXME Improve the heuristics for a grain size.
+ size_t grain_size = std::max(m_layers.size() / 16, size_t(1));
+ tbb::parallel_for(
+ tbb::blocked_range<size_t>(0, m_layers.size(), grain_size),
+ [this, &cache_top_botom_regions](const tbb::blocked_range<size_t>& range) {
+ const SurfaceType surfaces_bottom[2] = { stBottom, stBottomBridge };
+ const size_t num_regions = m_print->regions().size();
+ for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
+ m_print->throw_if_canceled();
+ const Layer &layer = *m_layers[idx_layer];
+ DiscoverVerticalShellsCacheEntry &cache = cache_top_botom_regions[idx_layer];
+ // Simulate single set of perimeters over all merged regions.
+ float perimeter_offset = 0.f;
+ float perimeter_min_spacing = FLT_MAX;
+#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
+ static size_t debug_idx = 0;
+ ++ debug_idx;
+#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
+ for (size_t idx_region = 0; idx_region < num_regions; ++ idx_region) {
+ LayerRegion &layerm = *layer.m_regions[idx_region];
+ float min_perimeter_infill_spacing = float(layerm.flow(frSolidInfill).scaled_spacing()) * 1.05f;
+ // Top surfaces.
+ append(cache.top_surfaces, offset(to_expolygons(layerm.slices.filter_by_type(stTop)), min_perimeter_infill_spacing));
+ append(cache.top_surfaces, offset(to_expolygons(layerm.fill_surfaces.filter_by_type(stTop)), min_perimeter_infill_spacing));
+ // Bottom surfaces.
+ append(cache.bottom_surfaces, offset(to_expolygons(layerm.slices.filter_by_types(surfaces_bottom, 2)), min_perimeter_infill_spacing));
+ append(cache.bottom_surfaces, offset(to_expolygons(layerm.fill_surfaces.filter_by_types(surfaces_bottom, 2)), min_perimeter_infill_spacing));
+ // Calculate the maximum perimeter offset as if the slice was extruded with a single extruder only.
+ // First find the maxium number of perimeters per region slice.
+ unsigned int perimeters = 0;
+ for (Surface &s : layerm.slices.surfaces)
+ perimeters = std::max<unsigned int>(perimeters, s.extra_perimeters);
+ perimeters += layerm.region()->config().perimeters.value;
+ // Then calculate the infill offset.
+ if (perimeters > 0) {
+ Flow extflow = layerm.flow(frExternalPerimeter);
+ Flow flow = layerm.flow(frPerimeter);
+ perimeter_offset = std::max(perimeter_offset,
+ 0.5f * float(extflow.scaled_width() + extflow.scaled_spacing()) + (float(perimeters) - 1.f) * flow.scaled_spacing());
+ perimeter_min_spacing = std::min(perimeter_min_spacing, float(std::min(extflow.scaled_spacing(), flow.scaled_spacing())));
+ }
+ polygons_append(cache.holes, to_polygons(layerm.fill_expolygons));
+ }
+ // Save some computing time by reducing the number of polygons.
+ cache.top_surfaces = union_(cache.top_surfaces, false);
+ cache.bottom_surfaces = union_(cache.bottom_surfaces, false);
+ // For a multi-material print, simulate perimeter / infill split as if only a single extruder has been used for the whole print.
+ if (perimeter_offset > 0.) {
+ // The layer.slices are forced to merge by expanding them first.
+ polygons_append(cache.holes, offset(offset_ex(layer.slices, 0.3f * perimeter_min_spacing), - perimeter_offset - 0.3f * perimeter_min_spacing));
+#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
+ {
+ Slic3r::SVG svg(debug_out_path("discover_vertical_shells-extra-holes-%d.svg", debug_idx), get_extents(layer.slices.expolygons));
+ svg.draw(layer.slices.expolygons, "blue");
+ svg.draw(union_ex(cache.holes), "red");
+ svg.draw_outline(union_ex(cache.holes), "black", "blue", scale_(0.05));
+ svg.Close();
+ }
+#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
+ }
+ cache.holes = union_(cache.holes, false);
+ }
+ });
+ m_print->throw_if_canceled();
+ BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells in parallel - end : cache top / bottom";
+ }
+
+ for (size_t idx_region = 0; idx_region < m_print->regions().size(); ++ idx_region) {
+ PROFILE_BLOCK(discover_vertical_shells_region);
+
+ const PrintRegion &region = *m_print->get_region(idx_region);
+ if (! region.config().ensure_vertical_shell_thickness.value)
+ // This region will be handled by discover_horizontal_shells().
+ continue;
+ int n_extra_top_layers = std::max(0, region.config().top_solid_layers.value - 1);
+ int n_extra_bottom_layers = std::max(0, region.config().bottom_solid_layers.value - 1);
+ if (n_extra_top_layers + n_extra_bottom_layers == 0)
+ // Zero or 1 layer, there is no additional vertical wall thickness enforced.
+ continue;
+
+ //FIXME Improve the heuristics for a grain size.
+ size_t grain_size = std::max(m_layers.size() / 16, size_t(1));
+
+ if (! top_bottom_surfaces_all_regions) {
+ // This is either a single material print, or a multi-material print and interface_shells are enabled, meaning that the vertical shell thickness
+ // is calculated over a single material.
+ BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << idx_region << " in parallel - start : cache top / bottom";
+ tbb::parallel_for(
+ tbb::blocked_range<size_t>(0, m_layers.size(), grain_size),
+ [this, idx_region, &cache_top_botom_regions](const tbb::blocked_range<size_t>& range) {
+ const SurfaceType surfaces_bottom[2] = { stBottom, stBottomBridge };
+ for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
+ m_print->throw_if_canceled();
+ Layer &layer = *m_layers[idx_layer];
+ LayerRegion &layerm = *layer.m_regions[idx_region];
+ float min_perimeter_infill_spacing = float(layerm.flow(frSolidInfill).scaled_spacing()) * 1.05f;
+ // Top surfaces.
+ auto &cache = cache_top_botom_regions[idx_layer];
+ cache.top_surfaces = offset(to_expolygons(layerm.slices.filter_by_type(stTop)), min_perimeter_infill_spacing);
+ append(cache.top_surfaces, offset(to_expolygons(layerm.fill_surfaces.filter_by_type(stTop)), min_perimeter_infill_spacing));
+ // Bottom surfaces.
+ cache.bottom_surfaces = offset(to_expolygons(layerm.slices.filter_by_types(surfaces_bottom, 2)), min_perimeter_infill_spacing);
+ append(cache.bottom_surfaces, offset(to_expolygons(layerm.fill_surfaces.filter_by_types(surfaces_bottom, 2)), min_perimeter_infill_spacing));
+ // Holes over all regions. Only collect them once, they are valid for all idx_region iterations.
+ if (cache.holes.empty()) {
+ for (size_t idx_region = 0; idx_region < layer.regions().size(); ++ idx_region)
+ polygons_append(cache.holes, to_polygons(layer.regions()[idx_region]->fill_expolygons));
+ }
+ }
+ });
+ m_print->throw_if_canceled();
+ BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << idx_region << " in parallel - end : cache top / bottom";
+ }
+
+ BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << idx_region << " in parallel - start : ensure vertical wall thickness";
+ tbb::parallel_for(
+ tbb::blocked_range<size_t>(0, m_layers.size(), grain_size),
+ [this, idx_region, n_extra_top_layers, n_extra_bottom_layers, &cache_top_botom_regions]
+ (const tbb::blocked_range<size_t>& range) {
+ // printf("discover_vertical_shells from %d to %d\n", range.begin(), range.end());
+ for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
+ PROFILE_BLOCK(discover_vertical_shells_region_layer);
+ m_print->throw_if_canceled();
+#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
+ static size_t debug_idx = 0;
+ ++ debug_idx;
+#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
+
+ Layer *layer = m_layers[idx_layer];
+ LayerRegion *layerm = layer->m_regions[idx_region];
+
+#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
+ layerm->export_region_slices_to_svg_debug("4_discover_vertical_shells-initial");
+ layerm->export_region_fill_surfaces_to_svg_debug("4_discover_vertical_shells-initial");
+#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
+
+ Flow solid_infill_flow = layerm->flow(frSolidInfill);
+ coord_t infill_line_spacing = solid_infill_flow.scaled_spacing();
+ // Find a union of perimeters below / above this surface to guarantee a minimum shell thickness.
+ Polygons shell;
+ Polygons holes;
+#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
+ ExPolygons shell_ex;
+#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
+ float min_perimeter_infill_spacing = float(infill_line_spacing) * 1.05f;
+ {
+ PROFILE_BLOCK(discover_vertical_shells_region_layer_collect);
+#if 0
+// #ifdef SLIC3R_DEBUG_SLICE_PROCESSING
+ {
+ Slic3r::SVG svg_cummulative(debug_out_path("discover_vertical_shells-perimeters-before-union-run%d.svg", debug_idx), this->bounding_box());
+ for (int n = (int)idx_layer - n_extra_bottom_layers; n <= (int)idx_layer + n_extra_top_layers; ++ n) {
+ if (n < 0 || n >= (int)m_layers.size())
+ continue;
+ ExPolygons &expolys = m_layers[n]->perimeter_expolygons;
+ for (size_t i = 0; i < expolys.size(); ++ i) {
+ Slic3r::SVG svg(debug_out_path("discover_vertical_shells-perimeters-before-union-run%d-layer%d-expoly%d.svg", debug_idx, n, i), get_extents(expolys[i]));
+ svg.draw(expolys[i]);
+ svg.draw_outline(expolys[i].contour, "black", scale_(0.05));
+ svg.draw_outline(expolys[i].holes, "blue", scale_(0.05));
+ svg.Close();
+
+ svg_cummulative.draw(expolys[i]);
+ svg_cummulative.draw_outline(expolys[i].contour, "black", scale_(0.05));
+ svg_cummulative.draw_outline(expolys[i].holes, "blue", scale_(0.05));
+ }
+ }
+ }
+#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
+ // Reset the top / bottom inflated regions caches of entries, which are out of the moving window.
+ bool hole_first = true;
+ for (int n = (int)idx_layer - n_extra_bottom_layers; n <= (int)idx_layer + n_extra_top_layers; ++ n)
+ if (n >= 0 && n < (int)m_layers.size()) {
+ Layer &neighbor_layer = *m_layers[n];
+ const DiscoverVerticalShellsCacheEntry &cache = cache_top_botom_regions[n];
+ if (hole_first) {
+ hole_first = false;
+ polygons_append(holes, cache.holes);
+ }
+ else if (! holes.empty()) {
+ holes = intersection(holes, cache.holes);
+ }
+ size_t n_shell_old = shell.size();
+ if (n > int(idx_layer))
+ // Collect top surfaces.
+ polygons_append(shell, cache.top_surfaces);
+ else if (n < int(idx_layer))
+ // Collect bottom and bottom bridge surfaces.
+ polygons_append(shell, cache.bottom_surfaces);
+ // Running the union_ using the Clipper library piece by piece is cheaper
+ // than running the union_ all at once.
+ if (n_shell_old < shell.size())
+ shell = union_(shell, false);
+ }
+#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
+ {
+ Slic3r::SVG svg(debug_out_path("discover_vertical_shells-perimeters-before-union-%d.svg", debug_idx), get_extents(shell));
+ svg.draw(shell);
+ svg.draw_outline(shell, "black", scale_(0.05));
+ svg.Close();
+ }
+#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
+#if 0
+ {
+ PROFILE_BLOCK(discover_vertical_shells_region_layer_shell_);
+ // shell = union_(shell, true);
+ shell = union_(shell, false);
+ }
+#endif
+#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
+ shell_ex = union_ex(shell, true);
+#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
+ }
+
+ //if (shell.empty())
+ // continue;
+
+#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
+ {
+ Slic3r::SVG svg(debug_out_path("discover_vertical_shells-perimeters-after-union-%d.svg", debug_idx), get_extents(shell));
+ svg.draw(shell_ex);
+ svg.draw_outline(shell_ex, "black", "blue", scale_(0.05));
+ svg.Close();
+ }
+#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
+
+#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
+ {
+ Slic3r::SVG svg(debug_out_path("discover_vertical_shells-internal-wshell-%d.svg", debug_idx), get_extents(shell));
+ svg.draw(layerm->fill_surfaces.filter_by_type(stInternal), "yellow", 0.5);
+ svg.draw_outline(layerm->fill_surfaces.filter_by_type(stInternal), "black", "blue", scale_(0.05));
+ svg.draw(shell_ex, "blue", 0.5);
+ svg.draw_outline(shell_ex, "black", "blue", scale_(0.05));
+ svg.Close();
+ }
+ {
+ Slic3r::SVG svg(debug_out_path("discover_vertical_shells-internalvoid-wshell-%d.svg", debug_idx), get_extents(shell));
+ svg.draw(layerm->fill_surfaces.filter_by_type(stInternalVoid), "yellow", 0.5);
+ svg.draw_outline(layerm->fill_surfaces.filter_by_type(stInternalVoid), "black", "blue", scale_(0.05));
+ svg.draw(shell_ex, "blue", 0.5);
+ svg.draw_outline(shell_ex, "black", "blue", scale_(0.05));
+ svg.Close();
+ }
+ {
+ Slic3r::SVG svg(debug_out_path("discover_vertical_shells-internalvoid-wshell-%d.svg", debug_idx), get_extents(shell));
+ svg.draw(layerm->fill_surfaces.filter_by_type(stInternalVoid), "yellow", 0.5);
+ svg.draw_outline(layerm->fill_surfaces.filter_by_type(stInternalVoid), "black", "blue", scale_(0.05));
+ svg.draw(shell_ex, "blue", 0.5);
+ svg.draw_outline(shell_ex, "black", "blue", scale_(0.05));
+ svg.Close();
+ }
+#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
+
+ // Trim the shells region by the internal & internal void surfaces.
+ const SurfaceType surfaceTypesInternal[] = { stInternal, stInternalVoid, stInternalSolid };
+ const Polygons polygonsInternal = to_polygons(layerm->fill_surfaces.filter_by_types(surfaceTypesInternal, 3));
+ shell = intersection(shell, polygonsInternal, true);
+ polygons_append(shell, diff(polygonsInternal, holes));
+ if (shell.empty())
+ continue;
+
+ // Append the internal solids, so they will be merged with the new ones.
+ polygons_append(shell, to_polygons(layerm->fill_surfaces.filter_by_type(stInternalSolid)));
+
+ // These regions will be filled by a rectilinear full infill. Currently this type of infill
+ // only fills regions, which fit at least a single line. To avoid gaps in the sparse infill,
+ // make sure that this region does not contain parts narrower than the infill spacing width.
+#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
+ Polygons shell_before = shell;
+#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
+#if 1
+ // Intentionally inflate a bit more than how much the region has been shrunk,
+ // so there will be some overlap between this solid infill and the other infill regions (mainly the sparse infill).
+ shell = offset2(shell, - 0.5f * min_perimeter_infill_spacing, 0.8f * min_perimeter_infill_spacing, ClipperLib::jtSquare);
+ if (shell.empty())
+ continue;
+#else
+ // Ensure each region is at least 3x infill line width wide, so it could be filled in.
+ // float margin = float(infill_line_spacing) * 3.f;
+ float margin = float(infill_line_spacing) * 1.5f;
+ // we use a higher miterLimit here to handle areas with acute angles
+ // in those cases, the default miterLimit would cut the corner and we'd
+ // get a triangle in $too_narrow; if we grow it below then the shell
+ // would have a different shape from the external surface and we'd still
+ // have the same angle, so the next shell would be grown even more and so on.
+ Polygons too_narrow = diff(shell, offset2(shell, -margin, margin, ClipperLib::jtMiter, 5.), true);
+ if (! too_narrow.empty()) {
+ // grow the collapsing parts and add the extra area to the neighbor layer
+ // as well as to our original surfaces so that we support this
+ // additional area in the next shell too
+ // make sure our grown surfaces don't exceed the fill area
+ polygons_append(shell, intersection(offset(too_narrow, margin), polygonsInternal));
+ }
+#endif
+ ExPolygons new_internal_solid = intersection_ex(polygonsInternal, shell, false);
+#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
+ {
+ Slic3r::SVG svg(debug_out_path("discover_vertical_shells-regularized-%d.svg", debug_idx), get_extents(shell_before));
+ // Source shell.
+ svg.draw(union_ex(shell_before, true));
+ // Shell trimmed to the internal surfaces.
+ svg.draw_outline(union_ex(shell, true), "black", "blue", scale_(0.05));
+ // Regularized infill region.
+ svg.draw_outline(new_internal_solid, "red", "magenta", scale_(0.05));
+ svg.Close();
+ }
+#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
+
+ // Trim the internal & internalvoid by the shell.
+ Slic3r::ExPolygons new_internal = diff_ex(
+ to_polygons(layerm->fill_surfaces.filter_by_type(stInternal)),
+ shell,
+ false
+ );
+ Slic3r::ExPolygons new_internal_void = diff_ex(
+ to_polygons(layerm->fill_surfaces.filter_by_type(stInternalVoid)),
+ shell,
+ false
+ );
+
+#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
+ {
+ SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal-%d.svg", debug_idx), get_extents(shell), new_internal, "black", "blue", scale_(0.05));
+ SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal_void-%d.svg", debug_idx), get_extents(shell), new_internal_void, "black", "blue", scale_(0.05));
+ SVG::export_expolygons(debug_out_path("discover_vertical_shells-new_internal_solid-%d.svg", debug_idx), get_extents(shell), new_internal_solid, "black", "blue", scale_(0.05));
+ }
+#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
+
+ // Assign resulting internal surfaces to layer.
+ const SurfaceType surfaceTypesKeep[] = { stTop, stBottom, stBottomBridge };
+ layerm->fill_surfaces.keep_types(surfaceTypesKeep, sizeof(surfaceTypesKeep)/sizeof(SurfaceType));
+ layerm->fill_surfaces.append(new_internal, stInternal);
+ layerm->fill_surfaces.append(new_internal_void, stInternalVoid);
+ layerm->fill_surfaces.append(new_internal_solid, stInternalSolid);
+ } // for each layer
+ });
+ m_print->throw_if_canceled();
+ BOOST_LOG_TRIVIAL(debug) << "Discovering vertical shells for region " << idx_region << " in parallel - end";
+
+#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
+ for (size_t idx_layer = 0; idx_layer < m_layers.size(); ++idx_layer) {
+ LayerRegion *layerm = m_layers[idx_layer]->get_region(idx_region);
+ layerm->export_region_slices_to_svg_debug("4_discover_vertical_shells-final");
+ layerm->export_region_fill_surfaces_to_svg_debug("4_discover_vertical_shells-final");
+ }
+#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
+ } // for each region
+
+ // Write the profiler measurements to file
+// PROFILE_UPDATE();
+// PROFILE_OUTPUT(debug_out_path("discover_vertical_shells-profile.txt").c_str());
+}
+
+/* This method applies bridge flow to the first internal solid layer above
+ sparse infill */
+void PrintObject::bridge_over_infill()
+{
+ BOOST_LOG_TRIVIAL(info) << "Bridge over infill...";
+
+ for (size_t region_id = 0; region_id < m_print->regions().size(); ++ region_id) {
+ const PrintRegion &region = *m_print->regions()[region_id];
+
+ // skip bridging in case there are no voids
+ if (region.config().fill_density.value == 100) continue;
+
+ // get bridge flow
+ Flow bridge_flow = region.flow(
+ frSolidInfill,
+ -1, // layer height, not relevant for bridge flow
+ true, // bridge
+ false, // first layer
+ -1, // custom width, not relevant for bridge flow
+ *this
+ );
+
+ FOREACH_LAYER(this, layer_it) {
+ // skip first layer
+ if (layer_it == m_layers.begin()) continue;
+
+ Layer* layer = *layer_it;
+ LayerRegion* layerm = layer->m_regions[region_id];
+
+ // extract the stInternalSolid surfaces that might be transformed into bridges
+ Polygons internal_solid;
+ layerm->fill_surfaces.filter_by_type(stInternalSolid, &internal_solid);
+
+ // check whether the lower area is deep enough for absorbing the extra flow
+ // (for obvious physical reasons but also for preventing the bridge extrudates
+ // from overflowing in 3D preview)
+ ExPolygons to_bridge;
+ {
+ Polygons to_bridge_pp = internal_solid;
+
+ // iterate through lower layers spanned by bridge_flow
+ double bottom_z = layer->print_z - bridge_flow.height;
+ for (int i = int(layer_it - m_layers.begin()) - 1; i >= 0; --i) {
+ const Layer* lower_layer = m_layers[i];
+
+ // stop iterating if layer is lower than bottom_z
+ if (lower_layer->print_z < bottom_z) break;
+
+ // iterate through regions and collect internal surfaces
+ Polygons lower_internal;
+ FOREACH_LAYERREGION(lower_layer, lower_layerm_it)
+ (*lower_layerm_it)->fill_surfaces.filter_by_type(stInternal, &lower_internal);
+
+ // intersect such lower internal surfaces with the candidate solid surfaces
+ to_bridge_pp = intersection(to_bridge_pp, lower_internal);
+ }
+
+ // there's no point in bridging too thin/short regions
+ //FIXME Vojtech: The offset2 function is not a geometric offset,
+ // therefore it may create 1) gaps, and 2) sharp corners, which are outside the original contour.
+ // The gaps will be filled by a separate region, which makes the infill less stable and it takes longer.
+ {
+ float min_width = float(bridge_flow.scaled_width()) * 3.f;
+ to_bridge_pp = offset2(to_bridge_pp, -min_width, +min_width);
+ }
+
+ if (to_bridge_pp.empty()) continue;
+
+ // convert into ExPolygons
+ to_bridge = union_ex(to_bridge_pp);
+ }
+
+ #ifdef SLIC3R_DEBUG
+ printf("Bridging " PRINTF_ZU " internal areas at layer " PRINTF_ZU "\n", to_bridge.size(), layer->id());
+ #endif
+
+ // compute the remaning internal solid surfaces as difference
+ ExPolygons not_to_bridge = diff_ex(internal_solid, to_polygons(to_bridge), true);
+ to_bridge = intersection_ex(to_polygons(to_bridge), internal_solid, true);
+ // build the new collection of fill_surfaces
+ layerm->fill_surfaces.remove_type(stInternalSolid);
+ for (ExPolygon &ex : to_bridge)
+ layerm->fill_surfaces.surfaces.push_back(Surface(stInternalBridge, ex));
+ for (ExPolygon &ex : not_to_bridge)
+ layerm->fill_surfaces.surfaces.push_back(Surface(stInternalSolid, ex));
+ /*
+ # exclude infill from the layers below if needed
+ # see discussion at https://github.com/alexrj/Slic3r/issues/240
+ # Update: do not exclude any infill. Sparse infill is able to absorb the excess material.
+ if (0) {
+ my $excess = $layerm->extruders->{infill}->bridge_flow->width - $layerm->height;
+ for (my $i = $layer_id-1; $excess >= $self->get_layer($i)->height; $i--) {
+ Slic3r::debugf " skipping infill below those areas at layer %d\n", $i;
+ foreach my $lower_layerm (@{$self->get_layer($i)->regions}) {
+ my @new_surfaces = ();
+ # subtract the area from all types of surfaces
+ foreach my $group (@{$lower_layerm->fill_surfaces->group}) {
+ push @new_surfaces, map $group->[0]->clone(expolygon => $_),
+ @{diff_ex(
+ [ map $_->p, @$group ],
+ [ map @$_, @$to_bridge ],
+ )};
+ push @new_surfaces, map Slic3r::Surface->new(
+ expolygon => $_,
+ surface_type => S_TYPE_INTERNALVOID,
+ ), @{intersection_ex(
+ [ map $_->p, @$group ],
+ [ map @$_, @$to_bridge ],
+ )};
+ }
+ $lower_layerm->fill_surfaces->clear;
+ $lower_layerm->fill_surfaces->append($_) for @new_surfaces;
+ }
+
+ $excess -= $self->get_layer($i)->height;
+ }
+ }
+ */
+
+#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
+ layerm->export_region_slices_to_svg_debug("7_bridge_over_infill");
+ layerm->export_region_fill_surfaces_to_svg_debug("7_bridge_over_infill");
+#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
+ m_print->throw_if_canceled();
+ }
+ }
+}
+
+SlicingParameters PrintObject::slicing_parameters() const
+{
+ return SlicingParameters::create_from_config(
+ this->print()->config(), m_config,
+ unscale<double>(this->size(2)), this->print()->object_extruders());
+}
+
+bool PrintObject::update_layer_height_profile(std::vector<coordf_t> &layer_height_profile) const
+{
+ bool updated = false;
+
+ // If the layer height profile is not set, try to use the one stored at the ModelObject.
+ if (layer_height_profile.empty() && layer_height_profile.data() != this->model_object()->layer_height_profile.data()) {
+ layer_height_profile = this->model_object()->layer_height_profile;
+ updated = true;
+ }
+
+ // Verify the layer_height_profile.
+ SlicingParameters slicing_params = this->slicing_parameters();
+ if (! layer_height_profile.empty() &&
+ // Must not be of even length.
+ ((layer_height_profile.size() & 1) != 0 ||
+ // Last entry must be at the top of the object.
+ std::abs(layer_height_profile[layer_height_profile.size() - 2] - slicing_params.object_print_z_height()) > 1e-3))
+ layer_height_profile.clear();
+
+ if (layer_height_profile.empty()) {
+ if (0)
+// if (this->layer_height_profile.empty())
+ layer_height_profile = layer_height_profile_adaptive(slicing_params, this->layer_height_ranges,
+ this->model_object()->volumes);
+ else
+ layer_height_profile = layer_height_profile_from_ranges(slicing_params, this->layer_height_ranges);
+ updated = true;
+ }
+ return updated;
+}
+
+// This must be called from the main thread as it modifies the layer_height_profile.
+bool PrintObject::update_layer_height_profile()
+{
+ // If the layer height profile has been marked as invalid for some reason (modified at the UI level
+ // or invalidated due to the slicing parameters), clear it now.
+ if (! this->layer_height_profile_valid) {
+ this->layer_height_profile.clear();
+ this->layer_height_profile_valid = true;
+ }
+ return this->update_layer_height_profile(this->layer_height_profile);
+}
+
+// 1) Decides Z positions of the layers,
+// 2) Initializes layers and their regions
+// 3) Slices the object meshes
+// 4) Slices the modifier meshes and reclassifies the slices of the object meshes by the slices of the modifier meshes
+// 5) Applies size compensation (offsets the slices in XY plane)
+// 6) Replaces bad slices by the slices reconstructed from the upper/lower layer
+// Resulting expolygons of layer regions are marked as Internal.
+//
+// this should be idempotent
+void PrintObject::_slice()
+{
+ BOOST_LOG_TRIVIAL(info) << "Slicing objects...";
+
+ this->typed_slices = false;
+
+#ifdef SLIC3R_PROFILE
+ // Disable parallelization so the Shiny profiler works
+ static tbb::task_scheduler_init *tbb_init = nullptr;
+ tbb_init = new tbb::task_scheduler_init(1);
+#endif
+
+ SlicingParameters slicing_params = this->slicing_parameters();
+
+ // 1) Initialize layers and their slice heights.
+ std::vector<float> slice_zs;
+ {
+ this->clear_layers();
+ // Object layers (pairs of bottom/top Z coordinate), without the raft.
+ std::vector<coordf_t> object_layers = generate_object_layers(slicing_params, this->layer_height_profile);
+ // Reserve object layers for the raft. Last layer of the raft is the contact layer.
+ int id = int(slicing_params.raft_layers());
+ slice_zs.reserve(object_layers.size());
+ Layer *prev = nullptr;
+ for (size_t i_layer = 0; i_layer < object_layers.size(); i_layer += 2) {
+ coordf_t lo = object_layers[i_layer];
+ coordf_t hi = object_layers[i_layer + 1];
+ coordf_t slice_z = 0.5 * (lo + hi);
+ Layer *layer = this->add_layer(id ++, hi - lo, hi + slicing_params.object_print_z_min, slice_z);
+ slice_zs.push_back(float(slice_z));
+ if (prev != nullptr) {
+ prev->upper_layer = layer;
+ layer->lower_layer = prev;
+ }
+ // Make sure all layers contain layer region objects for all regions.
+ for (size_t region_id = 0; region_id < this->print()->regions().size(); ++ region_id)
+ layer->add_region(this->print()->regions()[region_id]);
+ prev = layer;
+ }
+ }
+
+ // Slice all non-modifier volumes.
+ for (size_t region_id = 0; region_id < this->print()->regions().size(); ++ region_id) {
+ BOOST_LOG_TRIVIAL(debug) << "Slicing objects - region " << region_id;
+ std::vector<ExPolygons> expolygons_by_layer = this->_slice_region(region_id, slice_zs, false);
+ m_print->throw_if_canceled();
+ BOOST_LOG_TRIVIAL(debug) << "Slicing objects - append slices " << region_id << " start";
+ for (size_t layer_id = 0; layer_id < expolygons_by_layer.size(); ++ layer_id)
+ m_layers[layer_id]->regions()[region_id]->slices.append(std::move(expolygons_by_layer[layer_id]), stInternal);
+ m_print->throw_if_canceled();
+ BOOST_LOG_TRIVIAL(debug) << "Slicing objects - append slices " << region_id << " end";
+ }
+
+ // Slice all modifier volumes.
+ if (this->print()->regions().size() > 1) {
+ for (size_t region_id = 0; region_id < this->print()->regions().size(); ++ region_id) {
+ BOOST_LOG_TRIVIAL(debug) << "Slicing modifier volumes - region " << region_id;
+ std::vector<ExPolygons> expolygons_by_layer = this->_slice_region(region_id, slice_zs, true);
+ m_print->throw_if_canceled();
+ // loop through the other regions and 'steal' the slices belonging to this one
+ BOOST_LOG_TRIVIAL(debug) << "Slicing modifier volumes - stealing " << region_id << " start";
+ for (size_t other_region_id = 0; other_region_id < this->print()->regions().size(); ++ other_region_id) {
+ if (region_id == other_region_id)
+ continue;
+ for (size_t layer_id = 0; layer_id < expolygons_by_layer.size(); ++ layer_id) {
+ Layer *layer = m_layers[layer_id];
+ LayerRegion *layerm = layer->m_regions[region_id];
+ LayerRegion *other_layerm = layer->m_regions[other_region_id];
+ if (layerm == nullptr || other_layerm == nullptr)
+ continue;
+ Polygons other_slices = to_polygons(other_layerm->slices);
+ ExPolygons my_parts = intersection_ex(other_slices, to_polygons(expolygons_by_layer[layer_id]));
+ if (my_parts.empty())
+ continue;
+ // Remove such parts from original region.
+ other_layerm->slices.set(diff_ex(other_slices, to_polygons(my_parts)), stInternal);
+ // Append new parts to our region.
+ layerm->slices.append(std::move(my_parts), stInternal);
+ }
+ }
+ m_print->throw_if_canceled();
+ BOOST_LOG_TRIVIAL(debug) << "Slicing modifier volumes - stealing " << region_id << " end";
+ }
+ }
+
+ BOOST_LOG_TRIVIAL(debug) << "Slicing objects - removing top empty layers";
+ while (! m_layers.empty()) {
+ const Layer *layer = m_layers.back();
+ for (size_t region_id = 0; region_id < this->print()->regions().size(); ++ region_id)
+ if (layer->m_regions[region_id] != nullptr && ! layer->m_regions[region_id]->slices.empty())
+ // Non empty layer.
+ goto end;
+ delete layer;
+ m_layers.pop_back();
+ if (! m_layers.empty())
+ m_layers.back()->upper_layer = nullptr;
+ }
+ m_print->throw_if_canceled();
+end:
+ ;
+
+ BOOST_LOG_TRIVIAL(debug) << "Slicing objects - make_slices in parallel - begin";
+ tbb::parallel_for(
+ tbb::blocked_range<size_t>(0, m_layers.size()),
+ [this](const tbb::blocked_range<size_t>& range) {
+ for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id) {
+ m_print->throw_if_canceled();
+ Layer *layer = m_layers[layer_id];
+ // Apply size compensation and perform clipping of multi-part objects.
+ float delta = float(scale_(m_config.xy_size_compensation.value));
+ if (layer_id == 0)
+ delta -= float(scale_(m_config.elefant_foot_compensation.value));
+ bool scale = delta != 0.f;
+ bool clip = m_config.clip_multipart_objects.value || delta > 0.f;
+ if (layer->m_regions.size() == 1) {
+ if (scale) {
+ // Single region, growing or shrinking.
+ LayerRegion *layerm = layer->m_regions.front();
+ layerm->slices.set(offset_ex(to_expolygons(std::move(layerm->slices.surfaces)), delta), stInternal);
+ }
+ } else if (scale || clip) {
+ // Multiple regions, growing, shrinking or just clipping one region by the other.
+ // When clipping the regions, priority is given to the first regions.
+ Polygons processed;
+ for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id) {
+ LayerRegion *layerm = layer->m_regions[region_id];
+ ExPolygons slices = to_expolygons(std::move(layerm->slices.surfaces));
+ if (scale)
+ slices = offset_ex(slices, delta);
+ if (region_id > 0 && clip)
+ // Trim by the slices of already processed regions.
+ slices = diff_ex(to_polygons(std::move(slices)), processed);
+ if (clip && region_id + 1 < layer->m_regions.size())
+ // Collect the already processed regions to trim the to be processed regions.
+ polygons_append(processed, slices);
+ layerm->slices.set(std::move(slices), stInternal);
+ }
+ }
+ // Merge all regions' slices to get islands, chain them by a shortest path.
+ layer->make_slices();
+ }
+ });
+ m_print->throw_if_canceled();
+ BOOST_LOG_TRIVIAL(debug) << "Slicing objects - make_slices in parallel - end";
+}
+
+std::vector<ExPolygons> PrintObject::_slice_region(size_t region_id, const std::vector<float> &z, bool modifier)
+{
+ std::vector<const ModelVolume*> volumes;
+ if (region_id < this->region_volumes.size()) {
+ for (int volume_id : this->region_volumes[region_id]) {
+ const ModelVolume *volume = this->model_object()->volumes[volume_id];
+ if (modifier ? volume->is_modifier() : volume->is_model_part())
+ volumes.emplace_back(volume);
+ }
+ }
+ return this->_slice_volumes(z, volumes);
+}
+
+std::vector<ExPolygons> PrintObject::slice_support_enforcers() const
+{
+ std::vector<const ModelVolume*> volumes;
+ for (const ModelVolume *volume : this->model_object()->volumes)
+ if (volume->is_support_enforcer())
+ volumes.emplace_back(volume);
+ std::vector<float> zs;
+ zs.reserve(this->layers().size());
+ for (const Layer *l : this->layers())
+ zs.emplace_back(l->slice_z);
+ return this->_slice_volumes(zs, volumes);
+}
+
+std::vector<ExPolygons> PrintObject::slice_support_blockers() const
+{
+ std::vector<const ModelVolume*> volumes;
+ for (const ModelVolume *volume : this->model_object()->volumes)
+ if (volume->is_support_blocker())
+ volumes.emplace_back(volume);
+ std::vector<float> zs;
+ zs.reserve(this->layers().size());
+ for (const Layer *l : this->layers())
+ zs.emplace_back(l->slice_z);
+ return this->_slice_volumes(zs, volumes);
+}
+
+std::vector<ExPolygons> PrintObject::_slice_volumes(const std::vector<float> &z, const std::vector<const ModelVolume*> &volumes) const
+{
+ std::vector<ExPolygons> layers;
+ if (! volumes.empty()) {
+ // Compose mesh.
+ //FIXME better to perform slicing over each volume separately and then to use a Boolean operation to merge them.
+ TriangleMesh mesh;
+ for (const ModelVolume *v : volumes)
+ mesh.merge(v->mesh);
+ if (mesh.stl.stats.number_of_facets > 0) {
+ // transform mesh
+ // we ignore the per-instance transformations currently and only
+ // consider the first one
+ this->model_object()->instances.front()->transform_mesh(&mesh, true);
+ // align mesh to Z = 0 (it should be already aligned actually) and apply XY shift
+ mesh.translate(- unscale<float>(m_copies_shift(0)), - unscale<float>(m_copies_shift(1)), - float(this->model_object()->bounding_box().min(2)));
+ // perform actual slicing
+ TriangleMeshSlicer mslicer;
+ const Print *print = this->print();
+ auto callback = TriangleMeshSlicer::throw_on_cancel_callback_type([print](){print->throw_if_canceled();});
+ mslicer.init(&mesh, callback);
+ mslicer.slice(z, &layers, callback);
+ m_print->throw_if_canceled();
+ }
+ }
+ return layers;
+}
+
+std::string PrintObject::_fix_slicing_errors()
+{
+ // Collect layers with slicing errors.
+ // These layers will be fixed in parallel.
+ std::vector<size_t> buggy_layers;
+ buggy_layers.reserve(m_layers.size());
+ for (size_t idx_layer = 0; idx_layer < m_layers.size(); ++ idx_layer)
+ if (m_layers[idx_layer]->slicing_errors)
+ buggy_layers.push_back(idx_layer);
+
+ BOOST_LOG_TRIVIAL(debug) << "Slicing objects - fixing slicing errors in parallel - begin";
+ tbb::parallel_for(
+ tbb::blocked_range<size_t>(0, buggy_layers.size()),
+ [this, &buggy_layers](const tbb::blocked_range<size_t>& range) {
+ for (size_t buggy_layer_idx = range.begin(); buggy_layer_idx < range.end(); ++ buggy_layer_idx) {
+ m_print->throw_if_canceled();
+ size_t idx_layer = buggy_layers[buggy_layer_idx];
+ Layer *layer = m_layers[idx_layer];
+ assert(layer->slicing_errors);
+ // Try to repair the layer surfaces by merging all contours and all holes from neighbor layers.
+ // BOOST_LOG_TRIVIAL(trace) << "Attempting to repair layer" << idx_layer;
+ for (size_t region_id = 0; region_id < layer->m_regions.size(); ++ region_id) {
+ LayerRegion *layerm = layer->m_regions[region_id];
+ // Find the first valid layer below / above the current layer.
+ const Surfaces *upper_surfaces = nullptr;
+ const Surfaces *lower_surfaces = nullptr;
+ for (size_t j = idx_layer + 1; j < m_layers.size(); ++ j)
+ if (! m_layers[j]->slicing_errors) {
+ upper_surfaces = &m_layers[j]->regions()[region_id]->slices.surfaces;
+ break;
+ }
+ for (int j = int(idx_layer) - 1; j >= 0; -- j)
+ if (! m_layers[j]->slicing_errors) {
+ lower_surfaces = &m_layers[j]->regions()[region_id]->slices.surfaces;
+ break;
+ }
+ // Collect outer contours and holes from the valid layers above & below.
+ Polygons outer;
+ outer.reserve(
+ ((upper_surfaces == nullptr) ? 0 : upper_surfaces->size()) +
+ ((lower_surfaces == nullptr) ? 0 : lower_surfaces->size()));
+ size_t num_holes = 0;
+ if (upper_surfaces)
+ for (const auto &surface : *upper_surfaces) {
+ outer.push_back(surface.expolygon.contour);
+ num_holes += surface.expolygon.holes.size();
+ }
+ if (lower_surfaces)
+ for (const auto &surface : *lower_surfaces) {
+ outer.push_back(surface.expolygon.contour);
+ num_holes += surface.expolygon.holes.size();
+ }
+ Polygons holes;
+ holes.reserve(num_holes);
+ if (upper_surfaces)
+ for (const auto &surface : *upper_surfaces)
+ polygons_append(holes, surface.expolygon.holes);
+ if (lower_surfaces)
+ for (const auto &surface : *lower_surfaces)
+ polygons_append(holes, surface.expolygon.holes);
+ layerm->slices.set(diff_ex(union_(outer), holes, false), stInternal);
+ }
+ // Update layer slices after repairing the single regions.
+ layer->make_slices();
+ }
+ });
+ m_print->throw_if_canceled();
+ BOOST_LOG_TRIVIAL(debug) << "Slicing objects - fixing slicing errors in parallel - end";
+
+ // remove empty layers from bottom
+ while (! m_layers.empty() && m_layers.front()->slices.expolygons.empty()) {
+ delete m_layers.front();
+ m_layers.erase(m_layers.begin());
+ m_layers.front()->lower_layer = nullptr;
+ for (size_t i = 0; i < m_layers.size(); ++ i)
+ m_layers[i]->set_id(m_layers[i]->id() - 1);
+ }
+
+ return buggy_layers.empty() ? "" :
+ "The model has overlapping or self-intersecting facets. I tried to repair it, "
+ "however you might want to check the results or repair the input file and retry.\n";
+}
+
+// Simplify the sliced model, if "resolution" configuration parameter > 0.
+// The simplification is problematic, because it simplifies the slices independent from each other,
+// which makes the simplified discretization visible on the object surface.
+void PrintObject::_simplify_slices(double distance)
+{
+ BOOST_LOG_TRIVIAL(debug) << "Slicing objects - siplifying slices in parallel - begin";
+ tbb::parallel_for(
+ tbb::blocked_range<size_t>(0, m_layers.size()),
+ [this, distance](const tbb::blocked_range<size_t>& range) {
+ for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
+ m_print->throw_if_canceled();
+ Layer *layer = m_layers[layer_idx];
+ for (size_t region_idx = 0; region_idx < layer->m_regions.size(); ++ region_idx)
+ layer->m_regions[region_idx]->slices.simplify(distance);
+ layer->slices.simplify(distance);
+ }
+ });
+ BOOST_LOG_TRIVIAL(debug) << "Slicing objects - siplifying slices in parallel - end";
+}
+
+void PrintObject::_make_perimeters()
+{
+ if (!this->is_printable())
+ return;
+
+ if (this->is_step_done(posPerimeters))
+ return;
+ this->set_started(posPerimeters);
+
+ BOOST_LOG_TRIVIAL(info) << "Generating perimeters...";
+
+ // merge slices if they were split into types
+ if (this->typed_slices) {
+ FOREACH_LAYER(this, layer_it)
+ (*layer_it)->merge_slices();
+ this->typed_slices = false;
+ this->invalidate_step(posPrepareInfill);
+ }
+
+ // compare each layer to the one below, and mark those slices needing
+ // one additional inner perimeter, like the top of domed objects-
+
+ // this algorithm makes sure that at least one perimeter is overlapping
+ // but we don't generate any extra perimeter if fill density is zero, as they would be floating
+ // inside the object - infill_only_where_needed should be the method of choice for printing
+ // hollow objects
+ for (size_t region_id = 0; region_id < m_print->regions().size(); ++ region_id) {
+ const PrintRegion &region = *m_print->regions()[region_id];
+ if (! region.config().extra_perimeters || region.config().perimeters == 0 || region.config().fill_density == 0 || this->layer_count() < 2)
+ continue;
+
+ BOOST_LOG_TRIVIAL(debug) << "Generating extra perimeters for region " << region_id << " in parallel - start";
+ tbb::parallel_for(
+ tbb::blocked_range<size_t>(0, m_layers.size() - 1),
+ [this, &region, region_id](const tbb::blocked_range<size_t>& range) {
+ for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
+ LayerRegion &layerm = *m_layers[layer_idx]->regions()[region_id];
+ const LayerRegion &upper_layerm = *m_layers[layer_idx+1]->regions()[region_id];
+ const Polygons upper_layerm_polygons = upper_layerm.slices;
+ // Filter upper layer polygons in intersection_ppl by their bounding boxes?
+ // my $upper_layerm_poly_bboxes= [ map $_->bounding_box, @{$upper_layerm_polygons} ];
+ const double total_loop_length = total_length(upper_layerm_polygons);
+ const coord_t perimeter_spacing = layerm.flow(frPerimeter).scaled_spacing();
+ const Flow ext_perimeter_flow = layerm.flow(frExternalPerimeter);
+ const coord_t ext_perimeter_width = ext_perimeter_flow.scaled_width();
+ const coord_t ext_perimeter_spacing = ext_perimeter_flow.scaled_spacing();
+
+ for (Surface &slice : layerm.slices.surfaces) {
+ for (;;) {
+ // compute the total thickness of perimeters
+ const coord_t perimeters_thickness = ext_perimeter_width/2 + ext_perimeter_spacing/2
+ + (region.config().perimeters-1 + slice.extra_perimeters) * perimeter_spacing;
+ // define a critical area where we don't want the upper slice to fall into
+ // (it should either lay over our perimeters or outside this area)
+ const coord_t critical_area_depth = coord_t(perimeter_spacing * 1.5);
+ const Polygons critical_area = diff(
+ offset(slice.expolygon, float(- perimeters_thickness)),
+ offset(slice.expolygon, float(- perimeters_thickness - critical_area_depth))
+ );
+ // check whether a portion of the upper slices falls inside the critical area
+ const Polylines intersection = intersection_pl(to_polylines(upper_layerm_polygons), critical_area);
+ // only add an additional loop if at least 30% of the slice loop would benefit from it
+ if (total_length(intersection) <= total_loop_length*0.3)
+ break;
+ /*
+ if (0) {
+ require "Slic3r/SVG.pm";
+ Slic3r::SVG::output(
+ "extra.svg",
+ no_arrows => 1,
+ expolygons => union_ex($critical_area),
+ polylines => [ map $_->split_at_first_point, map $_->p, @{$upper_layerm->slices} ],
+ );
+ }
+ */
+ ++ slice.extra_perimeters;
+ }
+ #ifdef DEBUG
+ if (slice.extra_perimeters > 0)
+ printf(" adding %d more perimeter(s) at layer %zu\n", slice.extra_perimeters, layer_idx);
+ #endif
+ }
+ }
+ });
+ BOOST_LOG_TRIVIAL(debug) << "Generating extra perimeters for region " << region_id << " in parallel - end";
+ }
+
+ BOOST_LOG_TRIVIAL(debug) << "Generating perimeters in parallel - start";
+ tbb::parallel_for(
+ tbb::blocked_range<size_t>(0, m_layers.size()),
+ [this](const tbb::blocked_range<size_t>& range) {
+ for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx)
+ m_layers[layer_idx]->make_perimeters();
+ }
+ );
+ BOOST_LOG_TRIVIAL(debug) << "Generating perimeters in parallel - end";
+
+ /*
+ simplify slices (both layer and region slices),
+ we only need the max resolution for perimeters
+ ### This makes this method not-idempotent, so we keep it disabled for now.
+ ###$self->_simplify_slices(&Slic3r::SCALED_RESOLUTION);
+ */
+
+ this->set_done(posPerimeters);
+}
+
+// Only active if config->infill_only_where_needed. This step trims the sparse infill,
+// so it acts as an internal support. It maintains all other infill types intact.
+// Here the internal surfaces and perimeters have to be supported by the sparse infill.
+//FIXME The surfaces are supported by a sparse infill, but the sparse infill is only as large as the area to support.
+// Likely the sparse infill will not be anchored correctly, so it will not work as intended.
+// Also one wishes the perimeters to be supported by a full infill.
+// Idempotence of this method is guaranteed by the fact that we don't remove things from
+// fill_surfaces but we only turn them into VOID surfaces, thus preserving the boundaries.
+void PrintObject::clip_fill_surfaces()
+{
+ if (! m_config.infill_only_where_needed.value ||
+ ! std::any_of(this->print()->regions().begin(), this->print()->regions().end(),
+ [](const PrintRegion *region) { return region->config().fill_density > 0; }))
+ return;
+
+ // We only want infill under ceilings; this is almost like an
+ // internal support material.
+ // Proceed top-down, skipping the bottom layer.
+ Polygons upper_internal;
+ for (int layer_id = int(m_layers.size()) - 1; layer_id > 0; -- layer_id) {
+ Layer *layer = m_layers[layer_id];
+ Layer *lower_layer = m_layers[layer_id - 1];
+ // Detect things that we need to support.
+ // Cummulative slices.
+ Polygons slices;
+ for (const ExPolygon &expoly : layer->slices.expolygons)
+ polygons_append(slices, to_polygons(expoly));
+ // Cummulative fill surfaces.
+ Polygons fill_surfaces;
+ // Solid surfaces to be supported.
+ Polygons overhangs;
+ for (const LayerRegion *layerm : layer->m_regions)
+ for (const Surface &surface : layerm->fill_surfaces.surfaces) {
+ Polygons polygons = to_polygons(surface.expolygon);
+ if (surface.is_solid())
+ polygons_append(overhangs, polygons);
+ polygons_append(fill_surfaces, std::move(polygons));
+ }
+ Polygons lower_layer_fill_surfaces;
+ Polygons lower_layer_internal_surfaces;
+ for (const LayerRegion *layerm : lower_layer->m_regions)
+ for (const Surface &surface : layerm->fill_surfaces.surfaces) {
+ Polygons polygons = to_polygons(surface.expolygon);
+ if (surface.surface_type == stInternal || surface.surface_type == stInternalVoid)
+ polygons_append(lower_layer_internal_surfaces, polygons);
+ polygons_append(lower_layer_fill_surfaces, std::move(polygons));
+ }
+ // We also need to support perimeters when there's at least one full unsupported loop
+ {
+ // Get perimeters area as the difference between slices and fill_surfaces
+ // Only consider the area that is not supported by lower perimeters
+ Polygons perimeters = intersection(diff(slices, fill_surfaces), lower_layer_fill_surfaces);
+ // Only consider perimeter areas that are at least one extrusion width thick.
+ //FIXME Offset2 eats out from both sides, while the perimeters are create outside in.
+ //Should the pw not be half of the current value?
+ float pw = FLT_MAX;
+ for (const LayerRegion *layerm : layer->m_regions)
+ pw = std::min<float>(pw, layerm->flow(frPerimeter).scaled_width());
+ // Append such thick perimeters to the areas that need support
+ polygons_append(overhangs, offset2(perimeters, -pw, +pw));
+ }
+ // Find new internal infill.
+ polygons_append(overhangs, std::move(upper_internal));
+ upper_internal = intersection(overhangs, lower_layer_internal_surfaces);
+ // Apply new internal infill to regions.
+ for (LayerRegion *layerm : lower_layer->m_regions) {
+ if (layerm->region()->config().fill_density.value == 0)
+ continue;
+ SurfaceType internal_surface_types[] = { stInternal, stInternalVoid };
+ Polygons internal;
+ for (Surface &surface : layerm->fill_surfaces.surfaces)
+ if (surface.surface_type == stInternal || surface.surface_type == stInternalVoid)
+ polygons_append(internal, std::move(surface.expolygon));
+ layerm->fill_surfaces.remove_types(internal_surface_types, 2);
+ layerm->fill_surfaces.append(intersection_ex(internal, upper_internal, true), stInternal);
+ layerm->fill_surfaces.append(diff_ex (internal, upper_internal, true), stInternalVoid);
+ // If there are voids it means that our internal infill is not adjacent to
+ // perimeters. In this case it would be nice to add a loop around infill to
+ // make it more robust and nicer. TODO.
+#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
+ layerm->export_region_fill_surfaces_to_svg_debug("6_clip_fill_surfaces");
+#endif
+ }
+ m_print->throw_if_canceled();
+ }
+}
+
+void PrintObject::discover_horizontal_shells()
+{
+ BOOST_LOG_TRIVIAL(trace) << "discover_horizontal_shells()";
+
+ for (size_t region_id = 0; region_id < this->print()->regions().size(); ++ region_id) {
+ for (int i = 0; i < int(m_layers.size()); ++ i) {
+ m_print->throw_if_canceled();
+ LayerRegion *layerm = m_layers[i]->regions()[region_id];
+ const PrintRegionConfig &region_config = layerm->region()->config();
+ if (region_config.solid_infill_every_layers.value > 0 && region_config.fill_density.value > 0 &&
+ (i % region_config.solid_infill_every_layers) == 0) {
+ // Insert a solid internal layer. Mark stInternal surfaces as stInternalSolid or stInternalBridge.
+ SurfaceType type = (region_config.fill_density == 100) ? stInternalSolid : stInternalBridge;
+ for (Surface &surface : layerm->fill_surfaces.surfaces)
+ if (surface.surface_type == stInternal)
+ surface.surface_type = type;
+ }
+
+ // If ensure_vertical_shell_thickness, then the rest has already been performed by discover_vertical_shells().
+ if (region_config.ensure_vertical_shell_thickness.value)
+ continue;
+
+ for (int idx_surface_type = 0; idx_surface_type < 3; ++ idx_surface_type) {
+ m_print->throw_if_canceled();
+ SurfaceType type = (idx_surface_type == 0) ? stTop : (idx_surface_type == 1) ? stBottom : stBottomBridge;
+ // Find slices of current type for current layer.
+ // Use slices instead of fill_surfaces, because they also include the perimeter area,
+ // which needs to be propagated in shells; we need to grow slices like we did for
+ // fill_surfaces though. Using both ungrown slices and grown fill_surfaces will
+ // not work in some situations, as there won't be any grown region in the perimeter
+ // area (this was seen in a model where the top layer had one extra perimeter, thus
+ // its fill_surfaces were thinner than the lower layer's infill), however it's the best
+ // solution so far. Growing the external slices by EXTERNAL_INFILL_MARGIN will put
+ // too much solid infill inside nearly-vertical slopes.
+
+ // Surfaces including the area of perimeters. Everything, that is visible from the top / bottom
+ // (not covered by a layer above / below).
+ // This does not contain the areas covered by perimeters!
+ Polygons solid;
+ for (const Surface &surface : layerm->slices.surfaces)
+ if (surface.surface_type == type)
+ polygons_append(solid, to_polygons(surface.expolygon));
+ // Infill areas (slices without the perimeters).
+ for (const Surface &surface : layerm->fill_surfaces.surfaces)
+ if (surface.surface_type == type)
+ polygons_append(solid, to_polygons(surface.expolygon));
+ if (solid.empty())
+ continue;
+// Slic3r::debugf "Layer %d has %s surfaces\n", $i, ($type == S_TYPE_TOP) ? 'top' : 'bottom';
+
+ size_t solid_layers = (type == stTop) ? region_config.top_solid_layers.value : region_config.bottom_solid_layers.value;
+ for (int n = (type == stTop) ? i-1 : i+1; std::abs(n - i) < solid_layers; (type == stTop) ? -- n : ++ n) {
+ if (n < 0 || n >= int(m_layers.size()))
+ continue;
+// Slic3r::debugf " looking for neighbors on layer %d...\n", $n;
+ // Reference to the lower layer of a TOP surface, or an upper layer of a BOTTOM surface.
+ LayerRegion *neighbor_layerm = m_layers[n]->regions()[region_id];
+
+ // find intersection between neighbor and current layer's surfaces
+ // intersections have contours and holes
+ // we update $solid so that we limit the next neighbor layer to the areas that were
+ // found on this one - in other words, solid shells on one layer (for a given external surface)
+ // are always a subset of the shells found on the previous shell layer
+ // this approach allows for DWIM in hollow sloping vases, where we want bottom
+ // shells to be generated in the base but not in the walls (where there are many
+ // narrow bottom surfaces): reassigning $solid will consider the 'shadow' of the
+ // upper perimeter as an obstacle and shell will not be propagated to more upper layers
+ //FIXME How does it work for S_TYPE_INTERNALBRIDGE? This is set for sparse infill. Likely this does not work.
+ Polygons new_internal_solid;
+ {
+ Polygons internal;
+ for (const Surface &surface : neighbor_layerm->fill_surfaces.surfaces)
+ if (surface.surface_type == stInternal || surface.surface_type == stInternalSolid)
+ polygons_append(internal, to_polygons(surface.expolygon));
+ new_internal_solid = intersection(solid, internal, true);
+ }
+ if (new_internal_solid.empty()) {
+ // No internal solid needed on this layer. In order to decide whether to continue
+ // searching on the next neighbor (thus enforcing the configured number of solid
+ // layers, use different strategies according to configured infill density:
+ if (region_config.fill_density.value == 0) {
+ // If user expects the object to be void (for example a hollow sloping vase),
+ // don't continue the search. In this case, we only generate the external solid
+ // shell if the object would otherwise show a hole (gap between perimeters of
+ // the two layers), and internal solid shells are a subset of the shells found
+ // on each previous layer.
+ goto EXTERNAL;
+ } else {
+ // If we have internal infill, we can generate internal solid shells freely.
+ continue;
+ }
+ }
+
+ if (region_config.fill_density.value == 0) {
+ // if we're printing a hollow object we discard any solid shell thinner
+ // than a perimeter width, since it's probably just crossing a sloping wall
+ // and it's not wanted in a hollow print even if it would make sense when
+ // obeying the solid shell count option strictly (DWIM!)
+ float margin = float(neighbor_layerm->flow(frExternalPerimeter).scaled_width());
+ Polygons too_narrow = diff(
+ new_internal_solid,
+ offset2(new_internal_solid, -margin, +margin, jtMiter, 5),
+ true);
+ // Trim the regularized region by the original region.
+ if (! too_narrow.empty())
+ new_internal_solid = solid = diff(new_internal_solid, too_narrow);
+ }
+
+ // make sure the new internal solid is wide enough, as it might get collapsed
+ // when spacing is added in Fill.pm
+ {
+ //FIXME Vojtech: Disable this and you will be sorry.
+ // https://github.com/prusa3d/Slic3r/issues/26 bottom
+ float margin = 3.f * layerm->flow(frSolidInfill).scaled_width(); // require at least this size
+ // we use a higher miterLimit here to handle areas with acute angles
+ // in those cases, the default miterLimit would cut the corner and we'd
+ // get a triangle in $too_narrow; if we grow it below then the shell
+ // would have a different shape from the external surface and we'd still
+ // have the same angle, so the next shell would be grown even more and so on.
+ Polygons too_narrow = diff(
+ new_internal_solid,
+ offset2(new_internal_solid, -margin, +margin, ClipperLib::jtMiter, 5),
+ true);
+ if (! too_narrow.empty()) {
+ // grow the collapsing parts and add the extra area to the neighbor layer
+ // as well as to our original surfaces so that we support this
+ // additional area in the next shell too
+ // make sure our grown surfaces don't exceed the fill area
+ Polygons internal;
+ for (const Surface &surface : neighbor_layerm->fill_surfaces.surfaces)
+ if (surface.is_internal() && !surface.is_bridge())
+ polygons_append(internal, to_polygons(surface.expolygon));
+ polygons_append(new_internal_solid,
+ intersection(
+ offset(too_narrow, +margin),
+ // Discard bridges as they are grown for anchoring and we can't
+ // remove such anchors. (This may happen when a bridge is being
+ // anchored onto a wall where little space remains after the bridge
+ // is grown, and that little space is an internal solid shell so
+ // it triggers this too_narrow logic.)
+ internal));
+ solid = new_internal_solid;
+ }
+ }
+
+ // internal-solid are the union of the existing internal-solid surfaces
+ // and new ones
+ SurfaceCollection backup = std::move(neighbor_layerm->fill_surfaces);
+ polygons_append(new_internal_solid, to_polygons(backup.filter_by_type(stInternalSolid)));
+ ExPolygons internal_solid = union_ex(new_internal_solid, false);
+ // assign new internal-solid surfaces to layer
+ neighbor_layerm->fill_surfaces.set(internal_solid, stInternalSolid);
+ // subtract intersections from layer surfaces to get resulting internal surfaces
+ Polygons polygons_internal = to_polygons(std::move(internal_solid));
+ ExPolygons internal = diff_ex(
+ to_polygons(backup.filter_by_type(stInternal)),
+ polygons_internal,
+ true);
+ // assign resulting internal surfaces to layer
+ neighbor_layerm->fill_surfaces.append(internal, stInternal);
+ polygons_append(polygons_internal, to_polygons(std::move(internal)));
+ // assign top and bottom surfaces to layer
+ SurfaceType surface_types_solid[] = { stTop, stBottom, stBottomBridge };
+ backup.keep_types(surface_types_solid, 3);
+ std::vector<SurfacesPtr> top_bottom_groups;
+ backup.group(&top_bottom_groups);
+ for (SurfacesPtr &group : top_bottom_groups)
+ neighbor_layerm->fill_surfaces.append(
+ diff_ex(to_polygons(group), polygons_internal),
+ // Use an existing surface as a template, it carries the bridge angle etc.
+ *group.front());
+ }
+ EXTERNAL:;
+ } // foreach type (stTop, stBottom, stBottomBridge)
+ } // for each layer
+ } // for each region
+
+#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
+ for (size_t region_id = 0; region_id < this->print()->regions().size(); ++ region_id) {
+ for (const Layer *layer : m_layers) {
+ const LayerRegion *layerm = layer->m_regions[region_id];
+ layerm->export_region_slices_to_svg_debug("5_discover_horizontal_shells");
+ layerm->export_region_fill_surfaces_to_svg_debug("5_discover_horizontal_shells");
+ } // for each layer
+ } // for each region
+#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */
+}
+
+// combine fill surfaces across layers to honor the "infill every N layers" option
+// Idempotence of this method is guaranteed by the fact that we don't remove things from
+// fill_surfaces but we only turn them into VOID surfaces, thus preserving the boundaries.
+void PrintObject::combine_infill()
+{
+ // Work on each region separately.
+ for (size_t region_id = 0; region_id < this->print()->regions().size(); ++ region_id) {
+ const PrintRegion *region = this->print()->regions()[region_id];
+ const int every = region->config().infill_every_layers.value;
+ if (every < 2 || region->config().fill_density == 0.)
+ continue;
+ // Limit the number of combined layers to the maximum height allowed by this regions' nozzle.
+ //FIXME limit the layer height to max_layer_height
+ double nozzle_diameter = std::min(
+ this->print()->config().nozzle_diameter.get_at(region->config().infill_extruder.value - 1),
+ this->print()->config().nozzle_diameter.get_at(region->config().solid_infill_extruder.value - 1));
+ // define the combinations
+ std::vector<size_t> combine(m_layers.size(), 0);
+ {
+ double current_height = 0.;
+ size_t num_layers = 0;
+ for (size_t layer_idx = 0; layer_idx < m_layers.size(); ++ layer_idx) {
+ m_print->throw_if_canceled();
+ const Layer *layer = m_layers[layer_idx];
+ if (layer->id() == 0)
+ // Skip first print layer (which may not be first layer in array because of raft).
+ continue;
+ // Check whether the combination of this layer with the lower layers' buffer
+ // would exceed max layer height or max combined layer count.
+ if (current_height + layer->height >= nozzle_diameter + EPSILON || num_layers >= every) {
+ // Append combination to lower layer.
+ combine[layer_idx - 1] = num_layers;
+ current_height = 0.;
+ num_layers = 0;
+ }
+ current_height += layer->height;
+ ++ num_layers;
+ }
+
+ // Append lower layers (if any) to uppermost layer.
+ combine[m_layers.size() - 1] = num_layers;
+ }
+
+ // loop through layers to which we have assigned layers to combine
+ for (size_t layer_idx = 0; layer_idx < m_layers.size(); ++ layer_idx) {
+ m_print->throw_if_canceled();
+ size_t num_layers = combine[layer_idx];
+ if (num_layers <= 1)
+ continue;
+ // Get all the LayerRegion objects to be combined.
+ std::vector<LayerRegion*> layerms;
+ layerms.reserve(num_layers);
+ for (size_t i = layer_idx + 1 - num_layers; i <= layer_idx; ++ i)
+ layerms.emplace_back(m_layers[i]->regions()[region_id]);
+ // We need to perform a multi-layer intersection, so let's split it in pairs.
+ // Initialize the intersection with the candidates of the lowest layer.
+ ExPolygons intersection = to_expolygons(layerms.front()->fill_surfaces.filter_by_type(stInternal));
+ // Start looping from the second layer and intersect the current intersection with it.
+ for (size_t i = 1; i < layerms.size(); ++ i)
+ intersection = intersection_ex(
+ to_polygons(intersection),
+ to_polygons(layerms[i]->fill_surfaces.filter_by_type(stInternal)),
+ false);
+ double area_threshold = layerms.front()->infill_area_threshold();
+ if (! intersection.empty() && area_threshold > 0.)
+ intersection.erase(std::remove_if(intersection.begin(), intersection.end(),
+ [area_threshold](const ExPolygon &expoly) { return expoly.area() <= area_threshold; }),
+ intersection.end());
+ if (intersection.empty())
+ continue;
+// Slic3r::debugf " combining %d %s regions from layers %d-%d\n",
+// scalar(@$intersection),
+// ($type == S_TYPE_INTERNAL ? 'internal' : 'internal-solid'),
+// $layer_idx-($every-1), $layer_idx;
+ // intersection now contains the regions that can be combined across the full amount of layers,
+ // so let's remove those areas from all layers.
+ Polygons intersection_with_clearance;
+ intersection_with_clearance.reserve(intersection.size());
+ float clearance_offset =
+ 0.5f * layerms.back()->flow(frPerimeter).scaled_width() +
+ // Because fill areas for rectilinear and honeycomb are grown
+ // later to overlap perimeters, we need to counteract that too.
+ ((region->config().fill_pattern == ipRectilinear ||
+ region->config().fill_pattern == ipGrid ||
+ region->config().fill_pattern == ipLine ||
+ region->config().fill_pattern == ipHoneycomb) ? 1.5f : 0.5f) *
+ layerms.back()->flow(frSolidInfill).scaled_width();
+ for (ExPolygon &expoly : intersection)
+ polygons_append(intersection_with_clearance, offset(expoly, clearance_offset));
+ for (LayerRegion *layerm : layerms) {
+ Polygons internal = to_polygons(layerm->fill_surfaces.filter_by_type(stInternal));
+ layerm->fill_surfaces.remove_type(stInternal);
+ layerm->fill_surfaces.append(diff_ex(internal, intersection_with_clearance, false), stInternal);
+ if (layerm == layerms.back()) {
+ // Apply surfaces back with adjusted depth to the uppermost layer.
+ Surface templ(stInternal, ExPolygon());
+ templ.thickness = 0.;
+ for (LayerRegion *layerm2 : layerms)
+ templ.thickness += layerm2->layer()->height;
+ templ.thickness_layers = (unsigned short)layerms.size();
+ layerm->fill_surfaces.append(intersection, templ);
+ } else {
+ // Save void surfaces.
+ layerm->fill_surfaces.append(
+ intersection_ex(internal, intersection_with_clearance, false),
+ stInternalVoid);
+ }
+ }
+ }
+ }
+}
+
+void PrintObject::_generate_support_material()
+{
+ if (!this->is_printable())
+ return;
+
+ PrintObjectSupportMaterial support_material(this, PrintObject::slicing_parameters());
+ support_material.generate(*this);
+}
+
+void PrintObject::reset_layer_height_profile()
+{
+ // Reset the layer_heigth_profile.
+ this->layer_height_profile.clear();
+ this->layer_height_profile_valid = false;
+ // Reset the source layer_height_profile if it exists at the ModelObject.
+ this->model_object()->layer_height_profile.clear();
+ this->model_object()->layer_height_profile_valid = false;
+}
+
+void PrintObject::adjust_layer_height_profile(coordf_t z, coordf_t layer_thickness_delta, coordf_t band_width, int action)
+{
+ update_layer_height_profile(m_model_object->layer_height_profile);
+ Slic3r::adjust_layer_height_profile(slicing_parameters(), m_model_object->layer_height_profile, z, layer_thickness_delta, band_width, LayerHeightEditActionType(action));
+ m_model_object->layer_height_profile_valid = true;
+ layer_height_profile_valid = false;
+}
+
+} // namespace Slic3r