Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'src/libslic3r/SupportMaterial.cpp')
-rw-r--r--src/libslic3r/SupportMaterial.cpp3224
1 files changed, 3224 insertions, 0 deletions
diff --git a/src/libslic3r/SupportMaterial.cpp b/src/libslic3r/SupportMaterial.cpp
new file mode 100644
index 000000000..2bcf597e6
--- /dev/null
+++ b/src/libslic3r/SupportMaterial.cpp
@@ -0,0 +1,3224 @@
+#include "ClipperUtils.hpp"
+#include "ExtrusionEntityCollection.hpp"
+#include "PerimeterGenerator.hpp"
+#include "Layer.hpp"
+#include "Print.hpp"
+#include "SupportMaterial.hpp"
+#include "Fill/FillBase.hpp"
+#include "EdgeGrid.hpp"
+#include "Geometry.hpp"
+
+#include <cmath>
+#include <memory>
+#include <boost/log/trivial.hpp>
+
+#include <tbb/parallel_for.h>
+#include <tbb/atomic.h>
+#include <tbb/spin_mutex.h>
+#include <tbb/task_group.h>
+
+// #define SLIC3R_DEBUG
+
+// Make assert active if SLIC3R_DEBUG
+#ifdef SLIC3R_DEBUG
+ #define DEBUG
+ #define _DEBUG
+ #undef NDEBUG
+ #include "SVG.hpp"
+#endif
+
+// #undef NDEBUG
+#include <cassert>
+
+namespace Slic3r {
+
+// Increment used to reach MARGIN in steps to avoid trespassing thin objects
+#define NUM_MARGIN_STEPS 3
+
+// Dimensions of a tree-like structure to save material
+#define PILLAR_SIZE (2.5)
+#define PILLAR_SPACING 10
+
+//#define SUPPORT_SURFACES_OFFSET_PARAMETERS ClipperLib::jtMiter, 3.
+//#define SUPPORT_SURFACES_OFFSET_PARAMETERS ClipperLib::jtMiter, 1.5
+#define SUPPORT_SURFACES_OFFSET_PARAMETERS ClipperLib::jtSquare, 0.
+
+#ifdef SLIC3R_DEBUG
+const char* support_surface_type_to_color_name(const PrintObjectSupportMaterial::SupporLayerType surface_type)
+{
+ switch (surface_type) {
+ case PrintObjectSupportMaterial::sltTopContact: return "rgb(255,0,0)"; // "red";
+ case PrintObjectSupportMaterial::sltTopInterface: return "rgb(0,255,0)"; // "green";
+ case PrintObjectSupportMaterial::sltBase: return "rgb(0,0,255)"; // "blue";
+ case PrintObjectSupportMaterial::sltBottomInterface:return "rgb(255,255,128)"; // yellow
+ case PrintObjectSupportMaterial::sltBottomContact: return "rgb(255,0,255)"; // magenta
+ case PrintObjectSupportMaterial::sltRaftInterface: return "rgb(0,255,255)";
+ case PrintObjectSupportMaterial::sltRaftBase: return "rgb(128,128,128)";
+ case PrintObjectSupportMaterial::sltUnknown: return "rgb(128,0,0)"; // maroon
+ default: return "rgb(64,64,64)";
+ };
+}
+
+Point export_support_surface_type_legend_to_svg_box_size()
+{
+ return Point(scale_(1.+10.*8.), scale_(3.));
+}
+
+void export_support_surface_type_legend_to_svg(SVG &svg, const Point &pos)
+{
+ // 1st row
+ coord_t pos_x0 = pos(0) + scale_(1.);
+ coord_t pos_x = pos_x0;
+ coord_t pos_y = pos(1) + scale_(1.5);
+ coord_t step_x = scale_(10.);
+ svg.draw_legend(Point(pos_x, pos_y), "top contact" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltTopContact));
+ pos_x += step_x;
+ svg.draw_legend(Point(pos_x, pos_y), "top iface" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltTopInterface));
+ pos_x += step_x;
+ svg.draw_legend(Point(pos_x, pos_y), "base" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltBase));
+ pos_x += step_x;
+ svg.draw_legend(Point(pos_x, pos_y), "bottom iface" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltBottomInterface));
+ pos_x += step_x;
+ svg.draw_legend(Point(pos_x, pos_y), "bottom contact" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltBottomContact));
+ // 2nd row
+ pos_x = pos_x0;
+ pos_y = pos(1)+scale_(2.8);
+ svg.draw_legend(Point(pos_x, pos_y), "raft interface" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltRaftInterface));
+ pos_x += step_x;
+ svg.draw_legend(Point(pos_x, pos_y), "raft base" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltRaftBase));
+ pos_x += step_x;
+ svg.draw_legend(Point(pos_x, pos_y), "unknown" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltUnknown));
+ pos_x += step_x;
+ svg.draw_legend(Point(pos_x, pos_y), "intermediate" , support_surface_type_to_color_name(PrintObjectSupportMaterial::sltIntermediate));
+}
+
+void export_print_z_polygons_to_svg(const char *path, PrintObjectSupportMaterial::MyLayer ** const layers, size_t n_layers)
+{
+ BoundingBox bbox;
+ for (int i = 0; i < n_layers; ++ i)
+ bbox.merge(get_extents(layers[i]->polygons));
+ Point legend_size = export_support_surface_type_legend_to_svg_box_size();
+ Point legend_pos(bbox.min(0), bbox.max(1));
+ bbox.merge(Point(std::max(bbox.min(0) + legend_size(0), bbox.max(0)), bbox.max(1) + legend_size(1)));
+ SVG svg(path, bbox);
+ const float transparency = 0.5f;
+ for (int i = 0; i < n_layers; ++ i)
+ svg.draw(union_ex(layers[i]->polygons), support_surface_type_to_color_name(layers[i]->layer_type), transparency);
+ for (int i = 0; i < n_layers; ++ i)
+ svg.draw(to_polylines(layers[i]->polygons), support_surface_type_to_color_name(layers[i]->layer_type));
+ export_support_surface_type_legend_to_svg(svg, legend_pos);
+ svg.Close();
+}
+
+void export_print_z_polygons_and_extrusions_to_svg(
+ const char *path,
+ PrintObjectSupportMaterial::MyLayer ** const layers,
+ size_t n_layers,
+ SupportLayer &support_layer)
+{
+ BoundingBox bbox;
+ for (int i = 0; i < n_layers; ++ i)
+ bbox.merge(get_extents(layers[i]->polygons));
+ Point legend_size = export_support_surface_type_legend_to_svg_box_size();
+ Point legend_pos(bbox.min(0), bbox.max(1));
+ bbox.merge(Point(std::max(bbox.min(0) + legend_size(0), bbox.max(0)), bbox.max(1) + legend_size(1)));
+ SVG svg(path, bbox);
+ const float transparency = 0.5f;
+ for (int i = 0; i < n_layers; ++ i)
+ svg.draw(union_ex(layers[i]->polygons), support_surface_type_to_color_name(layers[i]->layer_type), transparency);
+ for (int i = 0; i < n_layers; ++ i)
+ svg.draw(to_polylines(layers[i]->polygons), support_surface_type_to_color_name(layers[i]->layer_type));
+
+ Polygons polygons_support, polygons_interface;
+ support_layer.support_fills.polygons_covered_by_width(polygons_support, SCALED_EPSILON);
+// support_layer.support_interface_fills.polygons_covered_by_width(polygons_interface, SCALED_EPSILON);
+ svg.draw(union_ex(polygons_support), "brown");
+ svg.draw(union_ex(polygons_interface), "black");
+
+ export_support_surface_type_legend_to_svg(svg, legend_pos);
+ svg.Close();
+}
+#endif /* SLIC3R_DEBUG */
+
+PrintObjectSupportMaterial::PrintObjectSupportMaterial(const PrintObject *object, const SlicingParameters &slicing_params) :
+ m_object (object),
+ m_print_config (&object->print()->config()),
+ m_object_config (&object->config()),
+ m_slicing_params (slicing_params),
+ m_first_layer_flow (support_material_1st_layer_flow(object, float(slicing_params.first_print_layer_height))),
+ m_support_material_flow (support_material_flow(object, float(slicing_params.layer_height))),
+ m_support_material_interface_flow(support_material_interface_flow(object, float(slicing_params.layer_height))),
+ m_support_layer_height_min(0.01)
+{
+ // Calculate a minimum support layer height as a minimum over all extruders, but not smaller than 10um.
+ m_support_layer_height_min = 1000000.;
+ for (auto lh : m_print_config->min_layer_height.values)
+ m_support_layer_height_min = std::min(m_support_layer_height_min, std::max(0.01, lh));
+
+ if (m_object_config->support_material_interface_layers.value == 0) {
+ // No interface layers allowed, print everything with the base support pattern.
+ m_support_material_interface_flow = m_support_material_flow;
+ }
+
+ // Evaluate the XY gap between the object outer perimeters and the support structures.
+ coordf_t external_perimeter_width = 0.;
+ for (size_t region_id = 0; region_id < object->region_volumes.size(); ++ region_id) {
+ if (! object->region_volumes[region_id].empty()) {
+ const PrintRegionConfig &config = object->print()->get_region(region_id)->config();
+ coordf_t width = config.external_perimeter_extrusion_width.get_abs_value(slicing_params.layer_height);
+ if (width <= 0.)
+ width = m_print_config->nozzle_diameter.get_at(config.perimeter_extruder-1);
+ external_perimeter_width = std::max(external_perimeter_width, width);
+ }
+ }
+ m_gap_xy = m_object_config->support_material_xy_spacing.get_abs_value(external_perimeter_width);
+
+ m_can_merge_support_regions = m_object_config->support_material_extruder.value == m_object_config->support_material_interface_extruder.value;
+ if (! m_can_merge_support_regions && (m_object_config->support_material_extruder.value == 0 || m_object_config->support_material_interface_extruder.value == 0)) {
+ // One of the support extruders is of "don't care" type.
+ auto object_extruders = m_object->print()->object_extruders();
+ if (object_extruders.size() == 1 &&
+ *object_extruders.begin() == std::max<unsigned int>(m_object_config->support_material_extruder.value, m_object_config->support_material_interface_extruder.value))
+ // Object is printed with the same extruder as the support.
+ m_can_merge_support_regions = true;
+ }
+}
+
+// Using the std::deque as an allocator.
+inline PrintObjectSupportMaterial::MyLayer& layer_allocate(
+ std::deque<PrintObjectSupportMaterial::MyLayer> &layer_storage,
+ PrintObjectSupportMaterial::SupporLayerType layer_type)
+{
+ layer_storage.push_back(PrintObjectSupportMaterial::MyLayer());
+ layer_storage.back().layer_type = layer_type;
+ return layer_storage.back();
+}
+
+inline PrintObjectSupportMaterial::MyLayer& layer_allocate(
+ std::deque<PrintObjectSupportMaterial::MyLayer> &layer_storage,
+ tbb::spin_mutex &layer_storage_mutex,
+ PrintObjectSupportMaterial::SupporLayerType layer_type)
+{
+ layer_storage_mutex.lock();
+ layer_storage.push_back(PrintObjectSupportMaterial::MyLayer());
+ PrintObjectSupportMaterial::MyLayer *layer_new = &layer_storage.back();
+ layer_storage_mutex.unlock();
+ layer_new->layer_type = layer_type;
+ return *layer_new;
+}
+
+inline void layers_append(PrintObjectSupportMaterial::MyLayersPtr &dst, const PrintObjectSupportMaterial::MyLayersPtr &src)
+{
+ dst.insert(dst.end(), src.begin(), src.end());
+}
+
+// Compare layers lexicographically.
+struct MyLayersPtrCompare
+{
+ bool operator()(const PrintObjectSupportMaterial::MyLayer* layer1, const PrintObjectSupportMaterial::MyLayer* layer2) const {
+ return *layer1 < *layer2;
+ }
+};
+
+void PrintObjectSupportMaterial::generate(PrintObject &object)
+{
+ BOOST_LOG_TRIVIAL(info) << "Support generator - Start";
+
+ coordf_t max_object_layer_height = 0.;
+ for (size_t i = 0; i < object.layer_count(); ++ i)
+ max_object_layer_height = std::max(max_object_layer_height, object.layers()[i]->height);
+
+ // Layer instances will be allocated by std::deque and they will be kept until the end of this function call.
+ // The layers will be referenced by various LayersPtr (of type std::vector<Layer*>)
+ MyLayerStorage layer_storage;
+
+ BOOST_LOG_TRIVIAL(info) << "Support generator - Creating top contacts";
+
+ // Determine the top contact surfaces of the support, defined as:
+ // contact = overhangs - clearance + margin
+ // This method is responsible for identifying what contact surfaces
+ // should the support material expose to the object in order to guarantee
+ // that it will be effective, regardless of how it's built below.
+ // If raft is to be generated, the 1st top_contact layer will contain the 1st object layer silhouette without holes.
+ MyLayersPtr top_contacts = this->top_contact_layers(object, layer_storage);
+ if (top_contacts.empty())
+ // Nothing is supported, no supports are generated.
+ return;
+
+#ifdef SLIC3R_DEBUG
+ static int iRun = 0;
+ iRun ++;
+ for (const MyLayer *layer : top_contacts)
+ Slic3r::SVG::export_expolygons(
+ debug_out_path("support-top-contacts-%d-%lf.svg", iRun, layer->print_z),
+ union_ex(layer->polygons, false));
+#endif /* SLIC3R_DEBUG */
+
+ BOOST_LOG_TRIVIAL(info) << "Support generator - Creating bottom contacts";
+
+ // Determine the bottom contact surfaces of the supports over the top surfaces of the object.
+ // Depending on whether the support is soluble or not, the contact layer thickness is decided.
+ // layer_support_areas contains the per object layer support areas. These per object layer support areas
+ // may get merged and trimmed by this->generate_base_layers() if the support layers are not synchronized with object layers.
+ std::vector<Polygons> layer_support_areas;
+ MyLayersPtr bottom_contacts = this->bottom_contact_layers_and_layer_support_areas(
+ object, top_contacts, layer_storage,
+ layer_support_areas);
+
+#ifdef SLIC3R_DEBUG
+ for (size_t layer_id = 0; layer_id < object.layers().size(); ++ layer_id)
+ Slic3r::SVG::export_expolygons(
+ debug_out_path("support-areas-%d-%lf.svg", iRun, object.layers()[layer_id]->print_z),
+ union_ex(layer_support_areas[layer_id], false));
+#endif /* SLIC3R_DEBUG */
+
+ BOOST_LOG_TRIVIAL(info) << "Support generator - Creating intermediate layers - indices";
+
+ // Allocate empty layers between the top / bottom support contact layers
+ // as placeholders for the base and intermediate support layers.
+ // The layers may or may not be synchronized with the object layers, depending on the configuration.
+ // For example, a single nozzle multi material printing will need to generate a waste tower, which in turn
+ // wastes less material, if there are as little tool changes as possible.
+ MyLayersPtr intermediate_layers = this->raft_and_intermediate_support_layers(
+ object, bottom_contacts, top_contacts, layer_storage);
+
+// this->trim_support_layers_by_object(object, top_contacts, m_slicing_params.soluble_interface ? 0. : m_support_layer_height_min, 0., m_gap_xy);
+ this->trim_support_layers_by_object(object, top_contacts,
+ m_slicing_params.soluble_interface ? 0. : m_object_config->support_material_contact_distance.value,
+ m_slicing_params.soluble_interface ? 0. : m_object_config->support_material_contact_distance.value, m_gap_xy);
+
+#ifdef SLIC3R_DEBUG
+ for (const MyLayer *layer : top_contacts)
+ Slic3r::SVG::export_expolygons(
+ debug_out_path("support-top-contacts-trimmed-by-object-%d-%lf.svg", iRun, layer->print_z),
+ union_ex(layer->polygons, false));
+#endif
+
+ BOOST_LOG_TRIVIAL(info) << "Support generator - Creating base layers";
+
+ // Fill in intermediate layers between the top / bottom support contact layers, trimm them by the object.
+ this->generate_base_layers(object, bottom_contacts, top_contacts, intermediate_layers, layer_support_areas);
+
+#ifdef SLIC3R_DEBUG
+ for (MyLayersPtr::const_iterator it = intermediate_layers.begin(); it != intermediate_layers.end(); ++ it)
+ Slic3r::SVG::export_expolygons(
+ debug_out_path("support-base-layers-%d-%lf.svg", iRun, (*it)->print_z),
+ union_ex((*it)->polygons, false));
+#endif /* SLIC3R_DEBUG */
+
+ BOOST_LOG_TRIVIAL(info) << "Support generator - Trimming top contacts by bottom contacts";
+
+ // Because the top and bottom contacts are thick slabs, they may overlap causing over extrusion
+ // and unwanted strong bonds to the object.
+ // Rather trim the top contacts by their overlapping bottom contacts to leave a gap instead of over extruding
+ // top contacts over the bottom contacts.
+ this->trim_top_contacts_by_bottom_contacts(object, bottom_contacts, top_contacts);
+
+
+ BOOST_LOG_TRIVIAL(info) << "Support generator - Creating interfaces";
+
+ // Propagate top / bottom contact layers to generate interface layers.
+ MyLayersPtr interface_layers = this->generate_interface_layers(
+ bottom_contacts, top_contacts, intermediate_layers, layer_storage);
+
+ BOOST_LOG_TRIVIAL(info) << "Support generator - Creating raft";
+
+ // If raft is to be generated, the 1st top_contact layer will contain the 1st object layer silhouette with holes filled.
+ // There is also a 1st intermediate layer containing bases of support columns.
+ // Inflate the bases of the support columns and create the raft base under the object.
+ MyLayersPtr raft_layers = this->generate_raft_base(top_contacts, interface_layers, intermediate_layers, layer_storage);
+
+#ifdef SLIC3R_DEBUG
+ for (MyLayersPtr::const_iterator it = interface_layers.begin(); it != interface_layers.end(); ++ it)
+ Slic3r::SVG::export_expolygons(
+ debug_out_path("support-interface-layers-%d-%lf.svg", iRun, (*it)->print_z),
+ union_ex((*it)->polygons, false));
+#endif /* SLIC3R_DEBUG */
+
+/*
+ // Clip with the pillars.
+ if (! shape.empty()) {
+ this->clip_with_shape(interface, shape);
+ this->clip_with_shape(base, shape);
+ }
+*/
+
+ BOOST_LOG_TRIVIAL(info) << "Support generator - Creating layers";
+
+// For debugging purposes, one may want to show only some of the support extrusions.
+// raft_layers.clear();
+// bottom_contacts.clear();
+// top_contacts.clear();
+// intermediate_layers.clear();
+// interface_layers.clear();
+
+ // Install support layers into the object.
+ // A support layer installed on a PrintObject has a unique print_z.
+ MyLayersPtr layers_sorted;
+ layers_sorted.reserve(raft_layers.size() + bottom_contacts.size() + top_contacts.size() + intermediate_layers.size() + interface_layers.size());
+ layers_append(layers_sorted, raft_layers);
+ layers_append(layers_sorted, bottom_contacts);
+ layers_append(layers_sorted, top_contacts);
+ layers_append(layers_sorted, intermediate_layers);
+ layers_append(layers_sorted, interface_layers);
+ // Sort the layers lexicographically by a raising print_z and a decreasing height.
+ std::sort(layers_sorted.begin(), layers_sorted.end(), MyLayersPtrCompare());
+ int layer_id = 0;
+ assert(object.support_layers().empty());
+ for (int i = 0; i < int(layers_sorted.size());) {
+ // Find the last layer with roughly the same print_z, find the minimum layer height of all.
+ // Due to the floating point inaccuracies, the print_z may not be the same even if in theory they should.
+ int j = i + 1;
+ coordf_t zmax = layers_sorted[i]->print_z + EPSILON;
+ for (; j < layers_sorted.size() && layers_sorted[j]->print_z <= zmax; ++j) ;
+ // Assign an average print_z to the set of layers with nearly equal print_z.
+ coordf_t zavg = 0.5 * (layers_sorted[i]->print_z + layers_sorted[j - 1]->print_z);
+ coordf_t height_min = layers_sorted[i]->height;
+ bool empty = true;
+ for (int u = i; u < j; ++u) {
+ MyLayer &layer = *layers_sorted[u];
+ if (! layer.polygons.empty())
+ empty = false;
+ layer.print_z = zavg;
+ height_min = std::min(height_min, layer.height);
+ }
+ if (! empty) {
+ // Here the upper_layer and lower_layer pointers are left to null at the support layers,
+ // as they are never used. These pointers are candidates for removal.
+ object.add_support_layer(layer_id ++, height_min, zavg);
+ }
+ i = j;
+ }
+
+ BOOST_LOG_TRIVIAL(info) << "Support generator - Generating tool paths";
+
+ // Generate the actual toolpaths and save them into each layer.
+ this->generate_toolpaths(object, raft_layers, bottom_contacts, top_contacts, intermediate_layers, interface_layers);
+
+#ifdef SLIC3R_DEBUG
+ {
+ size_t layer_id = 0;
+ for (int i = 0; i < int(layers_sorted.size());) {
+ // Find the last layer with roughly the same print_z, find the minimum layer height of all.
+ // Due to the floating point inaccuracies, the print_z may not be the same even if in theory they should.
+ int j = i + 1;
+ coordf_t zmax = layers_sorted[i]->print_z + EPSILON;
+ bool empty = true;
+ for (; j < layers_sorted.size() && layers_sorted[j]->print_z <= zmax; ++j)
+ if (! layers_sorted[j]->polygons.empty())
+ empty = false;
+ if (! empty) {
+ export_print_z_polygons_to_svg(
+ debug_out_path("support-%d-%lf.svg", iRun, layers_sorted[i]->print_z).c_str(),
+ layers_sorted.data() + i, j - i);
+ export_print_z_polygons_and_extrusions_to_svg(
+ debug_out_path("support-w-fills-%d-%lf.svg", iRun, layers_sorted[i]->print_z).c_str(),
+ layers_sorted.data() + i, j - i,
+ *object.support_layers[layer_id]);
+ ++layer_id;
+ }
+ i = j;
+ }
+ }
+#endif /* SLIC3R_DEBUG */
+
+ BOOST_LOG_TRIVIAL(info) << "Support generator - End";
+}
+
+// Collect all polygons of all regions in a layer with a given surface type.
+Polygons collect_region_slices_by_type(const Layer &layer, SurfaceType surface_type)
+{
+ // 1) Count the new polygons first.
+ size_t n_polygons_new = 0;
+ for (const LayerRegion *region : layer.regions())
+ for (const Surface &surface : region->slices.surfaces)
+ if (surface.surface_type == surface_type)
+ n_polygons_new += surface.expolygon.holes.size() + 1;
+ // 2) Collect the new polygons.
+ Polygons out;
+ out.reserve(n_polygons_new);
+ for (const LayerRegion *region : layer.regions())
+ for (const Surface &surface : region->slices.surfaces)
+ if (surface.surface_type == surface_type)
+ polygons_append(out, surface.expolygon);
+ return out;
+}
+
+// Collect outer contours of all slices of this layer.
+// This is useful for calculating the support base with holes filled.
+Polygons collect_slices_outer(const Layer &layer)
+{
+ Polygons out;
+ out.reserve(out.size() + layer.slices.expolygons.size());
+ for (const ExPolygon &expoly : layer.slices.expolygons)
+ out.emplace_back(expoly.contour);
+ return out;
+}
+
+class SupportGridPattern
+{
+public:
+ SupportGridPattern(
+ // Support islands, to be stretched into a grid. Already trimmed with min(lower_layer_offset, m_gap_xy)
+ const Polygons &support_polygons,
+ // Trimming polygons, to trim the stretched support islands. support_polygons were already trimmed with trimming_polygons.
+ const Polygons &trimming_polygons,
+ // Grid spacing, given by "support_material_spacing" + m_support_material_flow.spacing()
+ coordf_t support_spacing,
+ coordf_t support_angle) :
+ m_support_polygons(&support_polygons), m_trimming_polygons(&trimming_polygons),
+ m_support_spacing(support_spacing), m_support_angle(support_angle)
+ {
+ if (m_support_angle != 0.) {
+ // Create a copy of the rotated contours.
+ m_support_polygons_rotated = support_polygons;
+ m_trimming_polygons_rotated = trimming_polygons;
+ m_support_polygons = &m_support_polygons_rotated;
+ m_trimming_polygons = &m_trimming_polygons_rotated;
+ polygons_rotate(m_support_polygons_rotated, - support_angle);
+ polygons_rotate(m_trimming_polygons_rotated, - support_angle);
+ }
+ // Create an EdgeGrid, initialize it with projection, initialize signed distance field.
+ coord_t grid_resolution = coord_t(scale_(m_support_spacing));
+ BoundingBox bbox = get_extents(*m_support_polygons);
+ bbox.offset(20);
+ bbox.align_to_grid(grid_resolution);
+ m_grid.set_bbox(bbox);
+ m_grid.create(*m_support_polygons, grid_resolution);
+ m_grid.calculate_sdf();
+ // Sample a single point per input support polygon, keep it as a reference to maintain corresponding
+ // polygons if ever these polygons get split into parts by the trimming polygons.
+ m_island_samples = island_samples(*m_support_polygons);
+ }
+
+ // Extract polygons from the grid, offsetted by offset_in_grid,
+ // and trim the extracted polygons by trimming_polygons.
+ // Trimming by the trimming_polygons may split the extracted polygons into pieces.
+ // Remove all the pieces, which do not contain any of the island_samples.
+ Polygons extract_support(const coord_t offset_in_grid, bool fill_holes)
+ {
+ // Generate islands, so each island may be tested for overlap with m_island_samples.
+ assert(std::abs(2 * offset_in_grid) < m_grid.resolution());
+ ExPolygons islands = diff_ex(
+ m_grid.contours_simplified(offset_in_grid, fill_holes),
+ *m_trimming_polygons, false);
+
+ // Extract polygons, which contain some of the m_island_samples.
+ Polygons out;
+ for (ExPolygon &island : islands) {
+ BoundingBox bbox = get_extents(island.contour);
+ // Samples are sorted lexicographically.
+ auto it_lower = std::lower_bound(m_island_samples.begin(), m_island_samples.end(), Point(bbox.min - Point(1, 1)));
+ auto it_upper = std::upper_bound(m_island_samples.begin(), m_island_samples.end(), Point(bbox.max + Point(1, 1)));
+ std::vector<std::pair<Point,bool>> samples_inside;
+ for (auto it = it_lower; it != it_upper; ++ it)
+ if (bbox.contains(*it))
+ samples_inside.push_back(std::make_pair(*it, false));
+ if (! samples_inside.empty()) {
+ // For all samples_inside count the boundary crossing.
+ for (size_t i_contour = 0; i_contour <= island.holes.size(); ++ i_contour) {
+ Polygon &contour = (i_contour == 0) ? island.contour : island.holes[i_contour - 1];
+ Points::const_iterator i = contour.points.begin();
+ Points::const_iterator j = contour.points.end() - 1;
+ for (; i != contour.points.end(); j = i ++) {
+ //FIXME this test is not numerically robust. Particularly, it does not handle horizontal segments at y == point(1) well.
+ // Does the ray with y == point(1) intersect this line segment?
+ for (auto &sample_inside : samples_inside) {
+ if (((*i)(1) > sample_inside.first(1)) != ((*j)(1) > sample_inside.first(1))) {
+ double x1 = (double)sample_inside.first(0);
+ double x2 = (double)(*i)(0) + (double)((*j)(0) - (*i)(0)) * (double)(sample_inside.first(1) - (*i)(1)) / (double)((*j)(1) - (*i)(1));
+ if (x1 < x2)
+ sample_inside.second = !sample_inside.second;
+ }
+ }
+ }
+ }
+ // If any of the sample is inside this island, add this island to the output.
+ for (auto &sample_inside : samples_inside)
+ if (sample_inside.second) {
+ polygons_append(out, std::move(island));
+ island.clear();
+ break;
+ }
+ }
+ }
+
+ #ifdef SLIC3R_DEBUG
+ static int iRun = 0;
+ ++iRun;
+ BoundingBox bbox = get_extents(*m_trimming_polygons);
+ if (! islands.empty())
+ bbox.merge(get_extents(islands));
+ if (!out.empty())
+ bbox.merge(get_extents(out));
+ SVG svg(debug_out_path("extract_support_from_grid_trimmed-%d.svg", iRun).c_str(), bbox);
+ svg.draw(islands, "red", 0.5f);
+ svg.draw(union_ex(out), "green", 0.5f);
+ svg.draw(union_ex(*m_support_polygons), "blue", 0.5f);
+ svg.draw_outline(islands, "red", "red", scale_(0.05));
+ svg.draw_outline(union_ex(out), "green", "green", scale_(0.05));
+ svg.draw_outline(union_ex(*m_support_polygons), "blue", "blue", scale_(0.05));
+ for (const Point &pt : m_island_samples)
+ svg.draw(pt, "black", coord_t(scale_(0.15)));
+ svg.Close();
+ #endif /* SLIC3R_DEBUG */
+
+ if (m_support_angle != 0.)
+ polygons_rotate(out, m_support_angle);
+ return out;
+ }
+
+private:
+ SupportGridPattern& operator=(const SupportGridPattern &rhs);
+
+#if 0
+ // Get some internal point of an expolygon, to be used as a representative
+ // sample to test, whether this island is inside another island.
+ //FIXME this was quick, but not sufficiently robust.
+ static Point island_sample(const ExPolygon &expoly)
+ {
+ // Find the lowest point lexicographically.
+ const Point *pt_min = &expoly.contour.points.front();
+ for (size_t i = 1; i < expoly.contour.points.size(); ++ i)
+ if (expoly.contour.points[i] < *pt_min)
+ pt_min = &expoly.contour.points[i];
+
+ // Lowest corner will always be convex, in worst case denegenerate with zero angle.
+ const Point &p1 = (pt_min == &expoly.contour.points.front()) ? expoly.contour.points.back() : *(pt_min - 1);
+ const Point &p2 = *pt_min;
+ const Point &p3 = (pt_min == &expoly.contour.points.back()) ? expoly.contour.points.front() : *(pt_min + 1);
+
+ Vector v = (p3 - p2) + (p1 - p2);
+ double l2 = double(v(0))*double(v(0))+double(v(1))*double(v(1));
+ if (l2 == 0.)
+ return p2;
+ double coef = 20. / sqrt(l2);
+ return Point(p2(0) + coef * v(0), p2(1) + coef * v(1));
+ }
+#endif
+
+ // Sample one internal point per expolygon.
+ // FIXME this is quite an overkill to calculate a complete offset just to get a single point, but at least it is robust.
+ static Points island_samples(const ExPolygons &expolygons)
+ {
+ Points pts;
+ pts.reserve(expolygons.size());
+ for (const ExPolygon &expoly : expolygons)
+ if (expoly.contour.points.size() > 2) {
+ #if 0
+ pts.push_back(island_sample(expoly));
+ #else
+ Polygons polygons = offset(expoly, - 20.f);
+ for (const Polygon &poly : polygons)
+ if (! poly.points.empty()) {
+ pts.push_back(poly.points.front());
+ break;
+ }
+ #endif
+ }
+ // Sort the points lexicographically, so a binary search could be used to locate points inside a bounding box.
+ std::sort(pts.begin(), pts.end());
+ return pts;
+ }
+
+ static Points island_samples(const Polygons &polygons)
+ {
+ return island_samples(union_ex(polygons));
+ }
+
+ const Polygons *m_support_polygons;
+ const Polygons *m_trimming_polygons;
+ Polygons m_support_polygons_rotated;
+ Polygons m_trimming_polygons_rotated;
+ // Angle in radians, by which the whole support is rotated.
+ coordf_t m_support_angle;
+ // X spacing of the support lines parallel with the Y axis.
+ coordf_t m_support_spacing;
+
+ Slic3r::EdgeGrid::Grid m_grid;
+ // Internal sample points of supporting expolygons. These internal points are used to pick regions corresponding
+ // to the initial supporting regions, after these regions werre grown and possibly split to many by the trimming polygons.
+ Points m_island_samples;
+};
+
+namespace SupportMaterialInternal {
+ static inline bool has_bridging_perimeters(const ExtrusionLoop &loop)
+ {
+ for (const ExtrusionPath &ep : loop.paths)
+ if (ep.role() == erOverhangPerimeter && ! ep.polyline.empty())
+ return ep.size() >= (ep.is_closed() ? 3 : 2);
+ return false;
+ }
+ static bool has_bridging_perimeters(const ExtrusionEntityCollection &perimeters)
+ {
+ for (const ExtrusionEntity *ee : perimeters.entities) {
+ if (ee->is_collection()) {
+ for (const ExtrusionEntity *ee2 : static_cast<const ExtrusionEntityCollection*>(ee)->entities) {
+ assert(! ee2->is_collection());
+ if (ee2->is_loop())
+ if (has_bridging_perimeters(*static_cast<const ExtrusionLoop*>(ee2)))
+ return true;
+ }
+ } else if (ee->is_loop() && has_bridging_perimeters(*static_cast<const ExtrusionLoop*>(ee)))
+ return true;
+ }
+ return false;
+ }
+ static bool has_bridging_fills(const ExtrusionEntityCollection &fills)
+ {
+ for (const ExtrusionEntity *ee : fills.entities) {
+ assert(ee->is_collection());
+ for (const ExtrusionEntity *ee2 : static_cast<const ExtrusionEntityCollection*>(ee)->entities) {
+ assert(! ee2->is_collection());
+ assert(! ee2->is_loop());
+ if (ee2->role() == erBridgeInfill)
+ return true;
+ }
+ }
+ return false;
+ }
+ static bool has_bridging_extrusions(const Layer &layer)
+ {
+ for (const LayerRegion *region : layer.regions()) {
+ if (SupportMaterialInternal::has_bridging_perimeters(region->perimeters))
+ return true;
+ if (region->fill_surfaces.has(stBottomBridge) && has_bridging_fills(region->fills))
+ return true;
+ }
+ return false;
+ }
+
+ static inline void collect_bridging_perimeter_areas(const ExtrusionLoop &loop, const float expansion_scaled, Polygons &out)
+ {
+ assert(expansion_scaled >= 0.f);
+ for (const ExtrusionPath &ep : loop.paths)
+ if (ep.role() == erOverhangPerimeter && ! ep.polyline.empty()) {
+ float exp = 0.5f * scale_(ep.width) + expansion_scaled;
+ if (ep.is_closed()) {
+ if (ep.size() >= 3) {
+ // This is a complete loop.
+ // Add the outer contour first.
+ Polygon poly;
+ poly.points = ep.polyline.points;
+ poly.points.pop_back();
+ if (poly.area() < 0)
+ poly.reverse();
+ polygons_append(out, offset(poly, exp, SUPPORT_SURFACES_OFFSET_PARAMETERS));
+ Polygons holes = offset(poly, - exp, SUPPORT_SURFACES_OFFSET_PARAMETERS);
+ polygons_reverse(holes);
+ polygons_append(out, holes);
+ }
+ } else if (ep.size() >= 2) {
+ // Offset the polyline.
+ polygons_append(out, offset(ep.polyline, exp, SUPPORT_SURFACES_OFFSET_PARAMETERS));
+ }
+ }
+ }
+ static void collect_bridging_perimeter_areas(const ExtrusionEntityCollection &perimeters, const float expansion_scaled, Polygons &out)
+ {
+ for (const ExtrusionEntity *ee : perimeters.entities) {
+ if (ee->is_collection()) {
+ for (const ExtrusionEntity *ee2 : static_cast<const ExtrusionEntityCollection*>(ee)->entities) {
+ assert(! ee2->is_collection());
+ if (ee2->is_loop())
+ collect_bridging_perimeter_areas(*static_cast<const ExtrusionLoop*>(ee2), expansion_scaled, out);
+ }
+ } else if (ee->is_loop())
+ collect_bridging_perimeter_areas(*static_cast<const ExtrusionLoop*>(ee), expansion_scaled, out);
+ }
+ }
+
+ static void remove_bridges_from_contacts(
+ const PrintConfig &print_config,
+ const Layer &lower_layer,
+ const Polygons &lower_layer_polygons,
+ LayerRegion *layerm,
+ float fw,
+ Polygons &contact_polygons)
+ {
+ // compute the area of bridging perimeters
+ Polygons bridges;
+ {
+ // Surface supporting this layer, expanded by 0.5 * nozzle_diameter, as we consider this kind of overhang to be sufficiently supported.
+ Polygons lower_grown_slices = offset(lower_layer_polygons,
+ //FIXME to mimic the decision in the perimeter generator, we should use half the external perimeter width.
+ 0.5f * float(scale_(print_config.nozzle_diameter.get_at(layerm->region()->config().perimeter_extruder-1))),
+ SUPPORT_SURFACES_OFFSET_PARAMETERS);
+ // Collect perimeters of this layer.
+ //FIXME split_at_first_point() could split a bridge mid-way
+ #if 0
+ Polylines overhang_perimeters = layerm->perimeters.as_polylines();
+ // workaround for Clipper bug, see Slic3r::Polygon::clip_as_polyline()
+ for (Polyline &polyline : overhang_perimeters)
+ polyline.points[0].x += 1;
+ // Trim the perimeters of this layer by the lower layer to get the unsupported pieces of perimeters.
+ overhang_perimeters = diff_pl(overhang_perimeters, lower_grown_slices);
+ #else
+ Polylines overhang_perimeters = diff_pl(layerm->perimeters.as_polylines(), lower_grown_slices);
+ #endif
+
+ // only consider straight overhangs
+ // only consider overhangs having endpoints inside layer's slices
+ // convert bridging polylines into polygons by inflating them with their thickness
+ // since we're dealing with bridges, we can't assume width is larger than spacing,
+ // so we take the largest value and also apply safety offset to be ensure no gaps
+ // are left in between
+ Flow bridge_flow = layerm->flow(frPerimeter, true);
+ float w = float(std::max(bridge_flow.scaled_width(), bridge_flow.scaled_spacing()));
+ for (Polyline &polyline : overhang_perimeters)
+ if (polyline.is_straight()) {
+ // This is a bridge
+ polyline.extend_start(fw);
+ polyline.extend_end(fw);
+ // Is the straight perimeter segment supported at both sides?
+ if (lower_layer.slices.contains(polyline.first_point()) && lower_layer.slices.contains(polyline.last_point()))
+ // Offset a polyline into a thick line.
+ polygons_append(bridges, offset(polyline, 0.5f * w + 10.f));
+ }
+ bridges = union_(bridges);
+ }
+ // remove the entire bridges and only support the unsupported edges
+ //FIXME the brided regions are already collected as layerm->bridged. Use it?
+ for (const Surface &surface : layerm->fill_surfaces.surfaces)
+ if (surface.surface_type == stBottomBridge && surface.bridge_angle != -1)
+ polygons_append(bridges, surface.expolygon);
+ //FIXME add the gap filled areas. Extrude the gaps with a bridge flow?
+ contact_polygons = diff(contact_polygons, bridges, true);
+ // Add the bridge anchors into the region.
+ //FIXME add supports at regular intervals to support long bridges!
+ polygons_append(contact_polygons,
+ intersection(
+ // Offset unsupported edges into polygons.
+ offset(layerm->unsupported_bridge_edges.polylines, scale_(SUPPORT_MATERIAL_MARGIN), SUPPORT_SURFACES_OFFSET_PARAMETERS),
+ bridges));
+ }
+}
+
+// Generate top contact layers supporting overhangs.
+// For a soluble interface material synchronize the layer heights with the object, otherwise leave the layer height undefined.
+// If supports over bed surface only are requested, don't generate contact layers over an object.
+PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::top_contact_layers(
+ const PrintObject &object, MyLayerStorage &layer_storage) const
+{
+#ifdef SLIC3R_DEBUG
+ static int iRun = 0;
+ ++ iRun;
+#endif /* SLIC3R_DEBUG */
+
+ // Slice support enforcers / support blockers.
+ std::vector<ExPolygons> enforcers = object.slice_support_enforcers();
+ std::vector<ExPolygons> blockers = object.slice_support_blockers();
+
+ // Output layers, sorted by top Z.
+ MyLayersPtr contact_out;
+
+ const bool support_auto = m_object_config->support_material_auto.value;
+ // If user specified a custom angle threshold, convert it to radians.
+ // Zero means automatic overhang detection.
+ const double threshold_rad = (m_object_config->support_material_threshold.value > 0) ?
+ M_PI * double(m_object_config->support_material_threshold.value + 1) / 180. : // +1 makes the threshold inclusive
+ 0.;
+
+ // Build support on a build plate only? If so, then collect and union all the surfaces below the current layer.
+ // Unfortunately this is an inherently serial process.
+ const bool buildplate_only = this->build_plate_only();
+ std::vector<Polygons> buildplate_covered;
+ if (buildplate_only) {
+ BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::top_contact_layers() - collecting regions covering the print bed.";
+ buildplate_covered.assign(object.layers().size(), Polygons());
+ for (size_t layer_id = 1; layer_id < object.layers().size(); ++ layer_id) {
+ const Layer &lower_layer = *object.layers()[layer_id-1];
+ // Merge the new slices with the preceding slices.
+ // Apply the safety offset to the newly added polygons, so they will connect
+ // with the polygons collected before,
+ // but don't apply the safety offset during the union operation as it would
+ // inflate the polygons over and over.
+ Polygons &covered = buildplate_covered[layer_id];
+ covered = buildplate_covered[layer_id - 1];
+ polygons_append(covered, offset(lower_layer.slices.expolygons, scale_(0.01)));
+ covered = union_(covered, false); // don't apply the safety offset.
+ }
+ }
+
+ BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::top_contact_layers() in parallel - start";
+ // Determine top contact areas.
+ // If generating raft only (no support), only calculate top contact areas for the 0th layer.
+ // If having a raft, start with 0th layer, otherwise with 1st layer.
+ // Note that layer_id < layer->id when raft_layers > 0 as the layer->id incorporates the raft layers.
+ // So layer_id == 0 means first object layer and layer->id == 0 means first print layer if there are no explicit raft layers.
+ size_t num_layers = this->has_support() ? object.layer_count() : 1;
+ // For each overhang layer, two supporting layers may be generated: One for the overhangs extruded with a bridging flow,
+ // and the other for the overhangs extruded with a normal flow.
+ contact_out.assign(num_layers * 2, nullptr);
+ tbb::spin_mutex layer_storage_mutex;
+ tbb::parallel_for(tbb::blocked_range<size_t>(this->has_raft() ? 0 : 1, num_layers),
+ [this, &object, &buildplate_covered, &enforcers, &blockers, support_auto, threshold_rad, &layer_storage, &layer_storage_mutex, &contact_out]
+ (const tbb::blocked_range<size_t>& range) {
+ for (size_t layer_id = range.begin(); layer_id < range.end(); ++ layer_id)
+ {
+ const Layer &layer = *object.layers()[layer_id];
+
+ // Detect overhangs and contact areas needed to support them.
+ // Collect overhangs and contacts of all regions of this layer supported by the layer immediately below.
+ Polygons overhang_polygons;
+ Polygons contact_polygons;
+ Polygons slices_margin_cached;
+ float slices_margin_cached_offset = -1.;
+ Polygons lower_layer_polygons = (layer_id == 0) ? Polygons() : to_polygons(object.layers()[layer_id-1]->slices.expolygons);
+ // Offset of the lower layer, to trim the support polygons with to calculate dense supports.
+ float no_interface_offset = 0.f;
+ if (layer_id == 0) {
+ // This is the first object layer, so the object is being printed on a raft and
+ // we're here just to get the object footprint for the raft.
+ // We only consider contours and discard holes to get a more continuous raft.
+ overhang_polygons = collect_slices_outer(layer);
+ // Extend by SUPPORT_MATERIAL_MARGIN, which is 1.5mm
+ contact_polygons = offset(overhang_polygons, scale_(SUPPORT_MATERIAL_MARGIN));
+ } else {
+ // Generate overhang / contact_polygons for non-raft layers.
+ const Layer &lower_layer = *object.layers()[layer_id-1];
+ for (LayerRegion *layerm : layer.regions()) {
+ // Extrusion width accounts for the roundings of the extrudates.
+ // It is the maximum widh of the extrudate.
+ float fw = float(layerm->flow(frExternalPerimeter).scaled_width());
+ no_interface_offset = (no_interface_offset == 0.f) ? fw : std::min(no_interface_offset, fw);
+ float lower_layer_offset =
+ (layer_id < m_object_config->support_material_enforce_layers.value) ?
+ // Enforce a full possible support, ignore the overhang angle.
+ 0.f :
+ (threshold_rad > 0. ?
+ // Overhang defined by an angle.
+ float(scale_(lower_layer.height / tan(threshold_rad))) :
+ // Overhang defined by half the extrusion width.
+ 0.5f * fw);
+ // Overhang polygons for this layer and region.
+ Polygons diff_polygons;
+ Polygons layerm_polygons = to_polygons(layerm->slices);
+ if (lower_layer_offset == 0.f) {
+ // Support everything.
+ diff_polygons = diff(layerm_polygons, lower_layer_polygons);
+ if (! buildplate_covered.empty()) {
+ // Don't support overhangs above the top surfaces.
+ // This step is done before the contact surface is calculated by growing the overhang region.
+ diff_polygons = diff(diff_polygons, buildplate_covered[layer_id]);
+ }
+ } else {
+ if (support_auto) {
+ // Get the regions needing a suport, collapse very tiny spots.
+ //FIXME cache the lower layer offset if this layer has multiple regions.
+ #if 1
+ diff_polygons = offset2(
+ diff(layerm_polygons,
+ offset2(lower_layer_polygons, - 0.5f * fw, lower_layer_offset + 0.5f * fw, SUPPORT_SURFACES_OFFSET_PARAMETERS)),
+ //FIXME This offset2 is targeted to reduce very thin regions to support, but it may lead to
+ // no support at all for not so steep overhangs.
+ - 0.1f * fw, 0.1f * fw);
+ #else
+ diff_polygons =
+ diff(layerm_polygons,
+ offset(lower_layer_polygons, lower_layer_offset, SUPPORT_SURFACES_OFFSET_PARAMETERS));
+ #endif
+ if (! buildplate_covered.empty()) {
+ // Don't support overhangs above the top surfaces.
+ // This step is done before the contact surface is calculated by growing the overhang region.
+ diff_polygons = diff(diff_polygons, buildplate_covered[layer_id]);
+ }
+ if (! diff_polygons.empty()) {
+ // Offset the support regions back to a full overhang, restrict them to the full overhang.
+ // This is done to increase size of the supporting columns below, as they are calculated by
+ // propagating these contact surfaces downwards.
+ diff_polygons = diff(
+ intersection(offset(diff_polygons, lower_layer_offset, SUPPORT_SURFACES_OFFSET_PARAMETERS), layerm_polygons),
+ lower_layer_polygons);
+ }
+ }
+ if (! enforcers.empty()) {
+ // Apply the "support enforcers".
+ //FIXME add the "enforcers" to the sparse support regions only.
+ const ExPolygons &enforcer = enforcers[layer_id - 1];
+ if (! enforcer.empty()) {
+ // Enforce supports (as if with 90 degrees of slope) for the regions covered by the enforcer meshes.
+ Polygons new_contacts = diff(intersection(layerm_polygons, to_polygons(enforcer)),
+ offset(lower_layer_polygons, 0.05f * fw, SUPPORT_SURFACES_OFFSET_PARAMETERS));
+ if (! new_contacts.empty()) {
+ if (diff_polygons.empty())
+ diff_polygons = std::move(new_contacts);
+ else
+ diff_polygons = union_(diff_polygons, new_contacts);
+ }
+ }
+ }
+ }
+ // Apply the "support blockers".
+ if (! diff_polygons.empty() && ! blockers.empty() && ! blockers[layer_id].empty()) {
+ // Enforce supports (as if with 90 degrees of slope) for the regions covered by the enforcer meshes.
+ diff_polygons = diff(diff_polygons, to_polygons(blockers[layer_id]));
+ }
+ if (diff_polygons.empty())
+ continue;
+
+ #ifdef SLIC3R_DEBUG
+ {
+ ::Slic3r::SVG svg(debug_out_path("support-top-contacts-raw-run%d-layer%d-region%d.svg",
+ iRun, layer_id,
+ std::find_if(layer.regions.begin(), layer.regions.end(), [layerm](const LayerRegion* other){return other == layerm;}) - layer.regions.begin()),
+ get_extents(diff_polygons));
+ Slic3r::ExPolygons expolys = union_ex(diff_polygons, false);
+ svg.draw(expolys);
+ }
+ #endif /* SLIC3R_DEBUG */
+
+ if (this->m_object_config->dont_support_bridges)
+ SupportMaterialInternal::remove_bridges_from_contacts(
+ *m_print_config, lower_layer, lower_layer_polygons, layerm, fw, diff_polygons);
+
+ if (diff_polygons.empty())
+ continue;
+
+ #ifdef SLIC3R_DEBUG
+ Slic3r::SVG::export_expolygons(
+ debug_out_path("support-top-contacts-filtered-run%d-layer%d-region%d-z%f.svg",
+ iRun, layer_id,
+ std::find_if(layer.regions.begin(), layer.regions.end(), [layerm](const LayerRegion* other){return other == layerm;}) - layer.regions.begin(),
+ layer.print_z),
+ union_ex(diff_polygons, false));
+ #endif /* SLIC3R_DEBUG */
+
+ //FIXME the overhang_polygons are used to construct the support towers as well.
+ //if (this->has_contact_loops())
+ // Store the exact contour of the overhang for the contact loops.
+ polygons_append(overhang_polygons, diff_polygons);
+
+ // Let's define the required contact area by using a max gap of half the upper
+ // extrusion width and extending the area according to the configured margin.
+ // We increment the area in steps because we don't want our support to overflow
+ // on the other side of the object (if it's very thin).
+ {
+ //FIMXE 1) Make the offset configurable, 2) Make the Z span configurable.
+ //FIXME one should trim with the layer span colliding with the support layer, this layer
+ // may be lower than lower_layer, so the support area needed may need to be actually bigger!
+ // For the same reason, the non-bridging support area may be smaller than the bridging support area!
+ float slices_margin_offset = std::min(lower_layer_offset, float(scale_(m_gap_xy)));
+ if (slices_margin_cached_offset != slices_margin_offset) {
+ slices_margin_cached_offset = slices_margin_offset;
+ slices_margin_cached = (slices_margin_offset == 0.f) ?
+ lower_layer_polygons :
+ offset2(to_polygons(lower_layer.slices.expolygons), - no_interface_offset * 0.5f, slices_margin_offset + no_interface_offset * 0.5f, SUPPORT_SURFACES_OFFSET_PARAMETERS);
+ if (! buildplate_covered.empty()) {
+ // Trim the inflated contact surfaces by the top surfaces as well.
+ polygons_append(slices_margin_cached, buildplate_covered[layer_id]);
+ slices_margin_cached = union_(slices_margin_cached);
+ }
+ }
+ // Offset the contact polygons outside.
+ for (size_t i = 0; i < NUM_MARGIN_STEPS; ++ i) {
+ diff_polygons = diff(
+ offset(
+ diff_polygons,
+ SUPPORT_MATERIAL_MARGIN / NUM_MARGIN_STEPS,
+ ClipperLib::jtRound,
+ // round mitter limit
+ scale_(0.05)),
+ slices_margin_cached);
+ }
+ }
+ polygons_append(contact_polygons, diff_polygons);
+ } // for each layer.region
+ } // end of Generate overhang/contact_polygons for non-raft layers.
+
+ // Now apply the contact areas to the layer where they need to be made.
+ if (! contact_polygons.empty()) {
+ MyLayer &new_layer = layer_allocate(layer_storage, layer_storage_mutex, sltTopContact);
+ new_layer.idx_object_layer_above = layer_id;
+ MyLayer *bridging_layer = nullptr;
+ if (layer_id == 0) {
+ // This is a raft contact layer sitting directly on the print bed.
+ assert(this->has_raft());
+ new_layer.print_z = m_slicing_params.raft_contact_top_z;
+ new_layer.bottom_z = m_slicing_params.raft_interface_top_z;
+ new_layer.height = m_slicing_params.contact_raft_layer_height;
+ } else if (m_slicing_params.soluble_interface) {
+ // Align the contact surface height with a layer immediately below the supported layer.
+ // Interface layer will be synchronized with the object.
+ new_layer.print_z = layer.print_z - layer.height;
+ new_layer.height = object.layers()[layer_id - 1]->height;
+ new_layer.bottom_z = (layer_id == 1) ? m_slicing_params.object_print_z_min : object.layers()[layer_id - 2]->print_z;
+ } else {
+ new_layer.print_z = layer.print_z - layer.height - m_object_config->support_material_contact_distance;
+ new_layer.bottom_z = new_layer.print_z;
+ new_layer.height = 0.;
+ // Ignore this contact area if it's too low.
+ // Don't want to print a layer below the first layer height as it may not stick well.
+ //FIXME there may be a need for a single layer support, then one may decide to print it either as a bottom contact or a top contact
+ // and it may actually make sense to do it with a thinner layer than the first layer height.
+ if (new_layer.print_z < m_slicing_params.first_print_layer_height - EPSILON) {
+ // This contact layer is below the first layer height, therefore not printable. Don't support this surface.
+ continue;
+ } else if (new_layer.print_z < m_slicing_params.first_print_layer_height + EPSILON) {
+ // Align the layer with the 1st layer height.
+ new_layer.print_z = m_slicing_params.first_print_layer_height;
+ new_layer.bottom_z = 0;
+ new_layer.height = m_slicing_params.first_print_layer_height;
+ } else {
+ // Don't know the height of the top contact layer yet. The top contact layer is printed with a normal flow and
+ // its height will be set adaptively later on.
+ }
+
+ // Contact layer will be printed with a normal flow, but
+ // it will support layers printed with a bridging flow.
+ if (SupportMaterialInternal::has_bridging_extrusions(layer)) {
+ coordf_t bridging_height = 0.;
+ for (const LayerRegion *region : layer.regions())
+ bridging_height += region->region()->bridging_height_avg(*m_print_config);
+ bridging_height /= coordf_t(layer.regions().size());
+ coordf_t bridging_print_z = layer.print_z - bridging_height - m_object_config->support_material_contact_distance;
+ if (bridging_print_z >= m_slicing_params.first_print_layer_height - EPSILON) {
+ // Not below the first layer height means this layer is printable.
+ if (new_layer.print_z < m_slicing_params.first_print_layer_height + EPSILON) {
+ // Align the layer with the 1st layer height.
+ bridging_print_z = m_slicing_params.first_print_layer_height;
+ }
+ if (bridging_print_z < new_layer.print_z - EPSILON) {
+ // Allocate the new layer.
+ bridging_layer = &layer_allocate(layer_storage, layer_storage_mutex, sltTopContact);
+ bridging_layer->idx_object_layer_above = layer_id;
+ bridging_layer->print_z = bridging_print_z;
+ if (bridging_print_z == m_slicing_params.first_print_layer_height) {
+ bridging_layer->bottom_z = 0;
+ bridging_layer->height = m_slicing_params.first_print_layer_height;
+ } else {
+ // Don't know the height yet.
+ bridging_layer->bottom_z = bridging_print_z;
+ bridging_layer->height = 0;
+ }
+ }
+ }
+ }
+ }
+
+ SupportGridPattern support_grid_pattern(
+ // Support islands, to be stretched into a grid.
+ contact_polygons,
+ // Trimming polygons, to trim the stretched support islands.
+ slices_margin_cached,
+ // Grid resolution.
+ m_object_config->support_material_spacing.value + m_support_material_flow.spacing(),
+ Geometry::deg2rad(m_object_config->support_material_angle.value));
+ // 1) Contact polygons will be projected down. To keep the interface and base layers from growing, return a contour a tiny bit smaller than the grid cells.
+ new_layer.contact_polygons = new Polygons(support_grid_pattern.extract_support(-3, true));
+ // 2) infill polygons, expand them by half the extrusion width + a tiny bit of extra.
+ if (layer_id == 0 || m_slicing_params.soluble_interface) {
+ // if (no_interface_offset == 0.f) {
+ new_layer.polygons = support_grid_pattern.extract_support(m_support_material_flow.scaled_spacing()/2 + 5, true);
+ } else {
+ // Reduce the amount of dense interfaces: Do not generate dense interfaces below overhangs with 60% overhang of the extrusions.
+ Polygons dense_interface_polygons = diff(overhang_polygons,
+ offset2(lower_layer_polygons, - no_interface_offset * 0.5f, no_interface_offset * (0.6f + 0.5f), SUPPORT_SURFACES_OFFSET_PARAMETERS));
+// offset(lower_layer_polygons, no_interface_offset * 0.6f, SUPPORT_SURFACES_OFFSET_PARAMETERS));
+ if (! dense_interface_polygons.empty()) {
+ //FIXME do it for the bridges only?
+ SupportGridPattern support_grid_pattern(
+ // Support islands, to be stretched into a grid.
+ dense_interface_polygons,
+ // Trimming polygons, to trim the stretched support islands.
+ slices_margin_cached,
+ // Grid resolution.
+ m_object_config->support_material_spacing.value + m_support_material_flow.spacing(),
+ Geometry::deg2rad(m_object_config->support_material_angle.value));
+ new_layer.polygons = support_grid_pattern.extract_support(m_support_material_flow.scaled_spacing()/2 + 5, false);
+ }
+ }
+
+ // Even after the contact layer was expanded into a grid, some of the contact islands may be too tiny to be extruded.
+ // Remove those tiny islands from new_layer.polygons and new_layer.contact_polygons.
+
+ // Store the overhang polygons.
+ // The overhang polygons are used in the path generator for planning of the contact loops.
+ // if (this->has_contact_loops()). Compared to "polygons", "overhang_polygons" are snug.
+ new_layer.overhang_polygons = new Polygons(std::move(overhang_polygons));
+ contact_out[layer_id * 2] = &new_layer;
+ if (bridging_layer != nullptr) {
+ bridging_layer->polygons = new_layer.polygons;
+ bridging_layer->contact_polygons = new Polygons(*new_layer.contact_polygons);
+ bridging_layer->overhang_polygons = new Polygons(*new_layer.overhang_polygons);
+ contact_out[layer_id * 2 + 1] = bridging_layer;
+ }
+ }
+ }
+ });
+
+ // Compress contact_out, remove the nullptr items.
+ remove_nulls(contact_out);
+ // Sort the layers, as one layer may produce bridging and non-bridging contact layers with different print_z.
+ std::sort(contact_out.begin(), contact_out.end(), [](const MyLayer *l1, const MyLayer *l2) { return l1->print_z < l2->print_z; });
+
+ // Merge close contact layers conservatively: If two layers are closer than the minimum allowed print layer height (the min_layer_height parameter),
+ // the top contact layer is merged into the bottom contact layer.
+ {
+ int i = 0;
+ int k = 0;
+ {
+ // Find the span of layers, which are to be printed at the first layer height.
+ int j = 0;
+ for (; j < contact_out.size() && contact_out[j]->print_z < m_slicing_params.first_print_layer_height + this->m_support_layer_height_min - EPSILON; ++ j);
+ if (j > 0) {
+ // Merge the contact_out layers (0) to (j - 1) into the contact_out[0].
+ MyLayer &dst = *contact_out.front();
+ for (int u = 1; u < j; ++ u) {
+ MyLayer &src = *contact_out[u];
+ // The union_() does not support move semantic yet, but maybe one day it will.
+ dst.polygons = union_(dst.polygons, std::move(src.polygons));
+ *dst.contact_polygons = union_(*dst.contact_polygons, std::move(*src.contact_polygons));
+ *dst.overhang_polygons = union_(*dst.overhang_polygons, std::move(*src.overhang_polygons));
+ // Source polygon is no more needed, it will not be refrenced. Release its data.
+ src.reset();
+ }
+ // Snap the first layer to the 1st layer height.
+ dst.print_z = m_slicing_params.first_print_layer_height;
+ dst.height = m_slicing_params.first_print_layer_height;
+ dst.bottom_z = 0;
+ ++ k;
+ }
+ i = j;
+ }
+ for (; i < int(contact_out.size()); ++ k) {
+ // Find the span of layers closer than m_support_layer_height_min.
+ int j = i + 1;
+ coordf_t zmax = contact_out[i]->print_z + m_support_layer_height_min + EPSILON;
+ for (; j < contact_out.size() && contact_out[j]->print_z < zmax; ++ j) ;
+ if (i + 1 < j) {
+ // Merge the contact_out layers (i + 1) to (j - 1) into the contact_out[i].
+ MyLayer &dst = *contact_out[i];
+ for (int u = i + 1; u < j; ++ u) {
+ MyLayer &src = *contact_out[u];
+ // The union_() does not support move semantic yet, but maybe one day it will.
+ dst.polygons = union_(dst.polygons, std::move(src.polygons));
+ *dst.contact_polygons = union_(*dst.contact_polygons, std::move(*src.contact_polygons));
+ *dst.overhang_polygons = union_(*dst.overhang_polygons, std::move(*src.overhang_polygons));
+ // Source polygon is no more needed, it will not be refrenced. Release its data.
+ src.reset();
+ }
+ }
+ if (k < i)
+ contact_out[k] = contact_out[i];
+ i = j;
+ }
+ if (k < contact_out.size())
+ contact_out.erase(contact_out.begin() + k, contact_out.end());
+ }
+
+ BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::top_contact_layers() in parallel - end";
+
+ return contact_out;
+}
+
+// Generate bottom contact layers supporting the top contact layers.
+// For a soluble interface material synchronize the layer heights with the object,
+// otherwise set the layer height to a bridging flow of a support interface nozzle.
+PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::bottom_contact_layers_and_layer_support_areas(
+ const PrintObject &object, const MyLayersPtr &top_contacts, MyLayerStorage &layer_storage,
+ std::vector<Polygons> &layer_support_areas) const
+{
+#ifdef SLIC3R_DEBUG
+ static int iRun = 0;
+ ++ iRun;
+#endif /* SLIC3R_DEBUG */
+
+ // Allocate empty surface areas, one per object layer.
+ layer_support_areas.assign(object.total_layer_count(), Polygons());
+
+ // find object top surfaces
+ // we'll use them to clip our support and detect where does it stick
+ MyLayersPtr bottom_contacts;
+
+ if (! top_contacts.empty())
+ {
+ // There is some support to be built, if there are non-empty top surfaces detected.
+ // Sum of unsupported contact areas above the current layer.print_z.
+ Polygons projection;
+ // Last top contact layer visited when collecting the projection of contact areas.
+ int contact_idx = int(top_contacts.size()) - 1;
+ for (int layer_id = int(object.total_layer_count()) - 2; layer_id >= 0; -- layer_id) {
+ BOOST_LOG_TRIVIAL(trace) << "Support generator - bottom_contact_layers - layer " << layer_id;
+ const Layer &layer = *object.get_layer(layer_id);
+ // Collect projections of all contact areas above or at the same level as this top surface.
+ for (; contact_idx >= 0 && top_contacts[contact_idx]->print_z > layer.print_z - EPSILON; -- contact_idx) {
+ Polygons polygons_new;
+ // Contact surfaces are expanded away from the object, trimmed by the object.
+ // Use a slight positive offset to overlap the touching regions.
+#if 0
+ // Merge and collect the contact polygons. The contact polygons are inflated, but not extended into a grid form.
+ polygons_append(polygons_new, offset(*top_contacts[contact_idx]->contact_polygons, SCALED_EPSILON));
+#else
+ // Consume the contact_polygons. The contact polygons are already expanded into a grid form, and they are a tiny bit smaller
+ // than the grid cells.
+ polygons_append(polygons_new, std::move(*top_contacts[contact_idx]->contact_polygons));
+#endif
+ // These are the overhang surfaces. They are touching the object and they are not expanded away from the object.
+ // Use a slight positive offset to overlap the touching regions.
+ polygons_append(polygons_new, offset(*top_contacts[contact_idx]->overhang_polygons, float(SCALED_EPSILON)));
+ polygons_append(projection, union_(polygons_new));
+ }
+ if (projection.empty())
+ continue;
+ Polygons projection_raw = union_(projection);
+
+ tbb::task_group task_group;
+ if (! m_object_config->support_material_buildplate_only)
+ // Find the bottom contact layers above the top surfaces of this layer.
+ task_group.run([this, &object, &top_contacts, contact_idx, &layer, layer_id, &layer_storage, &layer_support_areas, &bottom_contacts, &projection_raw] {
+ Polygons top = collect_region_slices_by_type(layer, stTop);
+ #ifdef SLIC3R_DEBUG
+ {
+ BoundingBox bbox = get_extents(projection_raw);
+ bbox.merge(get_extents(top));
+ ::Slic3r::SVG svg(debug_out_path("support-bottom-layers-raw-%d-%lf.svg", iRun, layer.print_z), bbox);
+ svg.draw(union_ex(top, false), "blue", 0.5f);
+ svg.draw(union_ex(projection_raw, true), "red", 0.5f);
+ svg.draw_outline(union_ex(projection_raw, true), "red", "blue", scale_(0.1f));
+ svg.draw(layer.slices.expolygons, "green", 0.5f);
+ }
+ #endif /* SLIC3R_DEBUG */
+
+ // Now find whether any projection of the contact surfaces above layer.print_z not yet supported by any
+ // top surfaces above layer.print_z falls onto this top surface.
+ // Touching are the contact surfaces supported exclusively by this top surfaces.
+ // Don't use a safety offset as it has been applied during insertion of polygons.
+ if (! top.empty()) {
+ Polygons touching = intersection(top, projection_raw, false);
+ if (! touching.empty()) {
+ // Allocate a new bottom contact layer.
+ MyLayer &layer_new = layer_allocate(layer_storage, sltBottomContact);
+ bottom_contacts.push_back(&layer_new);
+ // Grow top surfaces so that interface and support generation are generated
+ // with some spacing from object - it looks we don't need the actual
+ // top shapes so this can be done here
+ //FIXME calculate layer height based on the actual thickness of the layer:
+ // If the layer is extruded with no bridging flow, support just the normal extrusions.
+ layer_new.height = m_slicing_params.soluble_interface ?
+ // Align the interface layer with the object's layer height.
+ object.layers()[layer_id + 1]->height :
+ // Place a bridge flow interface layer over the top surface.
+ //FIXME Check whether the bottom bridging surfaces are extruded correctly (no bridging flow correction applied?)
+ // According to Jindrich the bottom surfaces work well.
+ //FIXME test the bridging flow instead?
+ m_support_material_interface_flow.nozzle_diameter;
+ layer_new.print_z = m_slicing_params.soluble_interface ? object.layers()[layer_id + 1]->print_z :
+ layer.print_z + layer_new.height + m_object_config->support_material_contact_distance.value;
+ layer_new.bottom_z = layer.print_z;
+ layer_new.idx_object_layer_below = layer_id;
+ layer_new.bridging = ! m_slicing_params.soluble_interface;
+ //FIXME how much to inflate the bottom surface, as it is being extruded with a bridging flow? The following line uses a normal flow.
+ //FIXME why is the offset positive? It will be trimmed by the object later on anyway, but then it just wastes CPU clocks.
+ layer_new.polygons = offset(touching, float(m_support_material_flow.scaled_width()), SUPPORT_SURFACES_OFFSET_PARAMETERS);
+ if (! m_slicing_params.soluble_interface) {
+ // Walk the top surfaces, snap the top of the new bottom surface to the closest top of the top surface,
+ // so there will be no support surfaces generated with thickness lower than m_support_layer_height_min.
+ for (size_t top_idx = size_t(std::max<int>(0, contact_idx));
+ top_idx < top_contacts.size() && top_contacts[top_idx]->print_z < layer_new.print_z + this->m_support_layer_height_min + EPSILON;
+ ++ top_idx) {
+ if (top_contacts[top_idx]->print_z > layer_new.print_z - this->m_support_layer_height_min - EPSILON) {
+ // A top layer has been found, which is close to the new bottom layer.
+ coordf_t diff = layer_new.print_z - top_contacts[top_idx]->print_z;
+ assert(std::abs(diff) <= this->m_support_layer_height_min + EPSILON);
+ if (diff > 0.) {
+ // The top contact layer is below this layer. Make the bridging layer thinner to align with the existing top layer.
+ assert(diff < layer_new.height + EPSILON);
+ assert(layer_new.height - diff >= m_support_layer_height_min - EPSILON);
+ layer_new.print_z = top_contacts[top_idx]->print_z;
+ layer_new.height -= diff;
+ } else {
+ // The top contact layer is above this layer. One may either make this layer thicker or thinner.
+ // By making the layer thicker, one will decrease the number of discrete layers with the price of extruding a bit too thick bridges.
+ // By making the layer thinner, one adds one more discrete layer.
+ layer_new.print_z = top_contacts[top_idx]->print_z;
+ layer_new.height -= diff;
+ }
+ break;
+ }
+ }
+ }
+ #ifdef SLIC3R_DEBUG
+ Slic3r::SVG::export_expolygons(
+ debug_out_path("support-bottom-contacts-%d-%lf.svg", iRun, layer_new.print_z),
+ union_ex(layer_new.polygons, false));
+ #endif /* SLIC3R_DEBUG */
+ // Trim the already created base layers above the current layer intersecting with the new bottom contacts layer.
+ //FIXME Maybe this is no more needed, as the overlapping base layers are trimmed by the bottom layers at the final stage?
+ touching = offset(touching, float(SCALED_EPSILON));
+ for (int layer_id_above = layer_id + 1; layer_id_above < int(object.total_layer_count()); ++ layer_id_above) {
+ const Layer &layer_above = *object.layers()[layer_id_above];
+ if (layer_above.print_z > layer_new.print_z - EPSILON)
+ break;
+ if (! layer_support_areas[layer_id_above].empty()) {
+#ifdef SLIC3R_DEBUG
+ {
+ BoundingBox bbox = get_extents(touching);
+ bbox.merge(get_extents(layer_support_areas[layer_id_above]));
+ ::Slic3r::SVG svg(debug_out_path("support-support-areas-raw-before-trimming-%d-with-%f-%lf.svg", iRun, layer.print_z, layer_above.print_z), bbox);
+ svg.draw(union_ex(touching, false), "blue", 0.5f);
+ svg.draw(union_ex(layer_support_areas[layer_id_above], true), "red", 0.5f);
+ svg.draw_outline(union_ex(layer_support_areas[layer_id_above], true), "red", "blue", scale_(0.1f));
+ }
+#endif /* SLIC3R_DEBUG */
+ layer_support_areas[layer_id_above] = diff(layer_support_areas[layer_id_above], touching);
+#ifdef SLIC3R_DEBUG
+ Slic3r::SVG::export_expolygons(
+ debug_out_path("support-support-areas-raw-after-trimming-%d-with-%f-%lf.svg", iRun, layer.print_z, layer_above.print_z),
+ union_ex(layer_support_areas[layer_id_above], false));
+#endif /* SLIC3R_DEBUG */
+ }
+ }
+ }
+ } // ! top.empty()
+ });
+
+ Polygons &layer_support_area = layer_support_areas[layer_id];
+ task_group.run([this, &projection, &projection_raw, &layer, &layer_support_area, layer_id] {
+ // Remove the areas that touched from the projection that will continue on next, lower, top surfaces.
+ // Polygons trimming = union_(to_polygons(layer.slices.expolygons), touching, true);
+ Polygons trimming = offset(layer.slices.expolygons, float(SCALED_EPSILON));
+ projection = diff(projection_raw, trimming, false);
+ #ifdef SLIC3R_DEBUG
+ {
+ BoundingBox bbox = get_extents(projection_raw);
+ bbox.merge(get_extents(trimming));
+ ::Slic3r::SVG svg(debug_out_path("support-support-areas-raw-%d-%lf.svg", iRun, layer.print_z), bbox);
+ svg.draw(union_ex(trimming, false), "blue", 0.5f);
+ svg.draw(union_ex(projection, true), "red", 0.5f);
+ svg.draw_outline(union_ex(projection, true), "red", "blue", scale_(0.1f));
+ }
+ #endif /* SLIC3R_DEBUG */
+ remove_sticks(projection);
+ remove_degenerate(projection);
+ #ifdef SLIC3R_DEBUG
+ Slic3r::SVG::export_expolygons(
+ debug_out_path("support-support-areas-raw-cleaned-%d-%lf.svg", iRun, layer.print_z),
+ union_ex(projection, false));
+ #endif /* SLIC3R_DEBUG */
+ SupportGridPattern support_grid_pattern(
+ // Support islands, to be stretched into a grid.
+ projection,
+ // Trimming polygons, to trim the stretched support islands.
+ trimming,
+ // Grid spacing.
+ m_object_config->support_material_spacing.value + m_support_material_flow.spacing(),
+ Geometry::deg2rad(m_object_config->support_material_angle.value));
+ tbb::task_group task_group_inner;
+ // 1) Cache the slice of a support volume. The support volume is expanded by 1/2 of support material flow spacing
+ // to allow a placement of suppot zig-zag snake along the grid lines.
+ task_group_inner.run([this, &support_grid_pattern, &layer_support_area
+ #ifdef SLIC3R_DEBUG
+ , &layer
+ #endif /* SLIC3R_DEBUG */
+ ] {
+ layer_support_area = support_grid_pattern.extract_support(m_support_material_flow.scaled_spacing()/2 + 25, true);
+ #ifdef SLIC3R_DEBUG
+ Slic3r::SVG::export_expolygons(
+ debug_out_path("support-layer_support_area-gridded-%d-%lf.svg", iRun, layer.print_z),
+ union_ex(layer_support_area, false));
+ #endif /* SLIC3R_DEBUG */
+ });
+ // 2) Support polygons will be projected down. To keep the interface and base layers from growing, return a contour a tiny bit smaller than the grid cells.
+ Polygons projection_new;
+ task_group_inner.run([&projection_new, &support_grid_pattern
+ #ifdef SLIC3R_DEBUG
+ , &layer
+ #endif /* SLIC3R_DEBUG */
+ ] {
+ projection_new = support_grid_pattern.extract_support(-5, true);
+ #ifdef SLIC3R_DEBUG
+ Slic3r::SVG::export_expolygons(
+ debug_out_path("support-projection_new-gridded-%d-%lf.svg", iRun, layer.print_z),
+ union_ex(projection_new, false));
+ #endif /* SLIC3R_DEBUG */
+ });
+ task_group_inner.wait();
+ projection = std::move(projection_new);
+ });
+ task_group.wait();
+ }
+ std::reverse(bottom_contacts.begin(), bottom_contacts.end());
+// trim_support_layers_by_object(object, bottom_contacts, 0., 0., m_gap_xy);
+ trim_support_layers_by_object(object, bottom_contacts,
+ m_slicing_params.soluble_interface ? 0. : m_object_config->support_material_contact_distance.value,
+ m_slicing_params.soluble_interface ? 0. : m_object_config->support_material_contact_distance.value, m_gap_xy);
+
+ } // ! top_contacts.empty()
+
+ return bottom_contacts;
+}
+
+// FN_HIGHER_EQUAL: the provided object pointer has a Z value >= of an internal threshold.
+// Find the first item with Z value >= of an internal threshold of fn_higher_equal.
+// If no vec item with Z value >= of an internal threshold of fn_higher_equal is found, return vec.size()
+// If the initial idx is size_t(-1), then use binary search.
+// Otherwise search linearly upwards.
+template<typename T, typename FN_HIGHER_EQUAL>
+size_t idx_higher_or_equal(const std::vector<T*> &vec, size_t idx, FN_HIGHER_EQUAL fn_higher_equal)
+{
+ if (vec.empty()) {
+ idx = 0;
+ } else if (idx == size_t(-1)) {
+ // First of the batch of layers per thread pool invocation. Use binary search.
+ int idx_low = 0;
+ int idx_high = std::max(0, int(vec.size()) - 1);
+ while (idx_low + 1 < idx_high) {
+ int idx_mid = (idx_low + idx_high) / 2;
+ if (fn_higher_equal(vec[idx_mid]))
+ idx_high = idx_mid;
+ else
+ idx_low = idx_mid;
+ }
+ idx = fn_higher_equal(vec[idx_low]) ? idx_low :
+ (fn_higher_equal(vec[idx_high]) ? idx_high : vec.size());
+ } else {
+ // For the other layers of this batch of layers, search incrementally, which is cheaper than the binary search.
+ while (idx < vec.size() && ! fn_higher_equal(vec[idx]))
+ ++ idx;
+ }
+ return idx;
+}
+
+// FN_LOWER_EQUAL: the provided object pointer has a Z value <= of an internal threshold.
+// Find the first item with Z value <= of an internal threshold of fn_lower_equal.
+// If no vec item with Z value <= of an internal threshold of fn_lower_equal is found, return -1.
+// If the initial idx is < -1, then use binary search.
+// Otherwise search linearly downwards.
+template<typename T, typename FN_LOWER_EQUAL>
+int idx_lower_or_equal(const std::vector<T*> &vec, int idx, FN_LOWER_EQUAL fn_lower_equal)
+{
+ if (vec.empty()) {
+ idx = -1;
+ } else if (idx < -1) {
+ // First of the batch of layers per thread pool invocation. Use binary search.
+ int idx_low = 0;
+ int idx_high = std::max(0, int(vec.size()) - 1);
+ while (idx_low + 1 < idx_high) {
+ int idx_mid = (idx_low + idx_high) / 2;
+ if (fn_lower_equal(vec[idx_mid]))
+ idx_low = idx_mid;
+ else
+ idx_high = idx_mid;
+ }
+ idx = fn_lower_equal(vec[idx_high]) ? idx_high :
+ (fn_lower_equal(vec[idx_low ]) ? idx_low : -1);
+ } else {
+ // For the other layers of this batch of layers, search incrementally, which is cheaper than the binary search.
+ while (idx >= 0 && ! fn_lower_equal(vec[idx]))
+ -- idx;
+ }
+ return idx;
+}
+
+// Trim the top_contacts layers with the bottom_contacts layers if they overlap, so there would not be enough vertical space for both of them.
+void PrintObjectSupportMaterial::trim_top_contacts_by_bottom_contacts(
+ const PrintObject &object, const MyLayersPtr &bottom_contacts, MyLayersPtr &top_contacts) const
+{
+ tbb::parallel_for(tbb::blocked_range<int>(0, int(top_contacts.size())),
+ [this, &object, &bottom_contacts, &top_contacts](const tbb::blocked_range<int>& range) {
+ int idx_bottom_overlapping_first = -2;
+ // For all top contact layers, counting downwards due to the way idx_higher_or_equal caches the last index to avoid repeated binary search.
+ for (int idx_top = range.end() - 1; idx_top >= range.begin(); -- idx_top) {
+ MyLayer &layer_top = *top_contacts[idx_top];
+ // Find the first bottom layer overlapping with layer_top.
+ idx_bottom_overlapping_first = idx_lower_or_equal(bottom_contacts, idx_bottom_overlapping_first, [&layer_top](const MyLayer *layer_bottom){ return layer_bottom->bottom_print_z() - EPSILON <= layer_top.bottom_z; });
+ // For all top contact layers overlapping with the thick bottom contact layer:
+ for (int idx_bottom_overlapping = idx_bottom_overlapping_first; idx_bottom_overlapping >= 0; -- idx_bottom_overlapping) {
+ const MyLayer &layer_bottom = *bottom_contacts[idx_bottom_overlapping];
+ assert(layer_bottom.bottom_print_z() - EPSILON <= layer_top.bottom_z);
+ if (layer_top.print_z < layer_bottom.print_z + EPSILON) {
+ // Layers overlap. Trim layer_top with layer_bottom.
+ layer_top.polygons = diff(layer_top.polygons, layer_bottom.polygons);
+ } else
+ break;
+ }
+ }
+ });
+}
+
+PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::raft_and_intermediate_support_layers(
+ const PrintObject &object,
+ const MyLayersPtr &bottom_contacts,
+ const MyLayersPtr &top_contacts,
+ MyLayerStorage &layer_storage) const
+{
+ MyLayersPtr intermediate_layers;
+
+ // Collect and sort the extremes (bottoms of the top contacts and tops of the bottom contacts).
+ MyLayersPtr extremes;
+ extremes.reserve(top_contacts.size() + bottom_contacts.size());
+ for (size_t i = 0; i < top_contacts.size(); ++ i)
+ // Bottoms of the top contact layers. In case of non-soluble supports,
+ // the top contact layer thickness is not known yet.
+ extremes.push_back(top_contacts[i]);
+ for (size_t i = 0; i < bottom_contacts.size(); ++ i)
+ // Tops of the bottom contact layers.
+ extremes.push_back(bottom_contacts[i]);
+ if (extremes.empty())
+ return intermediate_layers;
+
+ auto layer_extreme_lower = [](const MyLayer *l1, const MyLayer *l2) {
+ coordf_t z1 = l1->extreme_z();
+ coordf_t z2 = l2->extreme_z();
+ // If the layers are aligned, return the top contact surface first.
+ return z1 < z2 || (z1 == z2 && l1->layer_type == PrintObjectSupportMaterial::sltTopContact && l2->layer_type == PrintObjectSupportMaterial::sltBottomContact);
+ };
+ std::sort(extremes.begin(), extremes.end(), layer_extreme_lower);
+
+ assert(extremes.empty() ||
+ (extremes.front()->extreme_z() > m_slicing_params.raft_interface_top_z - EPSILON &&
+ (m_slicing_params.raft_layers() == 1 || // only raft contact layer
+ extremes.front()->layer_type == sltTopContact || // first extreme is a top contact layer
+ extremes.front()->extreme_z() > m_slicing_params.first_print_layer_height - EPSILON)));
+
+ bool synchronize = this->synchronize_layers();
+
+#ifdef _DEBUG
+ // Verify that the extremes are separated by m_support_layer_height_min.
+ for (size_t i = 1; i < extremes.size(); ++ i) {
+ assert(extremes[i]->extreme_z() - extremes[i-1]->extreme_z() == 0. ||
+ extremes[i]->extreme_z() - extremes[i-1]->extreme_z() > m_support_layer_height_min - EPSILON);
+ assert(extremes[i]->extreme_z() - extremes[i-1]->extreme_z() > 0. ||
+ extremes[i]->layer_type == extremes[i-1]->layer_type ||
+ (extremes[i]->layer_type == sltBottomContact && extremes[i - 1]->layer_type == sltTopContact));
+ }
+#endif
+
+ // Generate intermediate layers.
+ // The first intermediate layer is the same as the 1st layer if there is no raft,
+ // or the bottom of the first intermediate layer is aligned with the bottom of the raft contact layer.
+ // Intermediate layers are always printed with a normal etrusion flow (non-bridging).
+ size_t idx_layer_object = 0;
+ for (size_t idx_extreme = 0; idx_extreme < extremes.size(); ++ idx_extreme) {
+ MyLayer *extr2 = extremes[idx_extreme];
+ coordf_t extr2z = extr2->extreme_z();
+ if (std::abs(extr2z - m_slicing_params.raft_interface_top_z) < EPSILON) {
+ // This is a raft contact layer, its height has been decided in this->top_contact_layers().
+ assert(extr2->layer_type == sltTopContact);
+ continue;
+ }
+ if (std::abs(extr2z - m_slicing_params.first_print_layer_height) < EPSILON) {
+ // This is a bottom of a synchronized (or soluble) top contact layer, its height has been decided in this->top_contact_layers().
+ assert(extr2->layer_type == sltTopContact);
+ assert(extr2->bottom_z == m_slicing_params.first_print_layer_height);
+ assert(extr2->print_z >= m_slicing_params.first_print_layer_height + m_support_layer_height_min - EPSILON);
+ if (intermediate_layers.empty() || intermediate_layers.back()->print_z < m_slicing_params.first_print_layer_height) {
+ MyLayer &layer_new = layer_allocate(layer_storage, sltIntermediate);
+ layer_new.bottom_z = 0.;
+ layer_new.print_z = m_slicing_params.first_print_layer_height;
+ layer_new.height = m_slicing_params.first_print_layer_height;
+ intermediate_layers.push_back(&layer_new);
+ }
+ continue;
+ }
+ assert(extr2z >= m_slicing_params.raft_interface_top_z + EPSILON);
+ assert(extr2z >= m_slicing_params.first_print_layer_height + EPSILON);
+ MyLayer *extr1 = (idx_extreme == 0) ? nullptr : extremes[idx_extreme - 1];
+ // Fuse a support layer firmly to the raft top interface (not to the raft contacts).
+ coordf_t extr1z = (extr1 == nullptr) ? m_slicing_params.raft_interface_top_z : extr1->extreme_z();
+ assert(extr2z >= extr1z);
+ assert(extr2z > extr1z || (extr1 != nullptr && extr2->layer_type == sltBottomContact));
+ if (std::abs(extr1z) < EPSILON) {
+ // This layer interval starts with the 1st layer. Print the 1st layer using the prescribed 1st layer thickness.
+ assert(! m_slicing_params.has_raft());
+ assert(intermediate_layers.empty() || intermediate_layers.back()->print_z <= m_slicing_params.first_print_layer_height);
+ // At this point only layers above first_print_layer_heigth + EPSILON are expected as the other cases were captured earlier.
+ assert(extr2z >= m_slicing_params.first_print_layer_height + EPSILON);
+ // Generate a new intermediate layer.
+ MyLayer &layer_new = layer_allocate(layer_storage, sltIntermediate);
+ layer_new.bottom_z = 0.;
+ layer_new.print_z = extr1z = m_slicing_params.first_print_layer_height;
+ layer_new.height = extr1z;
+ intermediate_layers.push_back(&layer_new);
+ // Continue printing the other layers up to extr2z.
+ }
+ coordf_t dist = extr2z - extr1z;
+ assert(dist >= 0.);
+ if (dist == 0.)
+ continue;
+ // The new layers shall be at least m_support_layer_height_min thick.
+ assert(dist >= m_support_layer_height_min - EPSILON);
+ if (synchronize) {
+ // Emit support layers synchronized with the object layers.
+ // Find the first object layer, which has its print_z in this support Z range.
+ while (idx_layer_object < object.layers().size() && object.layers()[idx_layer_object]->print_z < extr1z + EPSILON)
+ ++ idx_layer_object;
+ if (idx_layer_object == 0 && extr1z == m_slicing_params.raft_interface_top_z) {
+ // Insert one base support layer below the object.
+ MyLayer &layer_new = layer_allocate(layer_storage, sltIntermediate);
+ layer_new.print_z = m_slicing_params.object_print_z_min;
+ layer_new.bottom_z = m_slicing_params.raft_interface_top_z;
+ layer_new.height = layer_new.print_z - layer_new.bottom_z;
+ intermediate_layers.push_back(&layer_new);
+ }
+ // Emit all intermediate support layers synchronized with object layers up to extr2z.
+ for (; idx_layer_object < object.layers().size() && object.layers()[idx_layer_object]->print_z < extr2z + EPSILON; ++ idx_layer_object) {
+ MyLayer &layer_new = layer_allocate(layer_storage, sltIntermediate);
+ layer_new.print_z = object.layers()[idx_layer_object]->print_z;
+ layer_new.height = object.layers()[idx_layer_object]->height;
+ layer_new.bottom_z = (idx_layer_object > 0) ? object.layers()[idx_layer_object - 1]->print_z : (layer_new.print_z - layer_new.height);
+ assert(intermediate_layers.empty() || intermediate_layers.back()->print_z < layer_new.print_z + EPSILON);
+ intermediate_layers.push_back(&layer_new);
+ }
+ } else {
+ // Insert intermediate layers.
+ size_t n_layers_extra = size_t(ceil(dist / m_slicing_params.max_suport_layer_height));
+ assert(n_layers_extra > 0);
+ coordf_t step = dist / coordf_t(n_layers_extra);
+ if (extr1 != nullptr && extr1->layer_type == sltTopContact &&
+ extr1->print_z + m_support_layer_height_min > extr1->bottom_z + step) {
+ // The bottom extreme is a bottom of a top surface. Ensure that the gap
+ // between the 1st intermediate layer print_z and extr1->print_z is not too small.
+ assert(extr1->bottom_z + m_support_layer_height_min < extr1->print_z + EPSILON);
+ // Generate the first intermediate layer.
+ MyLayer &layer_new = layer_allocate(layer_storage, sltIntermediate);
+ layer_new.bottom_z = extr1->bottom_z;
+ layer_new.print_z = extr1z = extr1->print_z;
+ layer_new.height = extr1->height;
+ intermediate_layers.push_back(&layer_new);
+ dist = extr2z - extr1z;
+ n_layers_extra = size_t(ceil(dist / m_slicing_params.max_suport_layer_height));
+ if (n_layers_extra == 0)
+ continue;
+ // Continue printing the other layers up to extr2z.
+ step = dist / coordf_t(n_layers_extra);
+ }
+ if (! m_slicing_params.soluble_interface && extr2->layer_type == sltTopContact) {
+ // This is a top interface layer, which does not have a height assigned yet. Do it now.
+ assert(extr2->height == 0.);
+ assert(extr1z > m_slicing_params.first_print_layer_height - EPSILON);
+ extr2->height = step;
+ extr2->bottom_z = extr2z = extr2->print_z - step;
+ if (-- n_layers_extra == 0)
+ continue;
+ }
+ coordf_t extr2z_large_steps = extr2z;
+ // Take the largest allowed step in the Z axis until extr2z_large_steps is reached.
+ for (size_t i = 0; i < n_layers_extra; ++ i) {
+ MyLayer &layer_new = layer_allocate(layer_storage, sltIntermediate);
+ if (i + 1 == n_layers_extra) {
+ // Last intermediate layer added. Align the last entered layer with extr2z_large_steps exactly.
+ layer_new.bottom_z = (i == 0) ? extr1z : intermediate_layers.back()->print_z;
+ layer_new.print_z = extr2z_large_steps;
+ layer_new.height = layer_new.print_z - layer_new.bottom_z;
+ }
+ else {
+ // Intermediate layer, not the last added.
+ layer_new.height = step;
+ layer_new.bottom_z = extr1z + i * step;
+ layer_new.print_z = layer_new.bottom_z + step;
+ }
+ assert(intermediate_layers.empty() || intermediate_layers.back()->print_z <= layer_new.print_z);
+ intermediate_layers.push_back(&layer_new);
+ }
+ }
+ }
+
+#ifdef _DEBUG
+ for (size_t i = 0; i < top_contacts.size(); ++i)
+ assert(top_contacts[i]->height > 0.);
+#endif /* _DEBUG */
+
+ return intermediate_layers;
+}
+
+// At this stage there shall be intermediate_layers allocated between bottom_contacts and top_contacts, but they have no polygons assigned.
+// Also the bottom/top_contacts shall have a layer thickness assigned already.
+void PrintObjectSupportMaterial::generate_base_layers(
+ const PrintObject &object,
+ const MyLayersPtr &bottom_contacts,
+ const MyLayersPtr &top_contacts,
+ MyLayersPtr &intermediate_layers,
+ const std::vector<Polygons> &layer_support_areas) const
+{
+#ifdef SLIC3R_DEBUG
+ static int iRun = 0;
+#endif /* SLIC3R_DEBUG */
+
+ if (top_contacts.empty())
+ // No top contacts -> no intermediate layers will be produced.
+ return;
+
+ // coordf_t fillet_radius_scaled = scale_(m_object_config->support_material_spacing);
+
+ BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::generate_base_layers() in parallel - start";
+ tbb::parallel_for(
+ tbb::blocked_range<size_t>(0, intermediate_layers.size()),
+ [this, &object, &bottom_contacts, &top_contacts, &intermediate_layers, &layer_support_areas](const tbb::blocked_range<size_t>& range) {
+ // index -2 means not initialized yet, -1 means intialized and decremented to 0 and then -1.
+ int idx_top_contact_above = -2;
+ int idx_bottom_contact_overlapping = -2;
+ int idx_object_layer_above = -2;
+ // Counting down due to the way idx_lower_or_equal caches indices to avoid repeated binary search over the complete sequence.
+ for (int idx_intermediate = int(range.end()) - 1; idx_intermediate >= int(range.begin()); -- idx_intermediate)
+ {
+ BOOST_LOG_TRIVIAL(trace) << "Support generator - generate_base_layers - creating layer " <<
+ idx_intermediate << " of " << intermediate_layers.size();
+ MyLayer &layer_intermediate = *intermediate_layers[idx_intermediate];
+ // Layers must be sorted by print_z.
+ assert(idx_intermediate == 0 || layer_intermediate.print_z >= intermediate_layers[idx_intermediate - 1]->print_z);
+
+ // Find a top_contact layer touching the layer_intermediate from above, if any, and collect its polygons into polygons_new.
+ // New polygons for layer_intermediate.
+ Polygons polygons_new;
+
+ // Use the precomputed layer_support_areas.
+ idx_object_layer_above = std::max(0, idx_lower_or_equal(object.layers(), idx_object_layer_above,
+ [&layer_intermediate](const Layer *layer){ return layer->print_z <= layer_intermediate.print_z + EPSILON; }));
+ polygons_new = layer_support_areas[idx_object_layer_above];
+
+ // Polygons to trim polygons_new.
+ Polygons polygons_trimming;
+
+ // Trimming the base layer with any overlapping top layer.
+ // Following cases are recognized:
+ // 1) top.bottom_z >= base.top_z -> No overlap, no trimming needed.
+ // 2) base.bottom_z >= top.print_z -> No overlap, no trimming needed.
+ // 3) base.print_z > top.print_z && base.bottom_z >= top.bottom_z -> Overlap, which will be solved inside generate_toolpaths() by reducing the base layer height where it overlaps the top layer. No trimming needed here.
+ // 4) base.print_z > top.bottom_z && base.bottom_z < top.bottom_z -> Base overlaps with top.bottom_z. This must not happen.
+ // 5) base.print_z <= top.print_z && base.bottom_z >= top.bottom_z -> Base is fully inside top. Trim base by top.
+ idx_top_contact_above = idx_lower_or_equal(top_contacts, idx_top_contact_above,
+ [&layer_intermediate](const MyLayer *layer){ return layer->bottom_z <= layer_intermediate.print_z - EPSILON; });
+ // Collect all the top_contact layer intersecting with this layer.
+ for ( int idx_top_contact_overlapping = idx_top_contact_above; idx_top_contact_overlapping >= 0; -- idx_top_contact_overlapping) {
+ MyLayer &layer_top_overlapping = *top_contacts[idx_top_contact_overlapping];
+ if (layer_top_overlapping.print_z < layer_intermediate.bottom_z + EPSILON)
+ break;
+ // Base must not overlap with top.bottom_z.
+ assert(! (layer_intermediate.print_z > layer_top_overlapping.bottom_z + EPSILON && layer_intermediate.bottom_z < layer_top_overlapping.bottom_z - EPSILON));
+ if (layer_intermediate.print_z <= layer_top_overlapping.print_z + EPSILON && layer_intermediate.bottom_z >= layer_top_overlapping.bottom_z - EPSILON)
+ // Base is fully inside top. Trim base by top.
+ polygons_append(polygons_trimming, layer_top_overlapping.polygons);
+ }
+
+ // Trimming the base layer with any overlapping bottom layer.
+ // Following cases are recognized:
+ // 1) bottom.bottom_z >= base.top_z -> No overlap, no trimming needed.
+ // 2) base.bottom_z >= bottom.print_z -> No overlap, no trimming needed.
+ // 3) base.print_z > bottom.bottom_z && base.bottom_z < bottom.bottom_z -> Overlap, which will be solved inside generate_toolpaths() by reducing the bottom layer height where it overlaps the base layer. No trimming needed here.
+ // 4) base.print_z > bottom.print_z && base.bottom_z >= bottom.print_z -> Base overlaps with bottom.print_z. This must not happen.
+ // 5) base.print_z <= bottom.print_z && base.bottom_z >= bottom.bottom_z -> Base is fully inside top. Trim base by top.
+ idx_bottom_contact_overlapping = idx_lower_or_equal(bottom_contacts, idx_bottom_contact_overlapping,
+ [&layer_intermediate](const MyLayer *layer){ return layer->bottom_print_z() <= layer_intermediate.print_z - EPSILON; });
+ // Collect all the bottom_contacts layer intersecting with this layer.
+ for (int i = idx_bottom_contact_overlapping; i >= 0; -- i) {
+ MyLayer &layer_bottom_overlapping = *bottom_contacts[i];
+ if (layer_bottom_overlapping.print_z < layer_intermediate.bottom_print_z() + EPSILON)
+ break;
+ // Base must not overlap with bottom.top_z.
+ assert(! (layer_intermediate.print_z > layer_bottom_overlapping.print_z + EPSILON && layer_intermediate.bottom_z < layer_bottom_overlapping.print_z - EPSILON));
+ if (layer_intermediate.print_z <= layer_bottom_overlapping.print_z + EPSILON && layer_intermediate.bottom_z >= layer_bottom_overlapping.bottom_print_z() - EPSILON)
+ // Base is fully inside bottom. Trim base by bottom.
+ polygons_append(polygons_trimming, layer_bottom_overlapping.polygons);
+ }
+
+ #ifdef SLIC3R_DEBUG
+ {
+ BoundingBox bbox = get_extents(polygons_new);
+ bbox.merge(get_extents(polygons_trimming));
+ ::Slic3r::SVG svg(debug_out_path("support-intermediate-layers-raw-%d-%lf.svg", iRun, layer_intermediate.print_z), bbox);
+ svg.draw(union_ex(polygons_new, false), "blue", 0.5f);
+ svg.draw(to_polylines(polygons_new), "blue");
+ svg.draw(union_ex(polygons_trimming, true), "red", 0.5f);
+ svg.draw(to_polylines(polygons_trimming), "red");
+ }
+ #endif /* SLIC3R_DEBUG */
+
+ // Trim the polygons, store them.
+ if (polygons_trimming.empty())
+ layer_intermediate.polygons = std::move(polygons_new);
+ else
+ layer_intermediate.polygons = diff(
+ polygons_new,
+ polygons_trimming,
+ true); // safety offset to merge the touching source polygons
+ layer_intermediate.layer_type = sltBase;
+
+ #if 0
+ // Fillet the base polygons and trim them again with the top, interface and contact layers.
+ $base->{$i} = diff(
+ offset2(
+ $base->{$i},
+ $fillet_radius_scaled,
+ -$fillet_radius_scaled,
+ # Use a geometric offsetting for filleting.
+ JT_ROUND,
+ 0.2*$fillet_radius_scaled),
+ $trim_polygons,
+ false); // don't apply the safety offset.
+ }
+ #endif
+ }
+ });
+ BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::generate_base_layers() in parallel - end";
+
+#ifdef SLIC3R_DEBUG
+ for (MyLayersPtr::const_iterator it = intermediate_layers.begin(); it != intermediate_layers.end(); ++it)
+ ::Slic3r::SVG::export_expolygons(
+ debug_out_path("support-intermediate-layers-untrimmed-%d-%lf.svg", iRun, (*it)->print_z),
+ union_ex((*it)->polygons, false));
+ ++ iRun;
+#endif /* SLIC3R_DEBUG */
+
+// trim_support_layers_by_object(object, intermediate_layers, 0., 0., m_gap_xy);
+ this->trim_support_layers_by_object(object, intermediate_layers,
+ m_slicing_params.soluble_interface ? 0. : m_object_config->support_material_contact_distance.value,
+ m_slicing_params.soluble_interface ? 0. : m_object_config->support_material_contact_distance.value, m_gap_xy);
+}
+
+void PrintObjectSupportMaterial::trim_support_layers_by_object(
+ const PrintObject &object,
+ MyLayersPtr &support_layers,
+ const coordf_t gap_extra_above,
+ const coordf_t gap_extra_below,
+ const coordf_t gap_xy) const
+{
+ const float gap_xy_scaled = float(scale_(gap_xy));
+
+ // Collect non-empty layers to be processed in parallel.
+ // This is a good idea as pulling a thread from a thread pool for an empty task is expensive.
+ MyLayersPtr nonempty_layers;
+ nonempty_layers.reserve(support_layers.size());
+ for (size_t idx_layer = 0; idx_layer < support_layers.size(); ++ idx_layer) {
+ MyLayer *support_layer = support_layers[idx_layer];
+ if (! support_layer->polygons.empty() && support_layer->print_z >= m_slicing_params.raft_contact_top_z + EPSILON)
+ // Non-empty support layer and not a raft layer.
+ nonempty_layers.push_back(support_layer);
+ }
+
+ // For all intermediate support layers:
+ BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::trim_support_layers_by_object() in parallel - start";
+ tbb::parallel_for(
+ tbb::blocked_range<size_t>(0, nonempty_layers.size()),
+ [this, &object, &nonempty_layers, gap_extra_above, gap_extra_below, gap_xy_scaled](const tbb::blocked_range<size_t>& range) {
+ size_t idx_object_layer_overlapping = size_t(-1);
+ for (size_t idx_layer = range.begin(); idx_layer < range.end(); ++ idx_layer) {
+ MyLayer &support_layer = *nonempty_layers[idx_layer];
+ // BOOST_LOG_TRIVIAL(trace) << "Support generator - trim_support_layers_by_object - trimmming non-empty layer " << idx_layer << " of " << nonempty_layers.size();
+ assert(! support_layer.polygons.empty() && support_layer.print_z >= m_slicing_params.raft_contact_top_z + EPSILON);
+ // Find the overlapping object layers including the extra above / below gap.
+ coordf_t z_threshold = support_layer.print_z - support_layer.height - gap_extra_below + EPSILON;
+ idx_object_layer_overlapping = idx_higher_or_equal(
+ object.layers(), idx_object_layer_overlapping,
+ [z_threshold](const Layer *layer){ return layer->print_z >= z_threshold; });
+ // Collect all the object layers intersecting with this layer.
+ Polygons polygons_trimming;
+ size_t i = idx_object_layer_overlapping;
+ for (; i < object.layers().size(); ++ i) {
+ const Layer &object_layer = *object.layers()[i];
+ if (object_layer.print_z - object_layer.height > support_layer.print_z + gap_extra_above - EPSILON)
+ break;
+ polygons_append(polygons_trimming, offset(object_layer.slices.expolygons, gap_xy_scaled, SUPPORT_SURFACES_OFFSET_PARAMETERS));
+ }
+ if (! m_slicing_params.soluble_interface) {
+ // Collect all bottom surfaces, which will be extruded with a bridging flow.
+ for (; i < object.layers().size(); ++ i) {
+ const Layer &object_layer = *object.layers()[i];
+ bool some_region_overlaps = false;
+ for (LayerRegion *region : object_layer.regions()) {
+ coordf_t bridging_height = region->region()->bridging_height_avg(*this->m_print_config);
+ if (object_layer.print_z - bridging_height > support_layer.print_z + gap_extra_above - EPSILON)
+ break;
+ some_region_overlaps = true;
+ polygons_append(polygons_trimming,
+ offset(to_expolygons(region->fill_surfaces.filter_by_type(stBottomBridge)),
+ gap_xy_scaled, SUPPORT_SURFACES_OFFSET_PARAMETERS));
+ if (region->region()->config().overhangs.value)
+ SupportMaterialInternal::collect_bridging_perimeter_areas(region->perimeters, gap_xy_scaled, polygons_trimming);
+ }
+ if (! some_region_overlaps)
+ break;
+ }
+ }
+ // $layer->slices contains the full shape of layer, thus including
+ // perimeter's width. $support contains the full shape of support
+ // material, thus including the width of its foremost extrusion.
+ // We leave a gap equal to a full extrusion width.
+ support_layer.polygons = diff(support_layer.polygons, polygons_trimming);
+ }
+ });
+ BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::trim_support_layers_by_object() in parallel - end";
+}
+
+PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::generate_raft_base(
+ const MyLayersPtr &top_contacts,
+ const MyLayersPtr &interface_layers,
+ const MyLayersPtr &base_layers,
+ MyLayerStorage &layer_storage) const
+{
+ // How much to inflate the support columns to be stable. This also applies to the 1st layer, if no raft layers are to be printed.
+ const float inflate_factor_fine = float(scale_((m_slicing_params.raft_layers() > 1) ? 0.5 : EPSILON));
+ const float inflate_factor_1st_layer = float(scale_(3.)) - inflate_factor_fine;
+ MyLayer *contacts = top_contacts .empty() ? nullptr : top_contacts .front();
+ MyLayer *interfaces = interface_layers.empty() ? nullptr : interface_layers.front();
+ MyLayer *columns_base = base_layers .empty() ? nullptr : base_layers .front();
+ if (contacts != nullptr && contacts->print_z > std::max(m_slicing_params.first_print_layer_height, m_slicing_params.raft_contact_top_z) + EPSILON)
+ // This is not the raft contact layer.
+ contacts = nullptr;
+ if (interfaces != nullptr && interfaces->bottom_print_z() > m_slicing_params.raft_interface_top_z + EPSILON)
+ // This is not the raft column base layer.
+ interfaces = nullptr;
+ if (columns_base != nullptr && columns_base->bottom_print_z() > m_slicing_params.raft_interface_top_z + EPSILON)
+ // This is not the raft interface layer.
+ columns_base = nullptr;
+
+ Polygons interface_polygons;
+ if (contacts != nullptr && ! contacts->polygons.empty())
+ polygons_append(interface_polygons, offset(contacts->polygons, inflate_factor_fine, SUPPORT_SURFACES_OFFSET_PARAMETERS));
+ if (interfaces != nullptr && ! interfaces->polygons.empty())
+ polygons_append(interface_polygons, offset(interfaces->polygons, inflate_factor_fine, SUPPORT_SURFACES_OFFSET_PARAMETERS));
+
+ // Output vector.
+ MyLayersPtr raft_layers;
+
+ if (m_slicing_params.raft_layers() > 1) {
+ Polygons base;
+ Polygons columns;
+ if (columns_base != nullptr) {
+ base = columns_base->polygons;
+ columns = base;
+ if (! interface_polygons.empty())
+ // Trim the 1st layer columns with the inflated interface polygons.
+ columns = diff(columns, interface_polygons);
+ }
+ if (! interface_polygons.empty()) {
+ // Merge the untrimmed columns base with the expanded raft interface, to be used for the support base and interface.
+ base = union_(base, interface_polygons);
+ }
+ // Do not add the raft contact layer, only add the raft layers below the contact layer.
+ // Insert the 1st layer.
+ {
+ MyLayer &new_layer = layer_allocate(layer_storage, (m_slicing_params.base_raft_layers > 0) ? sltRaftBase : sltRaftInterface);
+ raft_layers.push_back(&new_layer);
+ new_layer.print_z = m_slicing_params.first_print_layer_height;
+ new_layer.height = m_slicing_params.first_print_layer_height;
+ new_layer.bottom_z = 0.;
+ new_layer.polygons = offset(base, inflate_factor_1st_layer);
+ }
+ // Insert the base layers.
+ for (size_t i = 1; i < m_slicing_params.base_raft_layers; ++ i) {
+ coordf_t print_z = raft_layers.back()->print_z;
+ MyLayer &new_layer = layer_allocate(layer_storage, sltRaftBase);
+ raft_layers.push_back(&new_layer);
+ new_layer.print_z = print_z + m_slicing_params.base_raft_layer_height;
+ new_layer.height = m_slicing_params.base_raft_layer_height;
+ new_layer.bottom_z = print_z;
+ new_layer.polygons = base;
+ }
+ // Insert the interface layers.
+ for (size_t i = 1; i < m_slicing_params.interface_raft_layers; ++ i) {
+ coordf_t print_z = raft_layers.back()->print_z;
+ MyLayer &new_layer = layer_allocate(layer_storage, sltRaftInterface);
+ raft_layers.push_back(&new_layer);
+ new_layer.print_z = print_z + m_slicing_params.interface_raft_layer_height;
+ new_layer.height = m_slicing_params.interface_raft_layer_height;
+ new_layer.bottom_z = print_z;
+ new_layer.polygons = interface_polygons;
+ //FIXME misusing contact_polygons for support columns.
+ new_layer.contact_polygons = new Polygons(columns);
+ }
+ } else if (columns_base != nullptr) {
+ // Expand the bases of the support columns in the 1st layer.
+ columns_base->polygons = diff(
+ offset(columns_base->polygons, inflate_factor_1st_layer),
+ offset(m_object->layers().front()->slices.expolygons, scale_(m_gap_xy), SUPPORT_SURFACES_OFFSET_PARAMETERS));
+ if (contacts != nullptr)
+ columns_base->polygons = diff(columns_base->polygons, interface_polygons);
+ }
+
+ return raft_layers;
+}
+
+// Convert some of the intermediate layers into top/bottom interface layers.
+PrintObjectSupportMaterial::MyLayersPtr PrintObjectSupportMaterial::generate_interface_layers(
+ const MyLayersPtr &bottom_contacts,
+ const MyLayersPtr &top_contacts,
+ MyLayersPtr &intermediate_layers,
+ MyLayerStorage &layer_storage) const
+{
+// my $area_threshold = $self->interface_flow->scaled_spacing ** 2;
+
+ MyLayersPtr interface_layers;
+ // Contact layer is considered an interface layer, therefore run the following block only if support_material_interface_layers > 1.
+ if (! intermediate_layers.empty() && m_object_config->support_material_interface_layers.value > 1) {
+ // For all intermediate layers, collect top contact surfaces, which are not further than support_material_interface_layers.
+ BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::generate_interface_layers() in parallel - start";
+ interface_layers.assign(intermediate_layers.size(), nullptr);
+ tbb::spin_mutex layer_storage_mutex;
+ tbb::parallel_for(tbb::blocked_range<size_t>(0, intermediate_layers.size()),
+ [this, &bottom_contacts, &top_contacts, &intermediate_layers, &layer_storage, &layer_storage_mutex, &interface_layers](const tbb::blocked_range<size_t>& range) {
+ // Index of the first top contact layer intersecting the current intermediate layer.
+ size_t idx_top_contact_first = size_t(-1);
+ // Index of the first bottom contact layer intersecting the current intermediate layer.
+ size_t idx_bottom_contact_first = size_t(-1);
+ for (size_t idx_intermediate_layer = range.begin(); idx_intermediate_layer < range.end(); ++ idx_intermediate_layer) {
+ MyLayer &intermediate_layer = *intermediate_layers[idx_intermediate_layer];
+ // Top / bottom Z coordinate of a slab, over which we are collecting the top / bottom contact surfaces.
+ coordf_t top_z = intermediate_layers[std::min<int>(intermediate_layers.size()-1, idx_intermediate_layer + m_object_config->support_material_interface_layers - 1)]->print_z;
+ coordf_t bottom_z = intermediate_layers[std::max<int>(0, int(idx_intermediate_layer) - int(m_object_config->support_material_interface_layers) + 1)]->bottom_z;
+ // Move idx_top_contact_first up until above the current print_z.
+ idx_top_contact_first = idx_higher_or_equal(top_contacts, idx_top_contact_first, [&intermediate_layer](const MyLayer *layer){ return layer->print_z >= intermediate_layer.print_z; }); // - EPSILON
+ // Collect the top contact areas above this intermediate layer, below top_z.
+ Polygons polygons_top_contact_projected;
+ for (size_t idx_top_contact = idx_top_contact_first; idx_top_contact < top_contacts.size(); ++ idx_top_contact) {
+ const MyLayer &top_contact_layer = *top_contacts[idx_top_contact];
+ //FIXME maybe this adds one interface layer in excess?
+ if (top_contact_layer.bottom_z - EPSILON > top_z)
+ break;
+ polygons_append(polygons_top_contact_projected, top_contact_layer.polygons);
+ }
+ // Move idx_bottom_contact_first up until touching bottom_z.
+ idx_bottom_contact_first = idx_higher_or_equal(bottom_contacts, idx_bottom_contact_first, [bottom_z](const MyLayer *layer){ return layer->print_z >= bottom_z - EPSILON; });
+ // Collect the top contact areas above this intermediate layer, below top_z.
+ Polygons polygons_bottom_contact_projected;
+ for (size_t idx_bottom_contact = idx_bottom_contact_first; idx_bottom_contact < bottom_contacts.size(); ++ idx_bottom_contact) {
+ const MyLayer &bottom_contact_layer = *bottom_contacts[idx_bottom_contact];
+ if (bottom_contact_layer.print_z - EPSILON > intermediate_layer.bottom_z)
+ break;
+ polygons_append(polygons_bottom_contact_projected, bottom_contact_layer.polygons);
+ }
+
+ if (polygons_top_contact_projected.empty() && polygons_bottom_contact_projected.empty())
+ continue;
+
+ // Insert a new layer into top_interface_layers.
+ MyLayer &layer_new = layer_allocate(layer_storage, layer_storage_mutex,
+ polygons_top_contact_projected.empty() ? sltBottomInterface : sltTopInterface);
+ layer_new.print_z = intermediate_layer.print_z;
+ layer_new.bottom_z = intermediate_layer.bottom_z;
+ layer_new.height = intermediate_layer.height;
+ layer_new.bridging = intermediate_layer.bridging;
+ interface_layers[idx_intermediate_layer] = &layer_new;
+
+ polygons_append(polygons_top_contact_projected, polygons_bottom_contact_projected);
+ polygons_top_contact_projected = union_(polygons_top_contact_projected, true);
+ layer_new.polygons = intersection(intermediate_layer.polygons, polygons_top_contact_projected);
+ //FIXME filter layer_new.polygons islands by a minimum area?
+ // $interface_area = [ grep abs($_->area) >= $area_threshold, @$interface_area ];
+ intermediate_layer.polygons = diff(intermediate_layer.polygons, polygons_top_contact_projected, false);
+ }
+ });
+
+ // Compress contact_out, remove the nullptr items.
+ remove_nulls(interface_layers);
+ BOOST_LOG_TRIVIAL(debug) << "PrintObjectSupportMaterial::generate_interface_layers() in parallel - start";
+ }
+
+ return interface_layers;
+}
+
+static inline void fill_expolygons_generate_paths(
+ ExtrusionEntitiesPtr &dst,
+ const ExPolygons &expolygons,
+ Fill *filler,
+ float density,
+ ExtrusionRole role,
+ const Flow &flow)
+{
+ FillParams fill_params;
+ fill_params.density = density;
+ fill_params.complete = true;
+ fill_params.dont_adjust = true;
+ for (const ExPolygon &expoly : expolygons) {
+ Surface surface(stInternal, expoly);
+ extrusion_entities_append_paths(
+ dst,
+ filler->fill_surface(&surface, fill_params),
+ role,
+ flow.mm3_per_mm(), flow.width, flow.height);
+ }
+}
+
+static inline void fill_expolygons_generate_paths(
+ ExtrusionEntitiesPtr &dst,
+ ExPolygons &&expolygons,
+ Fill *filler,
+ float density,
+ ExtrusionRole role,
+ const Flow &flow)
+{
+ FillParams fill_params;
+ fill_params.density = density;
+ fill_params.complete = true;
+ fill_params.dont_adjust = true;
+ for (ExPolygon &expoly : expolygons) {
+ Surface surface(stInternal, std::move(expoly));
+ extrusion_entities_append_paths(
+ dst,
+ filler->fill_surface(&surface, fill_params),
+ role,
+ flow.mm3_per_mm(), flow.width, flow.height);
+ }
+}
+
+// Support layers, partially processed.
+struct MyLayerExtruded
+{
+ MyLayerExtruded() : layer(nullptr), m_polygons_to_extrude(nullptr) {}
+ ~MyLayerExtruded() { delete m_polygons_to_extrude; m_polygons_to_extrude = nullptr; }
+
+ bool empty() const {
+ return layer == nullptr || layer->polygons.empty();
+ }
+
+ void set_polygons_to_extrude(Polygons &&polygons) {
+ if (m_polygons_to_extrude == nullptr)
+ m_polygons_to_extrude = new Polygons(std::move(polygons));
+ else
+ *m_polygons_to_extrude = std::move(polygons);
+ }
+ Polygons& polygons_to_extrude() { return (m_polygons_to_extrude == nullptr) ? layer->polygons : *m_polygons_to_extrude; }
+ const Polygons& polygons_to_extrude() const { return (m_polygons_to_extrude == nullptr) ? layer->polygons : *m_polygons_to_extrude; }
+
+ bool could_merge(const MyLayerExtruded &other) const {
+ return ! this->empty() && ! other.empty() &&
+ std::abs(this->layer->height - other.layer->height) < EPSILON &&
+ this->layer->bridging == other.layer->bridging;
+ }
+
+ // Merge regions, perform boolean union over the merged polygons.
+ void merge(MyLayerExtruded &&other) {
+ assert(this->could_merge(other));
+ // 1) Merge the rest polygons to extrude, if there are any.
+ if (other.m_polygons_to_extrude != nullptr) {
+ if (m_polygons_to_extrude == nullptr) {
+ // This layer has no extrusions generated yet, if it has no m_polygons_to_extrude (its area to extrude was not reduced yet).
+ assert(this->extrusions.empty());
+ m_polygons_to_extrude = new Polygons(this->layer->polygons);
+ }
+ Slic3r::polygons_append(*m_polygons_to_extrude, std::move(*other.m_polygons_to_extrude));
+ *m_polygons_to_extrude = union_(*m_polygons_to_extrude, true);
+ delete other.m_polygons_to_extrude;
+ other.m_polygons_to_extrude = nullptr;
+ } else if (m_polygons_to_extrude != nullptr) {
+ assert(other.m_polygons_to_extrude == nullptr);
+ // The other layer has no extrusions generated yet, if it has no m_polygons_to_extrude (its area to extrude was not reduced yet).
+ assert(other.extrusions.empty());
+ Slic3r::polygons_append(*m_polygons_to_extrude, other.layer->polygons);
+ *m_polygons_to_extrude = union_(*m_polygons_to_extrude, true);
+ }
+ // 2) Merge the extrusions.
+ this->extrusions.insert(this->extrusions.end(), other.extrusions.begin(), other.extrusions.end());
+ other.extrusions.clear();
+ // 3) Merge the infill polygons.
+ Slic3r::polygons_append(this->layer->polygons, std::move(other.layer->polygons));
+ this->layer->polygons = union_(this->layer->polygons, true);
+ other.layer->polygons.clear();
+ }
+
+ void polygons_append(Polygons &dst) const {
+ if (layer != NULL && ! layer->polygons.empty())
+ Slic3r::polygons_append(dst, layer->polygons);
+ }
+
+ // The source layer. It carries the height and extrusion type (bridging / non bridging, extrusion height).
+ PrintObjectSupportMaterial::MyLayer *layer;
+ // Collect extrusions. They will be exported sorted by the bottom height.
+ ExtrusionEntitiesPtr extrusions;
+ // In case the extrusions are non-empty, m_polygons_to_extrude may contain the rest areas yet to be filled by additional support.
+ // This is useful mainly for the loop interfaces, which are generated before the zig-zag infills.
+ Polygons *m_polygons_to_extrude;
+};
+
+typedef std::vector<MyLayerExtruded*> MyLayerExtrudedPtrs;
+
+struct LoopInterfaceProcessor
+{
+ LoopInterfaceProcessor(coordf_t circle_r) :
+ n_contact_loops(0),
+ circle_radius(circle_r),
+ circle_distance(circle_r * 3.)
+ {
+ // Shape of the top contact area.
+ circle.points.reserve(6);
+ for (size_t i = 0; i < 6; ++ i) {
+ double angle = double(i) * M_PI / 3.;
+ circle.points.push_back(Point(circle_radius * cos(angle), circle_radius * sin(angle)));
+ }
+ }
+
+ // Generate loop contacts at the top_contact_layer,
+ // trim the top_contact_layer->polygons with the areas covered by the loops.
+ void generate(MyLayerExtruded &top_contact_layer, const Flow &interface_flow_src) const;
+
+ int n_contact_loops;
+ coordf_t circle_radius;
+ coordf_t circle_distance;
+ Polygon circle;
+};
+
+void LoopInterfaceProcessor::generate(MyLayerExtruded &top_contact_layer, const Flow &interface_flow_src) const
+{
+ if (n_contact_loops == 0 || top_contact_layer.empty())
+ return;
+
+ Flow flow = interface_flow_src;
+ flow.height = float(top_contact_layer.layer->height);
+
+ Polygons overhang_polygons;
+ if (top_contact_layer.layer->overhang_polygons != nullptr)
+ overhang_polygons = std::move(*top_contact_layer.layer->overhang_polygons);
+
+ // Generate the outermost loop.
+ // Find centerline of the external loop (or any other kind of extrusions should the loop be skipped)
+ ExPolygons top_contact_expolygons = offset_ex(union_ex(top_contact_layer.layer->polygons), - 0.5f * flow.scaled_width());
+
+ // Grid size and bit shifts for quick and exact to/from grid coordinates manipulation.
+ coord_t circle_grid_resolution = 1;
+ coord_t circle_grid_powerof2 = 0;
+ {
+ // epsilon to account for rounding errors
+ coord_t circle_grid_resolution_non_powerof2 = coord_t(2. * circle_distance + 3.);
+ while (circle_grid_resolution < circle_grid_resolution_non_powerof2) {
+ circle_grid_resolution <<= 1;
+ ++ circle_grid_powerof2;
+ }
+ }
+
+ struct PointAccessor {
+ const Point* operator()(const Point &pt) const { return &pt; }
+ };
+ typedef ClosestPointInRadiusLookup<Point, PointAccessor> ClosestPointLookupType;
+
+ Polygons loops0;
+ {
+ // find centerline of the external loop of the contours
+ // Only consider the loops facing the overhang.
+ Polygons external_loops;
+ // Holes in the external loops.
+ Polygons circles;
+ Polygons overhang_with_margin = offset(union_ex(overhang_polygons), 0.5f * flow.scaled_width());
+ for (ExPolygons::iterator it_contact_expoly = top_contact_expolygons.begin(); it_contact_expoly != top_contact_expolygons.end(); ++ it_contact_expoly) {
+ // Store the circle centers placed for an expolygon into a regular grid, hashed by the circle centers.
+ ClosestPointLookupType circle_centers_lookup(coord_t(circle_distance - SCALED_EPSILON));
+ Points circle_centers;
+ Point center_last;
+ // For each contour of the expolygon, start with the outer contour, continue with the holes.
+ for (size_t i_contour = 0; i_contour <= it_contact_expoly->holes.size(); ++ i_contour) {
+ Polygon &contour = (i_contour == 0) ? it_contact_expoly->contour : it_contact_expoly->holes[i_contour - 1];
+ const Point *seg_current_pt = nullptr;
+ coordf_t seg_current_t = 0.;
+ if (! intersection_pl(contour.split_at_first_point(), overhang_with_margin).empty()) {
+ // The contour is below the overhang at least to some extent.
+ //FIXME ideally one would place the circles below the overhang only.
+ // Walk around the contour and place circles so their centers are not closer than circle_distance from each other.
+ if (circle_centers.empty()) {
+ // Place the first circle.
+ seg_current_pt = &contour.points.front();
+ seg_current_t = 0.;
+ center_last = *seg_current_pt;
+ circle_centers_lookup.insert(center_last);
+ circle_centers.push_back(center_last);
+ }
+ for (Points::const_iterator it = contour.points.begin() + 1; it != contour.points.end(); ++it) {
+ // Is it possible to place a circle on this segment? Is it not too close to any of the circles already placed on this contour?
+ const Point &p1 = *(it-1);
+ const Point &p2 = *it;
+ // Intersection of a ray (p1, p2) with a circle placed at center_last, with radius of circle_distance.
+ const Vec2d v_seg(coordf_t(p2(0)) - coordf_t(p1(0)), coordf_t(p2(1)) - coordf_t(p1(1)));
+ const Vec2d v_cntr(coordf_t(p1(0) - center_last(0)), coordf_t(p1(1) - center_last(1)));
+ coordf_t a = v_seg.squaredNorm();
+ coordf_t b = 2. * v_seg.dot(v_cntr);
+ coordf_t c = v_cntr.squaredNorm() - circle_distance * circle_distance;
+ coordf_t disc = b * b - 4. * a * c;
+ if (disc > 0.) {
+ // The circle intersects a ray. Avoid the parts of the segment inside the circle.
+ coordf_t t1 = (-b - sqrt(disc)) / (2. * a);
+ coordf_t t2 = (-b + sqrt(disc)) / (2. * a);
+ coordf_t t0 = (seg_current_pt == &p1) ? seg_current_t : 0.;
+ // Take the lowest t in <t0, 1.>, excluding <t1, t2>.
+ coordf_t t;
+ if (t0 <= t1)
+ t = t0;
+ else if (t2 <= 1.)
+ t = t2;
+ else {
+ // Try the following segment.
+ seg_current_pt = nullptr;
+ continue;
+ }
+ seg_current_pt = &p1;
+ seg_current_t = t;
+ center_last = Point(p1(0) + coord_t(v_seg(0) * t), p1(1) + coord_t(v_seg(1) * t));
+ // It has been verified that the new point is far enough from center_last.
+ // Ensure, that it is far enough from all the centers.
+ std::pair<const Point*, coordf_t> circle_closest = circle_centers_lookup.find(center_last);
+ if (circle_closest.first != nullptr) {
+ -- it;
+ continue;
+ }
+ } else {
+ // All of the segment is outside the circle. Take the first point.
+ seg_current_pt = &p1;
+ seg_current_t = 0.;
+ center_last = p1;
+ }
+ // Place the first circle.
+ circle_centers_lookup.insert(center_last);
+ circle_centers.push_back(center_last);
+ }
+ external_loops.push_back(std::move(contour));
+ for (const Point &center : circle_centers) {
+ circles.push_back(circle);
+ circles.back().translate(center);
+ }
+ }
+ }
+ }
+ // Apply a pattern to the external loops.
+ loops0 = diff(external_loops, circles);
+ }
+
+ Polylines loop_lines;
+ {
+ // make more loops
+ Polygons loop_polygons = loops0;
+ for (size_t i = 1; i < n_contact_loops; ++ i)
+ polygons_append(loop_polygons,
+ offset2(
+ loops0,
+ - int(i) * flow.scaled_spacing() - 0.5f * flow.scaled_spacing(),
+ 0.5f * flow.scaled_spacing()));
+ // Clip such loops to the side oriented towards the object.
+ // Collect split points, so they will be recognized after the clipping.
+ // At the split points the clipped pieces will be stitched back together.
+ loop_lines.reserve(loop_polygons.size());
+ std::unordered_map<Point, int, PointHash> map_split_points;
+ for (Polygons::const_iterator it = loop_polygons.begin(); it != loop_polygons.end(); ++ it) {
+ assert(map_split_points.find(it->first_point()) == map_split_points.end());
+ map_split_points[it->first_point()] = -1;
+ loop_lines.push_back(it->split_at_first_point());
+ }
+ loop_lines = intersection_pl(loop_lines, offset(overhang_polygons, scale_(SUPPORT_MATERIAL_MARGIN)));
+ // Because a closed loop has been split to a line, loop_lines may contain continuous segments split to 2 pieces.
+ // Try to connect them.
+ for (int i_line = 0; i_line < int(loop_lines.size()); ++ i_line) {
+ Polyline &polyline = loop_lines[i_line];
+ auto it = map_split_points.find(polyline.first_point());
+ if (it != map_split_points.end()) {
+ // This is a stitching point.
+ // If this assert triggers, multiple source polygons likely intersected at this point.
+ assert(it->second != -2);
+ if (it->second < 0) {
+ // First occurence.
+ it->second = i_line;
+ } else {
+ // Second occurence. Join the lines.
+ Polyline &polyline_1st = loop_lines[it->second];
+ assert(polyline_1st.first_point() == it->first || polyline_1st.last_point() == it->first);
+ if (polyline_1st.first_point() == it->first)
+ polyline_1st.reverse();
+ polyline_1st.append(std::move(polyline));
+ it->second = -2;
+ }
+ continue;
+ }
+ it = map_split_points.find(polyline.last_point());
+ if (it != map_split_points.end()) {
+ // This is a stitching point.
+ // If this assert triggers, multiple source polygons likely intersected at this point.
+ assert(it->second != -2);
+ if (it->second < 0) {
+ // First occurence.
+ it->second = i_line;
+ } else {
+ // Second occurence. Join the lines.
+ Polyline &polyline_1st = loop_lines[it->second];
+ assert(polyline_1st.first_point() == it->first || polyline_1st.last_point() == it->first);
+ if (polyline_1st.first_point() == it->first)
+ polyline_1st.reverse();
+ polyline.reverse();
+ polyline_1st.append(std::move(polyline));
+ it->second = -2;
+ }
+ }
+ }
+ // Remove empty lines.
+ remove_degenerate(loop_lines);
+ }
+
+ // add the contact infill area to the interface area
+ // note that growing loops by $circle_radius ensures no tiny
+ // extrusions are left inside the circles; however it creates
+ // a very large gap between loops and contact_infill_polygons, so maybe another
+ // solution should be found to achieve both goals
+ // Store the trimmed polygons into a separate polygon set, so the original infill area remains intact for
+ // "modulate by layer thickness".
+ top_contact_layer.set_polygons_to_extrude(diff(top_contact_layer.layer->polygons, offset(loop_lines, float(circle_radius * 1.1))));
+
+ // Transform loops into ExtrusionPath objects.
+ extrusion_entities_append_paths(
+ top_contact_layer.extrusions,
+ STDMOVE(loop_lines),
+ erSupportMaterialInterface, flow.mm3_per_mm(), flow.width, flow.height);
+}
+
+#ifdef SLIC3R_DEBUG
+static std::string dbg_index_to_color(int idx)
+{
+ if (idx < 0)
+ return "yellow";
+ idx = idx % 3;
+ switch (idx) {
+ case 0: return "red";
+ case 1: return "green";
+ default: return "blue";
+ }
+}
+#endif /* SLIC3R_DEBUG */
+
+// When extruding a bottom interface layer over an object, the bottom interface layer is extruded in a thin air, therefore
+// it is being extruded with a bridging flow to not shrink excessively (the die swell effect).
+// Tiny extrusions are better avoided and it is always better to anchor the thread to an existing support structure if possible.
+// Therefore the bottom interface spots are expanded a bit. The expanded regions may overlap with another bottom interface layers,
+// leading to over extrusion, where they overlap. The over extrusion is better avoided as it often makes the interface layers
+// to stick too firmly to the object.
+void modulate_extrusion_by_overlapping_layers(
+ // Extrusions generated for this_layer.
+ ExtrusionEntitiesPtr &extrusions_in_out,
+ const PrintObjectSupportMaterial::MyLayer &this_layer,
+ // Multiple layers overlapping with this_layer, sorted bottom up.
+ const PrintObjectSupportMaterial::MyLayersPtr &overlapping_layers)
+{
+ size_t n_overlapping_layers = overlapping_layers.size();
+ if (n_overlapping_layers == 0 || extrusions_in_out.empty())
+ // The extrusions do not overlap with any other extrusion.
+ return;
+
+ // Get the initial extrusion parameters.
+ ExtrusionPath *extrusion_path_template = dynamic_cast<ExtrusionPath*>(extrusions_in_out.front());
+ assert(extrusion_path_template != nullptr);
+ ExtrusionRole extrusion_role = extrusion_path_template->role();
+ float extrusion_width = extrusion_path_template->width;
+
+ struct ExtrusionPathFragment
+ {
+ ExtrusionPathFragment() : mm3_per_mm(-1), width(-1), height(-1) {};
+ ExtrusionPathFragment(double mm3_per_mm, float width, float height) : mm3_per_mm(mm3_per_mm), width(width), height(height) {};
+
+ Polylines polylines;
+ double mm3_per_mm;
+ float width;
+ float height;
+ };
+
+ // Split the extrusions by the overlapping layers, reduce their extrusion rate.
+ // The last path_fragment is from this_layer.
+ std::vector<ExtrusionPathFragment> path_fragments(
+ n_overlapping_layers + 1,
+ ExtrusionPathFragment(extrusion_path_template->mm3_per_mm, extrusion_path_template->width, extrusion_path_template->height));
+ // Don't use it, it will be released.
+ extrusion_path_template = nullptr;
+
+#ifdef SLIC3R_DEBUG
+ static int iRun = 0;
+ ++ iRun;
+ BoundingBox bbox;
+ for (size_t i_overlapping_layer = 0; i_overlapping_layer < n_overlapping_layers; ++ i_overlapping_layer) {
+ const PrintObjectSupportMaterial::MyLayer &overlapping_layer = *overlapping_layers[i_overlapping_layer];
+ bbox.merge(get_extents(overlapping_layer.polygons));
+ }
+ for (ExtrusionEntitiesPtr::const_iterator it = extrusions_in_out.begin(); it != extrusions_in_out.end(); ++ it) {
+ ExtrusionPath *path = dynamic_cast<ExtrusionPath*>(*it);
+ assert(path != nullptr);
+ bbox.merge(get_extents(path->polyline));
+ }
+ SVG svg(debug_out_path("support-fragments-%d-%lf.svg", iRun, this_layer.print_z).c_str(), bbox);
+ const float transparency = 0.5f;
+ // Filled polygons for the overlapping regions.
+ svg.draw(union_ex(this_layer.polygons), dbg_index_to_color(-1), transparency);
+ for (size_t i_overlapping_layer = 0; i_overlapping_layer < n_overlapping_layers; ++ i_overlapping_layer) {
+ const PrintObjectSupportMaterial::MyLayer &overlapping_layer = *overlapping_layers[i_overlapping_layer];
+ svg.draw(union_ex(overlapping_layer.polygons), dbg_index_to_color(int(i_overlapping_layer)), transparency);
+ }
+ // Contours of the overlapping regions.
+ svg.draw(to_polylines(this_layer.polygons), dbg_index_to_color(-1), scale_(0.2));
+ for (size_t i_overlapping_layer = 0; i_overlapping_layer < n_overlapping_layers; ++ i_overlapping_layer) {
+ const PrintObjectSupportMaterial::MyLayer &overlapping_layer = *overlapping_layers[i_overlapping_layer];
+ svg.draw(to_polylines(overlapping_layer.polygons), dbg_index_to_color(int(i_overlapping_layer)), scale_(0.1));
+ }
+ // Fill extrusion, the source.
+ for (ExtrusionEntitiesPtr::const_iterator it = extrusions_in_out.begin(); it != extrusions_in_out.end(); ++ it) {
+ ExtrusionPath *path = dynamic_cast<ExtrusionPath*>(*it);
+ std::string color_name;
+ switch ((it - extrusions_in_out.begin()) % 9) {
+ case 0: color_name = "magenta"; break;
+ case 1: color_name = "deepskyblue"; break;
+ case 2: color_name = "coral"; break;
+ case 3: color_name = "goldenrod"; break;
+ case 4: color_name = "orange"; break;
+ case 5: color_name = "olivedrab"; break;
+ case 6: color_name = "blueviolet"; break;
+ case 7: color_name = "brown"; break;
+ default: color_name = "orchid"; break;
+ }
+ svg.draw(path->polyline, color_name, scale_(0.2));
+ }
+#endif /* SLIC3R_DEBUG */
+
+ // End points of the original paths.
+ std::vector<std::pair<Point, Point>> path_ends;
+ // Collect the paths of this_layer.
+ {
+ Polylines &polylines = path_fragments.back().polylines;
+ for (ExtrusionEntitiesPtr::const_iterator it = extrusions_in_out.begin(); it != extrusions_in_out.end(); ++ it) {
+ ExtrusionPath *path = dynamic_cast<ExtrusionPath*>(*it);
+ assert(path != nullptr);
+ polylines.emplace_back(Polyline(std::move(path->polyline)));
+ path_ends.emplace_back(std::pair<Point, Point>(polylines.back().points.front(), polylines.back().points.back()));
+ }
+ }
+ // Destroy the original extrusion paths, their polylines were moved to path_fragments already.
+ // This will be the destination for the new paths.
+ extrusions_in_out.clear();
+
+ // Fragment the path segments by overlapping layers. The overlapping layers are sorted by an increasing print_z.
+ // Trim by the highest overlapping layer first.
+ for (int i_overlapping_layer = int(n_overlapping_layers) - 1; i_overlapping_layer >= 0; -- i_overlapping_layer) {
+ const PrintObjectSupportMaterial::MyLayer &overlapping_layer = *overlapping_layers[i_overlapping_layer];
+ ExtrusionPathFragment &frag = path_fragments[i_overlapping_layer];
+ Polygons polygons_trimming = offset(union_ex(overlapping_layer.polygons), float(scale_(0.5*extrusion_width)));
+ frag.polylines = intersection_pl(path_fragments.back().polylines, polygons_trimming, false);
+ path_fragments.back().polylines = diff_pl(path_fragments.back().polylines, polygons_trimming, false);
+ // Adjust the extrusion parameters for a reduced layer height and a non-bridging flow (nozzle_dmr = -1, does not matter).
+ assert(this_layer.print_z > overlapping_layer.print_z);
+ frag.height = float(this_layer.print_z - overlapping_layer.print_z);
+ frag.mm3_per_mm = Flow(frag.width, frag.height, -1.f, false).mm3_per_mm();
+#ifdef SLIC3R_DEBUG
+ svg.draw(frag.polylines, dbg_index_to_color(i_overlapping_layer), scale_(0.1));
+#endif /* SLIC3R_DEBUG */
+ }
+
+#ifdef SLIC3R_DEBUG
+ svg.draw(path_fragments.back().polylines, dbg_index_to_color(-1), scale_(0.1));
+ svg.Close();
+#endif /* SLIC3R_DEBUG */
+
+ // Now chain the split segments using hashing and a nearly exact match, maintaining the order of segments.
+ // Create a single ExtrusionPath or ExtrusionEntityCollection per source ExtrusionPath.
+ // Map of fragment start/end points to a pair of <i_overlapping_layer, i_polyline_in_layer>
+ // Because a non-exact matching is used for the end points, a multi-map is used.
+ // As the clipper library may reverse the order of some clipped paths, store both ends into the map.
+ struct ExtrusionPathFragmentEnd
+ {
+ ExtrusionPathFragmentEnd(size_t alayer_idx, size_t apolyline_idx, bool ais_start) :
+ layer_idx(alayer_idx), polyline_idx(apolyline_idx), is_start(ais_start) {}
+ size_t layer_idx;
+ size_t polyline_idx;
+ bool is_start;
+ };
+ class ExtrusionPathFragmentEndPointAccessor {
+ public:
+ ExtrusionPathFragmentEndPointAccessor(const std::vector<ExtrusionPathFragment> &path_fragments) : m_path_fragments(path_fragments) {}
+ // Return an end point of a fragment, or nullptr if the fragment has been consumed already.
+ const Point* operator()(const ExtrusionPathFragmentEnd &fragment_end) const {
+ const Polyline &polyline = m_path_fragments[fragment_end.layer_idx].polylines[fragment_end.polyline_idx];
+ return polyline.points.empty() ? nullptr :
+ (fragment_end.is_start ? &polyline.points.front() : &polyline.points.back());
+ }
+ private:
+ ExtrusionPathFragmentEndPointAccessor& operator=(const ExtrusionPathFragmentEndPointAccessor&) {}
+ const std::vector<ExtrusionPathFragment> &m_path_fragments;
+ };
+ const coord_t search_radius = 7;
+ ClosestPointInRadiusLookup<ExtrusionPathFragmentEnd, ExtrusionPathFragmentEndPointAccessor> map_fragment_starts(
+ search_radius, ExtrusionPathFragmentEndPointAccessor(path_fragments));
+ for (size_t i_overlapping_layer = 0; i_overlapping_layer <= n_overlapping_layers; ++ i_overlapping_layer) {
+ const Polylines &polylines = path_fragments[i_overlapping_layer].polylines;
+ for (size_t i_polyline = 0; i_polyline < polylines.size(); ++ i_polyline) {
+ // Map a starting point of a polyline to a pair of <layer, polyline>
+ if (polylines[i_polyline].points.size() >= 2) {
+ map_fragment_starts.insert(ExtrusionPathFragmentEnd(i_overlapping_layer, i_polyline, true));
+ map_fragment_starts.insert(ExtrusionPathFragmentEnd(i_overlapping_layer, i_polyline, false));
+ }
+ }
+ }
+
+ // For each source path:
+ for (size_t i_path = 0; i_path < path_ends.size(); ++ i_path) {
+ const Point &pt_start = path_ends[i_path].first;
+ const Point &pt_end = path_ends[i_path].second;
+ Point pt_current = pt_start;
+ // Find a chain of fragments with the original / reduced print height.
+ ExtrusionMultiPath multipath;
+ for (;;) {
+ // Find a closest end point to pt_current.
+ std::pair<const ExtrusionPathFragmentEnd*, coordf_t> end_and_dist2 = map_fragment_starts.find(pt_current);
+ // There may be a bug in Clipper flipping the order of two last points in a fragment?
+ // assert(end_and_dist2.first != nullptr);
+ assert(end_and_dist2.first == nullptr || end_and_dist2.second < search_radius * search_radius);
+ if (end_and_dist2.first == nullptr) {
+ // New fragment connecting to pt_current was not found.
+ // Verify that the last point found is close to the original end point of the unfragmented path.
+ //const double d2 = (pt_end - pt_current).squaredNorm();
+ //assert(d2 < coordf_t(search_radius * search_radius));
+ // End of the path.
+ break;
+ }
+ const ExtrusionPathFragmentEnd &fragment_end_min = *end_and_dist2.first;
+ // Fragment to consume.
+ ExtrusionPathFragment &frag = path_fragments[fragment_end_min.layer_idx];
+ Polyline &frag_polyline = frag.polylines[fragment_end_min.polyline_idx];
+ // Path to append the fragment to.
+ ExtrusionPath *path = multipath.paths.empty() ? nullptr : &multipath.paths.back();
+ if (path != nullptr) {
+ // Verify whether the path is compatible with the current fragment.
+ assert(this_layer.layer_type == PrintObjectSupportMaterial::sltBottomContact || path->height != frag.height || path->mm3_per_mm != frag.mm3_per_mm);
+ if (path->height != frag.height || path->mm3_per_mm != frag.mm3_per_mm) {
+ path = nullptr;
+ }
+ // Merging with the previous path. This can only happen if the current layer was reduced by a base layer, which was split into a base and interface layer.
+ }
+ if (path == nullptr) {
+ // Allocate a new path.
+ multipath.paths.push_back(ExtrusionPath(extrusion_role, frag.mm3_per_mm, frag.width, frag.height));
+ path = &multipath.paths.back();
+ }
+ // The Clipper library may flip the order of the clipped polylines arbitrarily.
+ // Reverse the source polyline, if connecting to the end.
+ if (! fragment_end_min.is_start)
+ frag_polyline.reverse();
+ // Enforce exact overlap of the end points of successive fragments.
+ assert(frag_polyline.points.front() == pt_current);
+ frag_polyline.points.front() = pt_current;
+ // Don't repeat the first point.
+ if (! path->polyline.points.empty())
+ path->polyline.points.pop_back();
+ // Consume the fragment's polyline, remove it from the input fragments, so it will be ignored the next time.
+ path->polyline.append(std::move(frag_polyline));
+ frag_polyline.points.clear();
+ pt_current = path->polyline.points.back();
+ if (pt_current == pt_end) {
+ // End of the path.
+ break;
+ }
+ }
+ if (!multipath.paths.empty()) {
+ if (multipath.paths.size() == 1) {
+ // This path was not fragmented.
+ extrusions_in_out.push_back(new ExtrusionPath(std::move(multipath.paths.front())));
+ } else {
+ // This path was fragmented. Copy the collection as a whole object, so the order inside the collection will not be changed
+ // during the chaining of extrusions_in_out.
+ extrusions_in_out.push_back(new ExtrusionMultiPath(std::move(multipath)));
+ }
+ }
+ }
+ // If there are any non-consumed fragments, add them separately.
+ //FIXME this shall not happen, if the Clipper works as expected and all paths split to fragments could be re-connected.
+ for (auto it_fragment = path_fragments.begin(); it_fragment != path_fragments.end(); ++ it_fragment)
+ extrusion_entities_append_paths(extrusions_in_out, std::move(it_fragment->polylines), extrusion_role, it_fragment->mm3_per_mm, it_fragment->width, it_fragment->height);
+}
+
+void PrintObjectSupportMaterial::generate_toolpaths(
+ const PrintObject &object,
+ const MyLayersPtr &raft_layers,
+ const MyLayersPtr &bottom_contacts,
+ const MyLayersPtr &top_contacts,
+ const MyLayersPtr &intermediate_layers,
+ const MyLayersPtr &interface_layers) const
+{
+// Slic3r::debugf "Generating patterns\n";
+ // loop_interface_processor with a given circle radius.
+ LoopInterfaceProcessor loop_interface_processor(1.5 * m_support_material_interface_flow.scaled_width());
+ loop_interface_processor.n_contact_loops = this->has_contact_loops() ? 1 : 0;
+
+ float base_angle = Geometry::deg2rad(float(m_object_config->support_material_angle.value));
+ float interface_angle = Geometry::deg2rad(float(m_object_config->support_material_angle.value + 90.));
+ coordf_t interface_spacing = m_object_config->support_material_interface_spacing.value + m_support_material_interface_flow.spacing();
+ coordf_t interface_density = std::min(1., m_support_material_interface_flow.spacing() / interface_spacing);
+ coordf_t support_spacing = m_object_config->support_material_spacing.value + m_support_material_flow.spacing();
+ coordf_t support_density = std::min(1., m_support_material_flow.spacing() / support_spacing);
+ if (m_object_config->support_material_interface_layers.value == 0) {
+ // No interface layers allowed, print everything with the base support pattern.
+ interface_spacing = support_spacing;
+ interface_density = support_density;
+ }
+
+ // Prepare fillers.
+ SupportMaterialPattern support_pattern = m_object_config->support_material_pattern;
+ bool with_sheath = m_object_config->support_material_with_sheath;
+ InfillPattern infill_pattern;
+ std::vector<float> angles;
+ angles.push_back(base_angle);
+ switch (support_pattern) {
+ case smpRectilinearGrid:
+ angles.push_back(interface_angle);
+ // fall through
+ case smpRectilinear:
+ infill_pattern = ipRectilinear;
+ break;
+ case smpHoneycomb:
+ infill_pattern = ipHoneycomb;
+ break;
+ }
+ BoundingBox bbox_object(Point(-scale_(1.), -scale_(1.0)), Point(scale_(1.), scale_(1.)));
+
+// const coordf_t link_max_length_factor = 3.;
+ const coordf_t link_max_length_factor = 0.;
+
+ float raft_angle_1st_layer = 0.f;
+ float raft_angle_base = 0.f;
+ float raft_angle_interface = 0.f;
+ if (m_slicing_params.base_raft_layers > 1) {
+ // There are all raft layer types (1st layer, base, interface & contact layers) available.
+ raft_angle_1st_layer = interface_angle;
+ raft_angle_base = base_angle;
+ raft_angle_interface = interface_angle;
+ } else if (m_slicing_params.base_raft_layers == 1 || m_slicing_params.interface_raft_layers > 1) {
+ // 1st layer, interface & contact layers available.
+ raft_angle_1st_layer = base_angle;
+ if (this->has_support())
+ // Print 1st layer at 45 degrees from both the interface and base angles as both can land on the 1st layer.
+ raft_angle_1st_layer += 0.7854f;
+ raft_angle_interface = interface_angle;
+ } else if (m_slicing_params.interface_raft_layers == 1) {
+ // Only the contact raft layer is non-empty, which will be printed as the 1st layer.
+ assert(m_slicing_params.base_raft_layers == 0);
+ assert(m_slicing_params.interface_raft_layers == 1);
+ assert(m_slicing_params.raft_layers() == 1 && raft_layers.size() == 0);
+ } else {
+ // No raft.
+ assert(m_slicing_params.base_raft_layers == 0);
+ assert(m_slicing_params.interface_raft_layers == 0);
+ assert(m_slicing_params.raft_layers() == 0 && raft_layers.size() == 0);
+ }
+
+ // Insert the raft base layers.
+ size_t n_raft_layers = size_t(std::max(0, int(m_slicing_params.raft_layers()) - 1));
+ tbb::parallel_for(tbb::blocked_range<size_t>(0, n_raft_layers),
+ [this, &object, &raft_layers,
+ infill_pattern, &bbox_object, support_density, interface_density, raft_angle_1st_layer, raft_angle_base, raft_angle_interface, link_max_length_factor, with_sheath]
+ (const tbb::blocked_range<size_t>& range) {
+ for (size_t support_layer_id = range.begin(); support_layer_id < range.end(); ++ support_layer_id)
+ {
+ assert(support_layer_id < raft_layers.size());
+ SupportLayer &support_layer = *object.support_layers()[support_layer_id];
+ assert(support_layer.support_fills.entities.empty());
+ MyLayer &raft_layer = *raft_layers[support_layer_id];
+
+ std::unique_ptr<Fill> filler_interface = std::unique_ptr<Fill>(Fill::new_from_type(ipRectilinear));
+ std::unique_ptr<Fill> filler_support = std::unique_ptr<Fill>(Fill::new_from_type(infill_pattern));
+ filler_interface->set_bounding_box(bbox_object);
+ filler_support->set_bounding_box(bbox_object);
+
+ // Print the support base below the support columns, or the support base for the support columns plus the contacts.
+ if (support_layer_id > 0) {
+ Polygons to_infill_polygons = (support_layer_id < m_slicing_params.base_raft_layers) ?
+ raft_layer.polygons :
+ //FIXME misusing contact_polygons for support columns.
+ ((raft_layer.contact_polygons == nullptr) ? Polygons() : *raft_layer.contact_polygons);
+ if (! to_infill_polygons.empty()) {
+ Flow flow(float(m_support_material_flow.width), float(raft_layer.height), m_support_material_flow.nozzle_diameter, raft_layer.bridging);
+ // find centerline of the external loop/extrusions
+ ExPolygons to_infill = (support_layer_id == 0 || ! with_sheath) ?
+ // union_ex(base_polygons, true) :
+ offset2_ex(to_infill_polygons, float(SCALED_EPSILON), float(- SCALED_EPSILON)) :
+ offset2_ex(to_infill_polygons, float(SCALED_EPSILON), float(- SCALED_EPSILON - 0.5*flow.scaled_width()));
+ if (! to_infill.empty() && with_sheath) {
+ // Draw a perimeter all around the support infill. This makes the support stable, but difficult to remove.
+ // TODO: use brim ordering algorithm
+ to_infill_polygons = to_polygons(to_infill);
+ // TODO: use offset2_ex()
+ to_infill = offset_ex(to_infill, float(- 0.4 * flow.scaled_spacing()));
+ extrusion_entities_append_paths(
+ support_layer.support_fills.entities,
+ to_polylines(STDMOVE(to_infill_polygons)),
+ erSupportMaterial, flow.mm3_per_mm(), flow.width, flow.height);
+ }
+ if (! to_infill.empty()) {
+ // We don't use $base_flow->spacing because we need a constant spacing
+ // value that guarantees that all layers are correctly aligned.
+ Fill *filler = filler_support.get();
+ filler->angle = raft_angle_base;
+ filler->spacing = m_support_material_flow.spacing();
+ filler->link_max_length = coord_t(scale_(filler->spacing * link_max_length_factor / support_density));
+ fill_expolygons_generate_paths(
+ // Destination
+ support_layer.support_fills.entities,
+ // Regions to fill
+ STDMOVE(to_infill),
+ // Filler and its parameters
+ filler, float(support_density),
+ // Extrusion parameters
+ erSupportMaterial, flow);
+ }
+ }
+ }
+
+ Fill *filler = filler_interface.get();
+ Flow flow = m_first_layer_flow;
+ float density = 0.f;
+ if (support_layer_id == 0) {
+ // Base flange.
+ filler->angle = raft_angle_1st_layer;
+ filler->spacing = m_first_layer_flow.spacing();
+ // 70% of density on the 1st layer.
+ density = 0.7f;
+ } else if (support_layer_id >= m_slicing_params.base_raft_layers) {
+ filler->angle = raft_angle_interface;
+ // We don't use $base_flow->spacing because we need a constant spacing
+ // value that guarantees that all layers are correctly aligned.
+ filler->spacing = m_support_material_flow.spacing();
+ flow = Flow(float(m_support_material_interface_flow.width), float(raft_layer.height), m_support_material_flow.nozzle_diameter, raft_layer.bridging);
+ density = float(interface_density);
+ } else
+ continue;
+ filler->link_max_length = coord_t(scale_(filler->spacing * link_max_length_factor / density));
+ fill_expolygons_generate_paths(
+ // Destination
+ support_layer.support_fills.entities,
+ // Regions to fill
+ offset2_ex(raft_layer.polygons, float(SCALED_EPSILON), float(- SCALED_EPSILON)),
+ // Filler and its parameters
+ filler, density,
+ // Extrusion parameters
+ (support_layer_id < m_slicing_params.base_raft_layers) ? erSupportMaterial : erSupportMaterialInterface, flow);
+ }
+ });
+
+ struct LayerCacheItem {
+ LayerCacheItem(MyLayerExtruded *layer_extruded = nullptr) : layer_extruded(layer_extruded) {}
+ MyLayerExtruded *layer_extruded;
+ std::vector<MyLayer*> overlapping;
+ };
+ struct LayerCache {
+ MyLayerExtruded bottom_contact_layer;
+ MyLayerExtruded top_contact_layer;
+ MyLayerExtruded base_layer;
+ MyLayerExtruded interface_layer;
+ std::vector<LayerCacheItem> overlaps;
+ };
+ std::vector<LayerCache> layer_caches(object.support_layers().size(), LayerCache());
+
+ tbb::parallel_for(tbb::blocked_range<size_t>(n_raft_layers, object.support_layers().size()),
+ [this, &object, &bottom_contacts, &top_contacts, &intermediate_layers, &interface_layers, &layer_caches, &loop_interface_processor,
+ infill_pattern, &bbox_object, support_density, interface_density, interface_angle, &angles, link_max_length_factor, with_sheath]
+ (const tbb::blocked_range<size_t>& range) {
+ // Indices of the 1st layer in their respective container at the support layer height.
+ size_t idx_layer_bottom_contact = size_t(-1);
+ size_t idx_layer_top_contact = size_t(-1);
+ size_t idx_layer_intermediate = size_t(-1);
+ size_t idx_layer_inteface = size_t(-1);
+ std::unique_ptr<Fill> filler_interface = std::unique_ptr<Fill>(Fill::new_from_type(m_slicing_params.soluble_interface ? ipConcentric : ipRectilinear));
+ std::unique_ptr<Fill> filler_support = std::unique_ptr<Fill>(Fill::new_from_type(infill_pattern));
+ filler_interface->set_bounding_box(bbox_object);
+ filler_support->set_bounding_box(bbox_object);
+ for (size_t support_layer_id = range.begin(); support_layer_id < range.end(); ++ support_layer_id)
+ {
+ SupportLayer &support_layer = *object.support_layers()[support_layer_id];
+ LayerCache &layer_cache = layer_caches[support_layer_id];
+
+ // Find polygons with the same print_z.
+ MyLayerExtruded &bottom_contact_layer = layer_cache.bottom_contact_layer;
+ MyLayerExtruded &top_contact_layer = layer_cache.top_contact_layer;
+ MyLayerExtruded &base_layer = layer_cache.base_layer;
+ MyLayerExtruded &interface_layer = layer_cache.interface_layer;
+ // Increment the layer indices to find a layer at support_layer.print_z.
+ {
+ auto fun = [&support_layer](const MyLayer *l){ return l->print_z >= support_layer.print_z - EPSILON; };
+ idx_layer_bottom_contact = idx_higher_or_equal(bottom_contacts, idx_layer_bottom_contact, fun);
+ idx_layer_top_contact = idx_higher_or_equal(top_contacts, idx_layer_top_contact, fun);
+ idx_layer_intermediate = idx_higher_or_equal(intermediate_layers, idx_layer_intermediate, fun);
+ idx_layer_inteface = idx_higher_or_equal(interface_layers, idx_layer_inteface, fun);
+ }
+ // Copy polygons from the layers.
+ if (idx_layer_bottom_contact < bottom_contacts.size() && bottom_contacts[idx_layer_bottom_contact]->print_z < support_layer.print_z + EPSILON)
+ bottom_contact_layer.layer = bottom_contacts[idx_layer_bottom_contact];
+ if (idx_layer_top_contact < top_contacts.size() && top_contacts[idx_layer_top_contact]->print_z < support_layer.print_z + EPSILON)
+ top_contact_layer.layer = top_contacts[idx_layer_top_contact];
+ if (idx_layer_inteface < interface_layers.size() && interface_layers[idx_layer_inteface]->print_z < support_layer.print_z + EPSILON)
+ interface_layer.layer = interface_layers[idx_layer_inteface];
+ if (idx_layer_intermediate < intermediate_layers.size() && intermediate_layers[idx_layer_intermediate]->print_z < support_layer.print_z + EPSILON)
+ base_layer.layer = intermediate_layers[idx_layer_intermediate];
+
+ if (m_object_config->support_material_interface_layers == 0) {
+ // If no interface layers were requested, we treat the contact layer exactly as a generic base layer.
+ if (m_can_merge_support_regions) {
+ if (base_layer.could_merge(top_contact_layer))
+ base_layer.merge(std::move(top_contact_layer));
+ else if (base_layer.empty() && !top_contact_layer.empty() && !top_contact_layer.layer->bridging)
+ std::swap(base_layer, top_contact_layer);
+ if (base_layer.could_merge(bottom_contact_layer))
+ base_layer.merge(std::move(bottom_contact_layer));
+ else if (base_layer.empty() && !bottom_contact_layer.empty() && !bottom_contact_layer.layer->bridging)
+ std::swap(base_layer, bottom_contact_layer);
+ }
+ } else {
+ loop_interface_processor.generate(top_contact_layer, m_support_material_interface_flow);
+ // If no loops are allowed, we treat the contact layer exactly as a generic interface layer.
+ // Merge interface_layer into top_contact_layer, as the top_contact_layer is not synchronized and therefore it will be used
+ // to trim other layers.
+ if (top_contact_layer.could_merge(interface_layer))
+ top_contact_layer.merge(std::move(interface_layer));
+ }
+
+ if (! interface_layer.empty() && ! base_layer.empty()) {
+ // turn base support into interface when it's contained in our holes
+ // (this way we get wider interface anchoring)
+ //FIXME one wants to fill in the inner most holes of the interfaces, not all the holes.
+ Polygons islands = top_level_islands(interface_layer.layer->polygons);
+ polygons_append(interface_layer.layer->polygons, intersection(base_layer.layer->polygons, islands));
+ base_layer.layer->polygons = diff(base_layer.layer->polygons, islands);
+ }
+
+ // Top and bottom contacts, interface layers.
+ for (size_t i = 0; i < 3; ++ i) {
+ MyLayerExtruded &layer_ex = (i == 0) ? top_contact_layer : (i == 1 ? bottom_contact_layer : interface_layer);
+ if (layer_ex.empty() || layer_ex.polygons_to_extrude().empty())
+ continue;
+ //FIXME When paralellizing, each thread shall have its own copy of the fillers.
+ bool interface_as_base = (&layer_ex == &interface_layer) && m_object_config->support_material_interface_layers.value == 0;
+ //FIXME Bottom interfaces are extruded with the briding flow. Some bridging layers have its height slightly reduced, therefore
+ // the bridging flow does not quite apply. Reduce the flow to area of an ellipse? (A = pi * a * b)
+ Flow interface_flow(
+ float(layer_ex.layer->bridging ? layer_ex.layer->height : (interface_as_base ? m_support_material_flow.width : m_support_material_interface_flow.width)),
+ float(layer_ex.layer->height),
+ m_support_material_interface_flow.nozzle_diameter,
+ layer_ex.layer->bridging);
+ filler_interface->angle = interface_as_base ?
+ // If zero interface layers are configured, use the same angle as for the base layers.
+ angles[support_layer_id % angles.size()] :
+ // Use interface angle for the interface layers.
+ interface_angle;
+ filler_interface->spacing = m_support_material_interface_flow.spacing();
+ filler_interface->link_max_length = coord_t(scale_(filler_interface->spacing * link_max_length_factor / interface_density));
+ fill_expolygons_generate_paths(
+ // Destination
+ layer_ex.extrusions,
+ // Regions to fill
+ union_ex(layer_ex.polygons_to_extrude(), true),
+ // Filler and its parameters
+ filler_interface.get(), float(interface_density),
+ // Extrusion parameters
+ erSupportMaterialInterface, interface_flow);
+ }
+
+ // Base support or flange.
+ if (! base_layer.empty() && ! base_layer.polygons_to_extrude().empty()) {
+ //FIXME When paralellizing, each thread shall have its own copy of the fillers.
+ Fill *filler = filler_support.get();
+ filler->angle = angles[support_layer_id % angles.size()];
+ // We don't use $base_flow->spacing because we need a constant spacing
+ // value that guarantees that all layers are correctly aligned.
+ Flow flow(
+ float(base_layer.layer->bridging ? base_layer.layer->height : m_support_material_flow.width),
+ float(base_layer.layer->height),
+ m_support_material_flow.nozzle_diameter,
+ base_layer.layer->bridging);
+ filler->spacing = m_support_material_flow.spacing();
+ filler->link_max_length = coord_t(scale_(filler->spacing * link_max_length_factor / support_density));
+ float density = float(support_density);
+ // find centerline of the external loop/extrusions
+ ExPolygons to_infill = (support_layer_id == 0 || ! with_sheath) ?
+ // union_ex(base_polygons, true) :
+ offset2_ex(base_layer.polygons_to_extrude(), float(SCALED_EPSILON), float(- SCALED_EPSILON)) :
+ offset2_ex(base_layer.polygons_to_extrude(), float(SCALED_EPSILON), float(- SCALED_EPSILON - 0.5*flow.scaled_width()));
+ if (base_layer.layer->bottom_z < EPSILON) {
+ // Base flange (the 1st layer).
+ filler = filler_interface.get();
+ filler->angle = Geometry::deg2rad(float(m_object_config->support_material_angle.value + 90.));
+ density = 0.5f;
+ flow = m_first_layer_flow;
+ // use the proper spacing for first layer as we don't need to align
+ // its pattern to the other layers
+ //FIXME When paralellizing, each thread shall have its own copy of the fillers.
+ filler->spacing = flow.spacing();
+ filler->link_max_length = coord_t(scale_(filler->spacing * link_max_length_factor / density));
+ } else if (with_sheath) {
+ // Draw a perimeter all around the support infill. This makes the support stable, but difficult to remove.
+ // TODO: use brim ordering algorithm
+ Polygons to_infill_polygons = to_polygons(to_infill);
+ // TODO: use offset2_ex()
+ to_infill = offset_ex(to_infill, - 0.4 * float(flow.scaled_spacing()));
+ extrusion_entities_append_paths(
+ base_layer.extrusions,
+ to_polylines(STDMOVE(to_infill_polygons)),
+ erSupportMaterial, flow.mm3_per_mm(), flow.width, flow.height);
+ }
+ fill_expolygons_generate_paths(
+ // Destination
+ base_layer.extrusions,
+ // Regions to fill
+ STDMOVE(to_infill),
+ // Filler and its parameters
+ filler, density,
+ // Extrusion parameters
+ erSupportMaterial, flow);
+ }
+
+ layer_cache.overlaps.reserve(4);
+ if (! bottom_contact_layer.empty())
+ layer_cache.overlaps.push_back(&bottom_contact_layer);
+ if (! top_contact_layer.empty())
+ layer_cache.overlaps.push_back(&top_contact_layer);
+ if (! interface_layer.empty())
+ layer_cache.overlaps.push_back(&interface_layer);
+ if (! base_layer.empty())
+ layer_cache.overlaps.push_back(&base_layer);
+ // Sort the layers with the same print_z coordinate by their heights, thickest first.
+ std::sort(layer_cache.overlaps.begin(), layer_cache.overlaps.end(), [](const LayerCacheItem &lc1, const LayerCacheItem &lc2) { return lc1.layer_extruded->layer->height > lc2.layer_extruded->layer->height; });
+ // Collect the support areas with this print_z into islands, as there is no need
+ // for retraction over these islands.
+ Polygons polys;
+ // Collect the extrusions, sorted by the bottom extrusion height.
+ for (LayerCacheItem &layer_cache_item : layer_cache.overlaps) {
+ // Collect islands to polys.
+ layer_cache_item.layer_extruded->polygons_append(polys);
+ // The print_z of the top contact surfaces and bottom_z of the bottom contact surfaces are "free"
+ // in a sense that they are not synchronized with other support layers. As the top and bottom contact surfaces
+ // are inflated to achieve a better anchoring, it may happen, that these surfaces will at least partially
+ // overlap in Z with another support layers, leading to over-extrusion.
+ // Mitigate the over-extrusion by modulating the extrusion rate over these regions.
+ // The print head will follow the same print_z, but the layer thickness will be reduced
+ // where it overlaps with another support layer.
+ //FIXME When printing a briging path, what is an equivalent height of the squished extrudate of the same width?
+ // Collect overlapping top/bottom surfaces.
+ layer_cache_item.overlapping.reserve(16);
+ coordf_t bottom_z = layer_cache_item.layer_extruded->layer->bottom_print_z() + EPSILON;
+ for (int i = int(idx_layer_bottom_contact) - 1; i >= 0 && bottom_contacts[i]->print_z > bottom_z; -- i)
+ layer_cache_item.overlapping.push_back(bottom_contacts[i]);
+ for (int i = int(idx_layer_top_contact) - 1; i >= 0 && top_contacts[i]->print_z > bottom_z; -- i)
+ layer_cache_item.overlapping.push_back(top_contacts[i]);
+ if (layer_cache_item.layer_extruded->layer->layer_type == sltBottomContact) {
+ // Bottom contact layer may overlap with a base layer, which may be changed to interface layer.
+ for (int i = int(idx_layer_intermediate) - 1; i >= 0 && intermediate_layers[i]->print_z > bottom_z; -- i)
+ layer_cache_item.overlapping.push_back(intermediate_layers[i]);
+ for (int i = int(idx_layer_inteface) - 1; i >= 0 && interface_layers[i]->print_z > bottom_z; -- i)
+ layer_cache_item.overlapping.push_back(interface_layers[i]);
+ }
+ std::sort(layer_cache_item.overlapping.begin(), layer_cache_item.overlapping.end(), MyLayersPtrCompare());
+ }
+ if (! polys.empty())
+ expolygons_append(support_layer.support_islands.expolygons, union_ex(polys));
+ /* {
+ require "Slic3r/SVG.pm";
+ Slic3r::SVG::output("islands_" . $z . ".svg",
+ red_expolygons => union_ex($contact),
+ green_expolygons => union_ex($interface),
+ green_polylines => [ map $_->unpack->polyline, @{$layer->support_contact_fills} ],
+ polylines => [ map $_->unpack->polyline, @{$layer->support_fills} ],
+ );
+ } */
+ } // for each support_layer_id
+ });
+
+ // Now modulate the support layer height in parallel.
+ tbb::parallel_for(tbb::blocked_range<size_t>(n_raft_layers, object.support_layers().size()),
+ [this, &object, &layer_caches]
+ (const tbb::blocked_range<size_t>& range) {
+ for (size_t support_layer_id = range.begin(); support_layer_id < range.end(); ++ support_layer_id) {
+ SupportLayer &support_layer = *object.support_layers()[support_layer_id];
+ LayerCache &layer_cache = layer_caches[support_layer_id];
+ for (LayerCacheItem &layer_cache_item : layer_cache.overlaps) {
+ modulate_extrusion_by_overlapping_layers(layer_cache_item.layer_extruded->extrusions, *layer_cache_item.layer_extruded->layer, layer_cache_item.overlapping);
+ support_layer.support_fills.append(std::move(layer_cache_item.layer_extruded->extrusions));
+ }
+ }
+ });
+}
+
+/*
+void PrintObjectSupportMaterial::clip_by_pillars(
+ const PrintObject &object,
+ LayersPtr &bottom_contacts,
+ LayersPtr &top_contacts,
+ LayersPtr &intermediate_contacts);
+
+{
+ // this prevents supplying an empty point set to BoundingBox constructor
+ if (top_contacts.empty())
+ return;
+
+ coord_t pillar_size = scale_(PILLAR_SIZE);
+ coord_t pillar_spacing = scale_(PILLAR_SPACING);
+
+ // A regular grid of pillars, filling the 2D bounding box.
+ Polygons grid;
+ {
+ // Rectangle with a side of 2.5x2.5mm.
+ Polygon pillar;
+ pillar.points.push_back(Point(0, 0));
+ pillar.points.push_back(Point(pillar_size, 0));
+ pillar.points.push_back(Point(pillar_size, pillar_size));
+ pillar.points.push_back(Point(0, pillar_size));
+
+ // 2D bounding box of the projection of all contact polygons.
+ BoundingBox bbox;
+ for (LayersPtr::const_iterator it = top_contacts.begin(); it != top_contacts.end(); ++ it)
+ bbox.merge(get_extents((*it)->polygons));
+ grid.reserve(size_t(ceil(bb.size()(0) / pillar_spacing)) * size_t(ceil(bb.size()(1) / pillar_spacing)));
+ for (coord_t x = bb.min(0); x <= bb.max(0) - pillar_size; x += pillar_spacing) {
+ for (coord_t y = bb.min(1); y <= bb.max(1) - pillar_size; y += pillar_spacing) {
+ grid.push_back(pillar);
+ for (size_t i = 0; i < pillar.points.size(); ++ i)
+ grid.back().points[i].translate(Point(x, y));
+ }
+ }
+ }
+
+ // add pillars to every layer
+ for my $i (0..n_support_z) {
+ $shape->[$i] = [ @$grid ];
+ }
+
+ // build capitals
+ for my $i (0..n_support_z) {
+ my $z = $support_z->[$i];
+
+ my $capitals = intersection(
+ $grid,
+ $contact->{$z} // [],
+ );
+
+ // work on one pillar at time (if any) to prevent the capitals from being merged
+ // but store the contact area supported by the capital because we need to make
+ // sure nothing is left
+ my $contact_supported_by_capitals = [];
+ foreach my $capital (@$capitals) {
+ // enlarge capital tops
+ $capital = offset([$capital], +($pillar_spacing - $pillar_size)/2);
+ push @$contact_supported_by_capitals, @$capital;
+
+ for (my $j = $i-1; $j >= 0; $j--) {
+ my $jz = $support_z->[$j];
+ $capital = offset($capital, -$self->interface_flow->scaled_width/2);
+ last if !@$capitals;
+ push @{ $shape->[$j] }, @$capital;
+ }
+ }
+
+ // Capitals will not generally cover the whole contact area because there will be
+ // remainders. For now we handle this situation by projecting such unsupported
+ // areas to the ground, just like we would do with a normal support.
+ my $contact_not_supported_by_capitals = diff(
+ $contact->{$z} // [],
+ $contact_supported_by_capitals,
+ );
+ if (@$contact_not_supported_by_capitals) {
+ for (my $j = $i-1; $j >= 0; $j--) {
+ push @{ $shape->[$j] }, @$contact_not_supported_by_capitals;
+ }
+ }
+ }
+}
+
+sub clip_with_shape {
+ my ($self, $support, $shape) = @_;
+
+ foreach my $i (keys %$support) {
+ // don't clip bottom layer with shape so that we
+ // can generate a continuous base flange
+ // also don't clip raft layers
+ next if $i == 0;
+ next if $i < $self->object_config->raft_layers;
+ $support->{$i} = intersection(
+ $support->{$i},
+ $shape->[$i],
+ );
+ }
+}
+*/
+
+} // namespace Slic3r