Welcome to mirror list, hosted at ThFree Co, Russian Federation.

github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'src/libslic3r/TriangleSelector.cpp')
-rw-r--r--src/libslic3r/TriangleSelector.cpp768
1 files changed, 768 insertions, 0 deletions
diff --git a/src/libslic3r/TriangleSelector.cpp b/src/libslic3r/TriangleSelector.cpp
new file mode 100644
index 000000000..3fe688195
--- /dev/null
+++ b/src/libslic3r/TriangleSelector.cpp
@@ -0,0 +1,768 @@
+#include "TriangleSelector.hpp"
+#include "Model.hpp"
+
+
+namespace Slic3r {
+
+
+
+// sides_to_split==-1 : just restore previous split
+void TriangleSelector::Triangle::set_division(int sides_to_split, int special_side_idx)
+{
+ assert(sides_to_split >=-1 && sides_to_split <= 3);
+ assert(special_side_idx >=-1 && special_side_idx < 3);
+
+ // If splitting one or two sides, second argument must be provided.
+ assert(sides_to_split != 1 || special_side_idx != -1);
+ assert(sides_to_split != 2 || special_side_idx != -1);
+
+ if (sides_to_split != -1) {
+ this->number_of_splits = sides_to_split;
+ if (sides_to_split != 0) {
+ assert(old_number_of_splits == 0);
+ this->special_side_idx = special_side_idx;
+ this->old_number_of_splits = sides_to_split;
+ }
+ }
+ else {
+ assert(old_number_of_splits != 0);
+ this->number_of_splits = old_number_of_splits;
+ // indices of children should still be there.
+ }
+}
+
+
+
+void TriangleSelector::select_patch(const Vec3f& hit, int facet_start,
+ const Vec3f& source, float radius,
+ CursorType cursor_type, EnforcerBlockerType new_state,
+ const Transform3d& trafo)
+{
+ assert(facet_start < m_orig_size_indices);
+
+ // Save current cursor center, squared radius and camera direction, so we don't
+ // have to pass it around.
+ m_cursor = Cursor(hit, source, radius, cursor_type, trafo);
+
+ // In case user changed cursor size since last time, update triangle edge limit.
+ // It is necessary to compare the internal radius in m_cursor! radius is in
+ // world coords and does not change after scaling.
+ if (m_old_cursor_radius_sqr != m_cursor.radius_sqr) {
+ set_edge_limit(std::sqrt(m_cursor.radius_sqr) / 5.f);
+ m_old_cursor_radius_sqr = m_cursor.radius_sqr;
+ }
+
+ // Now start with the facet the pointer points to and check all adjacent facets.
+ std::vector<int> facets_to_check{facet_start};
+ std::vector<bool> visited(m_orig_size_indices, false); // keep track of facets we already processed
+ int facet_idx = 0; // index into facets_to_check
+ while (facet_idx < int(facets_to_check.size())) {
+ int facet = facets_to_check[facet_idx];
+ if (! visited[facet]) {
+ if (select_triangle(facet, new_state)) {
+ // add neighboring facets to list to be proccessed later
+ for (int n=0; n<3; ++n) {
+ int neighbor_idx = m_mesh->stl.neighbors_start[facet].neighbor[n];
+ if (neighbor_idx >=0 && (m_cursor.type == SPHERE || faces_camera(neighbor_idx)))
+ facets_to_check.push_back(neighbor_idx);
+ }
+ }
+ }
+ visited[facet] = true;
+ ++facet_idx;
+ }
+}
+
+
+
+// Selects either the whole triangle (discarding any children it had), or divides
+// the triangle recursively, selecting just subtriangles truly inside the circle.
+// This is done by an actual recursive call. Returns false if the triangle is
+// outside the cursor.
+bool TriangleSelector::select_triangle(int facet_idx, EnforcerBlockerType type, bool recursive_call)
+{
+ assert(facet_idx < int(m_triangles.size()));
+
+ Triangle* tr = &m_triangles[facet_idx];
+ if (! tr->valid)
+ return false;
+
+ int num_of_inside_vertices = vertices_inside(facet_idx);
+
+ if (num_of_inside_vertices == 0
+ && ! is_pointer_in_triangle(facet_idx)
+ && ! is_edge_inside_cursor(facet_idx))
+ return false;
+
+ if (num_of_inside_vertices == 3) {
+ // dump any subdivision and select whole triangle
+ undivide_triangle(facet_idx);
+ tr->set_state(type);
+ } else {
+ // the triangle is partially inside, let's recursively divide it
+ // (if not already) and try selecting its children.
+
+ if (! tr->is_split() && tr->get_state() == type) {
+ // This is leaf triangle that is already of correct type as a whole.
+ // No need to split, all children would end up selected anyway.
+ return true;
+ }
+
+ split_triangle(facet_idx);
+ tr = &m_triangles[facet_idx]; // might have been invalidated
+
+
+ int num_of_children = tr->number_of_split_sides() + 1;
+ if (num_of_children != 1) {
+ for (int i=0; i<num_of_children; ++i) {
+ assert(i < int(tr->children.size()));
+ assert(tr->children[i] < int(m_triangles.size()));
+
+ select_triangle(tr->children[i], type, true);
+ tr = &m_triangles[facet_idx]; // might have been invalidated
+ }
+ }
+ }
+
+ if (! recursive_call) {
+ // In case that all children are leafs and have the same state now,
+ // they may be removed and substituted by the parent triangle.
+ remove_useless_children(facet_idx);
+
+ // Make sure that we did not lose track of invalid triangles.
+ assert(m_invalid_triangles == std::count_if(m_triangles.begin(), m_triangles.end(),
+ [](const Triangle& tr) { return ! tr.valid; }));
+
+ // Do garbage collection maybe?
+ if (2*m_invalid_triangles > int(m_triangles.size()))
+ garbage_collect();
+ }
+ return true;
+}
+
+
+
+void TriangleSelector::set_facet(int facet_idx, EnforcerBlockerType state)
+{
+ assert(facet_idx < m_orig_size_indices);
+ undivide_triangle(facet_idx);
+ assert(! m_triangles[facet_idx].is_split());
+ m_triangles[facet_idx].set_state(state);
+}
+
+void TriangleSelector::split_triangle(int facet_idx)
+{
+ if (m_triangles[facet_idx].is_split()) {
+ // The triangle is divided already.
+ return;
+ }
+
+ Triangle* tr = &m_triangles[facet_idx];
+
+ EnforcerBlockerType old_type = tr->get_state();
+
+ if (tr->was_split_before() != 0) {
+ // This triangle is not split at the moment, but was at one point
+ // in history. We can just restore it and resurrect its children.
+ tr->set_division(-1);
+ for (int i=0; i<=tr->number_of_split_sides(); ++i) {
+ m_triangles[tr->children[i]].set_state(old_type);
+ m_triangles[tr->children[i]].valid = true;
+ --m_invalid_triangles;
+ }
+ return;
+ }
+
+ // If we got here, we are about to actually split the triangle.
+ const double limit_squared = m_edge_limit_sqr;
+
+ std::array<int, 3>& facet = tr->verts_idxs;
+ std::array<const stl_vertex*, 3> pts = { &m_vertices[facet[0]].v,
+ &m_vertices[facet[1]].v,
+ &m_vertices[facet[2]].v};
+ std::array<stl_vertex, 3> pts_transformed; // must stay in scope of pts !!!
+
+ // In case the object is non-uniformly scaled, transform the
+ // points to world coords.
+ if (! m_cursor.uniform_scaling) {
+ for (size_t i=0; i<pts.size(); ++i) {
+ pts_transformed[i] = m_cursor.trafo * (*pts[i]);
+ pts[i] = &pts_transformed[i];
+ }
+ }
+
+ std::array<double, 3> sides;
+ sides = { (*pts[2]-*pts[1]).squaredNorm(),
+ (*pts[0]-*pts[2]).squaredNorm(),
+ (*pts[1]-*pts[0]).squaredNorm() };
+
+ std::vector<int> sides_to_split;
+ int side_to_keep = -1;
+ for (int pt_idx = 0; pt_idx<3; ++pt_idx) {
+ if (sides[pt_idx] > limit_squared)
+ sides_to_split.push_back(pt_idx);
+ else
+ side_to_keep = pt_idx;
+ }
+ if (sides_to_split.empty()) {
+ // This shall be unselected.
+ tr->set_division(0);
+ return;
+ }
+
+ // Save how the triangle will be split. Second argument makes sense only for one
+ // or two split sides, otherwise the value is ignored.
+ tr->set_division(sides_to_split.size(),
+ sides_to_split.size() == 2 ? side_to_keep : sides_to_split[0]);
+
+ perform_split(facet_idx, old_type);
+}
+
+
+
+// Is pointer in a triangle?
+bool TriangleSelector::is_pointer_in_triangle(int facet_idx) const
+{
+ const Vec3f& p1 = m_vertices[m_triangles[facet_idx].verts_idxs[0]].v;
+ const Vec3f& p2 = m_vertices[m_triangles[facet_idx].verts_idxs[1]].v;
+ const Vec3f& p3 = m_vertices[m_triangles[facet_idx].verts_idxs[2]].v;
+ return m_cursor.is_pointer_in_triangle(p1, p2, p3);
+}
+
+
+
+// Determine whether this facet is potentially visible (still can be obscured).
+bool TriangleSelector::faces_camera(int facet) const
+{
+ assert(facet < m_orig_size_indices);
+ // The normal is cached in mesh->stl, use it.
+ Vec3f normal = m_mesh->stl.facet_start[facet].normal;
+
+ if (! m_cursor.uniform_scaling) {
+ // Transform the normal into world coords.
+ normal = m_cursor.trafo_normal * normal;
+ }
+ return (normal.dot(m_cursor.dir) < 0.);
+}
+
+
+// How many vertices of a triangle are inside the circle?
+int TriangleSelector::vertices_inside(int facet_idx) const
+{
+ int inside = 0;
+ for (size_t i=0; i<3; ++i) {
+ if (m_cursor.is_mesh_point_inside(m_vertices[m_triangles[facet_idx].verts_idxs[i]].v))
+ ++inside;
+ }
+ return inside;
+}
+
+
+// Is edge inside cursor?
+bool TriangleSelector::is_edge_inside_cursor(int facet_idx) const
+{
+ std::array<Vec3f, 3> pts;
+ for (int i=0; i<3; ++i) {
+ pts[i] = m_vertices[m_triangles[facet_idx].verts_idxs[i]].v;
+ if (! m_cursor.uniform_scaling)
+ pts[i] = m_cursor.trafo * pts[i];
+ }
+
+ const Vec3f& p = m_cursor.center;
+
+ for (int side = 0; side < 3; ++side) {
+ const Vec3f& a = pts[side];
+ const Vec3f& b = pts[side<2 ? side+1 : 0];
+ Vec3f s = (b-a).normalized();
+ float t = (p-a).dot(s);
+ Vec3f vector = a+t*s - p;
+
+ // vector is 3D vector from center to the intersection. What we want to
+ // measure is length of its projection onto plane perpendicular to dir.
+ float dist_sqr = vector.squaredNorm() - std::pow(vector.dot(m_cursor.dir), 2.f);
+ if (dist_sqr < m_cursor.radius_sqr && t>=0.f && t<=(b-a).norm())
+ return true;
+ }
+ return false;
+}
+
+
+
+// Recursively remove all subtriangles.
+void TriangleSelector::undivide_triangle(int facet_idx)
+{
+ assert(facet_idx < int(m_triangles.size()));
+ Triangle& tr = m_triangles[facet_idx];
+
+ if (tr.is_split()) {
+ for (int i=0; i<=tr.number_of_split_sides(); ++i) {
+ undivide_triangle(tr.children[i]);
+ m_triangles[tr.children[i]].valid = false;
+ ++m_invalid_triangles;
+ }
+ tr.set_division(0); // not split
+ }
+}
+
+
+void TriangleSelector::remove_useless_children(int facet_idx)
+{
+ // Check that all children are leafs of the same type. If not, try to
+ // make them (recursive call). Remove them if sucessful.
+
+ assert(facet_idx < int(m_triangles.size()) && m_triangles[facet_idx].valid);
+ Triangle& tr = m_triangles[facet_idx];
+
+ if (! tr.is_split()) {
+ // This is a leaf, there nothing to do. This can happen during the
+ // first (non-recursive call). Shouldn't otherwise.
+ return;
+ }
+
+ // Call this for all non-leaf children.
+ for (int child_idx=0; child_idx<=tr.number_of_split_sides(); ++child_idx) {
+ assert(child_idx < int(m_triangles.size()) && m_triangles[child_idx].valid);
+ if (m_triangles[tr.children[child_idx]].is_split())
+ remove_useless_children(tr.children[child_idx]);
+ }
+
+
+ // Return if a child is not leaf or two children differ in type.
+ EnforcerBlockerType first_child_type = EnforcerBlockerType::NONE;
+ for (int child_idx=0; child_idx<=tr.number_of_split_sides(); ++child_idx) {
+ if (m_triangles[tr.children[child_idx]].is_split())
+ return;
+ if (child_idx == 0)
+ first_child_type = m_triangles[tr.children[0]].get_state();
+ else if (m_triangles[tr.children[child_idx]].get_state() != first_child_type)
+ return;
+ }
+
+ // If we got here, the children can be removed.
+ undivide_triangle(facet_idx);
+ tr.set_state(first_child_type);
+}
+
+
+
+void TriangleSelector::garbage_collect()
+{
+ // First make a map from old to new triangle indices.
+ int new_idx = m_orig_size_indices;
+ std::vector<int> new_triangle_indices(m_triangles.size(), -1);
+ for (int i = m_orig_size_indices; i<int(m_triangles.size()); ++i) {
+ if (m_triangles[i].valid) {
+ new_triangle_indices[i] = new_idx;
+ ++new_idx;
+ } else {
+ // Decrement reference counter for the vertices.
+ for (int j=0; j<3; ++j)
+ --m_vertices[m_triangles[i].verts_idxs[j]].ref_cnt;
+ }
+ }
+
+ // Now we know which vertices are not referenced anymore. Make a map
+ // from old idxs to new ones, like we did for triangles.
+ new_idx = m_orig_size_vertices;
+ std::vector<int> new_vertices_indices(m_vertices.size(), -1);
+ for (int i=m_orig_size_vertices; i<int(m_vertices.size()); ++i) {
+ assert(m_vertices[i].ref_cnt >= 0);
+ if (m_vertices[i].ref_cnt != 0) {
+ new_vertices_indices[i] = new_idx;
+ ++new_idx;
+ }
+ }
+
+ // We can remove all invalid triangles and vertices that are no longer referenced.
+ m_triangles.erase(std::remove_if(m_triangles.begin()+m_orig_size_indices, m_triangles.end(),
+ [](const Triangle& tr) { return ! tr.valid; }),
+ m_triangles.end());
+ m_vertices.erase(std::remove_if(m_vertices.begin()+m_orig_size_vertices, m_vertices.end(),
+ [](const Vertex& vert) { return vert.ref_cnt == 0; }),
+ m_vertices.end());
+
+ // Now go through all remaining triangles and update changed indices.
+ for (Triangle& tr : m_triangles) {
+ assert(tr.valid);
+
+ if (tr.is_split()) {
+ // There are children. Update their indices.
+ for (int j=0; j<=tr.number_of_split_sides(); ++j) {
+ assert(new_triangle_indices[tr.children[j]] != -1);
+ tr.children[j] = new_triangle_indices[tr.children[j]];
+ }
+ }
+
+ // Update indices into m_vertices. The original vertices are never
+ // touched and need not be reindexed.
+ for (int& idx : tr.verts_idxs) {
+ if (idx >= m_orig_size_vertices) {
+ assert(new_vertices_indices[idx] != -1);
+ idx = new_vertices_indices[idx];
+ }
+ }
+
+ // If this triangle was split before, forget it.
+ // Children referenced in the cache are dead by now.
+ tr.forget_history();
+ }
+
+ m_invalid_triangles = 0;
+}
+
+TriangleSelector::TriangleSelector(const TriangleMesh& mesh)
+ : m_mesh{&mesh}
+{
+ reset();
+}
+
+
+void TriangleSelector::reset()
+{
+ if (! m_orig_size_indices != 0) // unless this is run from constructor
+ garbage_collect();
+ m_vertices.clear();
+ m_triangles.clear();
+ for (const stl_vertex& vert : m_mesh->its.vertices)
+ m_vertices.emplace_back(vert);
+ for (const stl_triangle_vertex_indices& ind : m_mesh->its.indices)
+ push_triangle(ind[0], ind[1], ind[2]);
+ m_orig_size_vertices = m_vertices.size();
+ m_orig_size_indices = m_triangles.size();
+ m_invalid_triangles = 0;
+}
+
+
+
+
+
+void TriangleSelector::set_edge_limit(float edge_limit)
+{
+ float new_limit_sqr = std::pow(edge_limit, 2.f);
+
+ if (new_limit_sqr != m_edge_limit_sqr) {
+ m_edge_limit_sqr = new_limit_sqr;
+
+ // The way how triangles split may be different now, forget
+ // all cached splits.
+ garbage_collect();
+ }
+}
+
+
+
+void TriangleSelector::push_triangle(int a, int b, int c)
+{
+ for (int i : {a, b, c}) {
+ assert(i >= 0 && i < int(m_vertices.size()));
+ ++m_vertices[i].ref_cnt;
+ }
+ m_triangles.emplace_back(a, b, c);
+}
+
+
+void TriangleSelector::perform_split(int facet_idx, EnforcerBlockerType old_state)
+{
+ Triangle* tr = &m_triangles[facet_idx];
+
+ assert(tr->is_split());
+
+ // Read info about how to split this triangle.
+ int sides_to_split = tr->number_of_split_sides();
+
+ // indices of triangle vertices
+ std::vector<int> verts_idxs;
+ int idx = tr->special_side();
+ for (int j=0; j<3; ++j) {
+ verts_idxs.push_back(tr->verts_idxs[idx++]);
+ if (idx == 3)
+ idx = 0;
+ }
+
+ if (sides_to_split == 1) {
+ m_vertices.emplace_back((m_vertices[verts_idxs[1]].v + m_vertices[verts_idxs[2]].v)/2.);
+ verts_idxs.insert(verts_idxs.begin()+2, m_vertices.size() - 1);
+
+ push_triangle(verts_idxs[0], verts_idxs[1], verts_idxs[2]);
+ push_triangle(verts_idxs[2], verts_idxs[3], verts_idxs[0]);
+ }
+
+ if (sides_to_split == 2) {
+ m_vertices.emplace_back((m_vertices[verts_idxs[0]].v + m_vertices[verts_idxs[1]].v)/2.);
+ verts_idxs.insert(verts_idxs.begin()+1, m_vertices.size() - 1);
+
+ m_vertices.emplace_back((m_vertices[verts_idxs[0]].v + m_vertices[verts_idxs[3]].v)/2.);
+ verts_idxs.insert(verts_idxs.begin()+4, m_vertices.size() - 1);
+
+ push_triangle(verts_idxs[0], verts_idxs[1], verts_idxs[4]);
+ push_triangle(verts_idxs[1], verts_idxs[2], verts_idxs[4]);
+ push_triangle(verts_idxs[2], verts_idxs[3], verts_idxs[4]);
+ }
+
+ if (sides_to_split == 3) {
+ m_vertices.emplace_back((m_vertices[verts_idxs[0]].v + m_vertices[verts_idxs[1]].v)/2.);
+ verts_idxs.insert(verts_idxs.begin()+1, m_vertices.size() - 1);
+ m_vertices.emplace_back((m_vertices[verts_idxs[2]].v + m_vertices[verts_idxs[3]].v)/2.);
+ verts_idxs.insert(verts_idxs.begin()+3, m_vertices.size() - 1);
+ m_vertices.emplace_back((m_vertices[verts_idxs[4]].v + m_vertices[verts_idxs[0]].v)/2.);
+ verts_idxs.insert(verts_idxs.begin()+5, m_vertices.size() - 1);
+
+ push_triangle(verts_idxs[0], verts_idxs[1], verts_idxs[5]);
+ push_triangle(verts_idxs[1], verts_idxs[2], verts_idxs[3]);
+ push_triangle(verts_idxs[3], verts_idxs[4], verts_idxs[5]);
+ push_triangle(verts_idxs[1], verts_idxs[3], verts_idxs[5]);
+ }
+
+ tr = &m_triangles[facet_idx]; // may have been invalidated
+
+ // And save the children. All children should start in the same state as the triangle we just split.
+ assert(sides_to_split <= 3);
+ for (int i=0; i<=sides_to_split; ++i) {
+ tr->children[i] = m_triangles.size()-1-i;
+ m_triangles[tr->children[i]].set_state(old_state);
+ }
+}
+
+
+
+indexed_triangle_set TriangleSelector::get_facets(EnforcerBlockerType state) const
+{
+ indexed_triangle_set out;
+ for (const Triangle& tr : m_triangles) {
+ if (tr.valid && ! tr.is_split() && tr.get_state() == state) {
+ stl_triangle_vertex_indices indices;
+ for (int i=0; i<3; ++i) {
+ out.vertices.emplace_back(m_vertices[tr.verts_idxs[i]].v);
+ indices[i] = out.vertices.size() - 1;
+ }
+ out.indices.emplace_back(indices);
+ }
+ }
+ return out;
+}
+
+
+
+std::map<int, std::vector<bool>> TriangleSelector::serialize() const
+{
+ // Each original triangle of the mesh is assigned a number encoding its state
+ // or how it is split. Each triangle is encoded by 4 bits (xxyy):
+ // leaf triangle: xx = EnforcerBlockerType, yy = 0
+ // non-leaf: xx = special side, yy = number of split sides
+ // These are bitwise appended and formed into one 64-bit integer.
+
+ // The function returns a map from original triangle indices to
+ // stream of bits encoding state and offsprings.
+
+ std::map<int, std::vector<bool>> out;
+ for (int i=0; i<m_orig_size_indices; ++i) {
+ const Triangle& tr = m_triangles[i];
+
+ if (! tr.is_split() && tr.get_state() == EnforcerBlockerType::NONE)
+ continue; // no need to save anything, unsplit and unselected is default
+
+ std::vector<bool> data; // complete encoding of this mesh triangle
+ int stored_triangles = 0; // how many have been already encoded
+
+ std::function<void(int)> serialize_recursive;
+ serialize_recursive = [this, &serialize_recursive, &stored_triangles, &data](int facet_idx) {
+ const Triangle& tr = m_triangles[facet_idx];
+
+ // Always save number of split sides. It is zero for unsplit triangles.
+ int split_sides = tr.number_of_split_sides();
+ assert(split_sides >= 0 && split_sides <= 3);
+
+ //data |= (split_sides << (stored_triangles * 4));
+ data.push_back(split_sides & 0b01);
+ data.push_back(split_sides & 0b10);
+
+ if (tr.is_split()) {
+ // If this triangle is split, save which side is split (in case
+ // of one split) or kept (in case of two splits). The value will
+ // be ignored for 3-side split.
+ assert(split_sides > 0);
+ assert(tr.special_side() >= 0 && tr.special_side() <= 3);
+ data.push_back(tr.special_side() & 0b01);
+ data.push_back(tr.special_side() & 0b10);
+ ++stored_triangles;
+ // Now save all children.
+ for (int child_idx=0; child_idx<=split_sides; ++child_idx)
+ serialize_recursive(tr.children[child_idx]);
+ } else {
+ // In case this is leaf, we better save information about its state.
+ assert(int(tr.get_state()) <= 3);
+ data.push_back(int(tr.get_state()) & 0b01);
+ data.push_back(int(tr.get_state()) & 0b10);
+ ++stored_triangles;
+ }
+ };
+
+ serialize_recursive(i);
+ out[i] = data;
+ }
+
+ return out;
+}
+
+void TriangleSelector::deserialize(const std::map<int, std::vector<bool>> data)
+{
+ reset(); // dump any current state
+ for (const auto& [triangle_id, code] : data) {
+ assert(triangle_id < int(m_triangles.size()));
+ assert(! code.empty());
+ int processed_triangles = 0;
+ struct ProcessingInfo {
+ int facet_id = 0;
+ int processed_children = 0;
+ int total_children = 0;
+ };
+
+ // Vector to store all parents that have offsprings.
+ std::vector<ProcessingInfo> parents;
+
+ while (true) {
+ // Read next triangle info.
+ int next_code = 0;
+ for (int i=3; i>=0; --i) {
+ next_code = next_code << 1;
+ next_code |= int(code[4 * processed_triangles + i]);
+ }
+ ++processed_triangles;
+
+ int num_of_split_sides = (next_code & 0b11);
+ int num_of_children = num_of_split_sides != 0 ? num_of_split_sides + 1 : 0;
+ bool is_split = num_of_children != 0;
+ EnforcerBlockerType state = EnforcerBlockerType(next_code >> 2);
+ int special_side = (next_code >> 2);
+
+ // Take care of the first iteration separately, so handling of the others is simpler.
+ if (parents.empty()) {
+ if (! is_split) {
+ // root is not split. just set the state and that's it.
+ m_triangles[triangle_id].set_state(state);
+ break;
+ } else {
+ // root is split, add it into list of parents and split it.
+ // then go to the next.
+ parents.push_back({triangle_id, 0, num_of_children});
+ m_triangles[triangle_id].set_division(num_of_children-1, special_side);
+ perform_split(triangle_id, EnforcerBlockerType::NONE);
+ continue;
+ }
+ }
+
+ // This is not the first iteration. This triangle is a child of last seen parent.
+ assert(! parents.empty());
+ assert(parents.back().processed_children < parents.back().total_children);
+
+ if (is_split) {
+ // split the triangle and save it as parent of the next ones.
+ const ProcessingInfo& last = parents.back();
+ int this_idx = m_triangles[last.facet_id].children[last.processed_children];
+ m_triangles[this_idx].set_division(num_of_children-1, special_side);
+ perform_split(this_idx, EnforcerBlockerType::NONE);
+ parents.push_back({this_idx, 0, num_of_children});
+ } else {
+ // this triangle belongs to last split one
+ m_triangles[m_triangles[parents.back().facet_id].children[parents.back().processed_children]].set_state(state);
+ ++parents.back().processed_children;
+ }
+
+
+ // If all children of the past parent triangle are claimed, move to grandparent.
+ while (parents.back().processed_children == parents.back().total_children) {
+ parents.pop_back();
+
+ if (parents.empty())
+ break;
+
+ // And increment the grandparent children counter, because
+ // we have just finished that branch and got back here.
+ ++parents.back().processed_children;
+ }
+
+ // In case we popped back the root, we should be done.
+ if (parents.empty())
+ break;
+ }
+
+ }
+}
+
+
+TriangleSelector::Cursor::Cursor(
+ const Vec3f& center_, const Vec3f& source_, float radius_world,
+ CursorType type_, const Transform3d& trafo_)
+ : center{center_},
+ source{source_},
+ type{type_},
+ trafo{trafo_.cast<float>()}
+{
+ Vec3d sf = Geometry::Transformation(trafo_).get_scaling_factor();
+ if (is_approx(sf(0), sf(1)) && is_approx(sf(1), sf(2))) {
+ radius_sqr = std::pow(radius_world / sf(0), 2);
+ uniform_scaling = true;
+ }
+ else {
+ // In case that the transformation is non-uniform, all checks whether
+ // something is inside the cursor should be done in world coords.
+ // First transform center, source and dir in world coords and remember
+ // that we did this.
+ center = trafo * center;
+ source = trafo * source;
+ uniform_scaling = false;
+ radius_sqr = radius_world * radius_world;
+ trafo_normal = trafo.linear().inverse().transpose();
+ }
+
+ // Calculate dir, in whatever coords is appropriate.
+ dir = (center - source).normalized();
+}
+
+
+// Is a point (in mesh coords) inside a cursor?
+bool TriangleSelector::Cursor::is_mesh_point_inside(Vec3f point) const
+{
+ if (! uniform_scaling)
+ point = trafo * point;
+
+ Vec3f diff = center - point;
+
+ if (type == CIRCLE)
+ return (diff - diff.dot(dir) * dir).squaredNorm() < radius_sqr;
+ else // SPHERE
+ return diff.squaredNorm() < radius_sqr;
+}
+
+
+
+// p1, p2, p3 are in mesh coords!
+bool TriangleSelector::Cursor::is_pointer_in_triangle(const Vec3f& p1_,
+ const Vec3f& p2_,
+ const Vec3f& p3_) const
+{
+ const Vec3f& q1 = center + dir;
+ const Vec3f& q2 = center - dir;
+
+ auto signed_volume_sign = [](const Vec3f& a, const Vec3f& b,
+ const Vec3f& c, const Vec3f& d) -> bool {
+ return ((b-a).cross(c-a)).dot(d-a) > 0.;
+ };
+
+ // In case the object is non-uniformly scaled, do the check in world coords.
+ const Vec3f& p1 = uniform_scaling ? p1_ : Vec3f(trafo * p1_);
+ const Vec3f& p2 = uniform_scaling ? p2_ : Vec3f(trafo * p2_);
+ const Vec3f& p3 = uniform_scaling ? p3_ : Vec3f(trafo * p3_);
+
+ if (signed_volume_sign(q1,p1,p2,p3) != signed_volume_sign(q2,p1,p2,p3)) {
+ bool pos = signed_volume_sign(q1,q2,p1,p2);
+ if (signed_volume_sign(q1,q2,p2,p3) == pos && signed_volume_sign(q1,q2,p3,p1) == pos)
+ return true;
+ }
+ return false;
+}
+
+
+
+
+} // namespace Slic3r