Welcome to mirror list, hosted at ThFree Co, Russian Federation.

Fill.cpp « Fill « libslic3r « src - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: cef9f42d4a4fbf6c1f23c056a1ae6dbac879bd1f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
#include <assert.h>
#include <stdio.h>
#include <memory>

#include "../ClipperUtils.hpp"
#include "../Geometry.hpp"
#include "../Layer.hpp"
#include "../Print.hpp"
#include "../PrintConfig.hpp"
#include "../Surface.hpp"

#include "FillBase.hpp"
#include "FillRectilinear.hpp"

namespace Slic3r {

struct SurfaceFillParams
{
	// Zero based extruder ID.
    unsigned int 	extruder = 0;
	// Infill pattern, adjusted for the density etc.
    InfillPattern  	pattern = InfillPattern(0);

    // FillBase
    // in unscaled coordinates
    coordf_t    	spacing = 0.;
    // infill / perimeter overlap, in unscaled coordinates
//    coordf_t    	overlap = 0.;
    // Angle as provided by the region config, in radians.
    float       	angle = 0.f;
    // Is bridging used for this fill? Bridging parameters may be used even if this->flow.bridge() is not set.
    bool 			bridge;
    // Non-negative for a bridge.
    float 			bridge_angle = 0.f;

    // FillParams
    float       	density = 0.f;
    // Don't adjust spacing to fill the space evenly.
//    bool        	dont_adjust = false;
    // Length of the infill anchor along the perimeter line.
    // 1000mm is roughly the maximum length line that fits into a 32bit coord_t.
    float 			anchor_length     = 1000.f;
    float 			anchor_length_max = 1000.f;

    // width, height of extrusion, nozzle diameter, is bridge
    // For the output, for fill generator.
    Flow 			flow;

	// For the output
    ExtrusionRole	extrusion_role = ExtrusionRole(0);

	// Various print settings?

	// Index of this entry in a linear vector.
    size_t 			idx = 0;


	bool operator<(const SurfaceFillParams &rhs) const {
#define RETURN_COMPARE_NON_EQUAL(KEY) if (this->KEY < rhs.KEY) return true; if (this->KEY > rhs.KEY) return false;
#define RETURN_COMPARE_NON_EQUAL_TYPED(TYPE, KEY) if (TYPE(this->KEY) < TYPE(rhs.KEY)) return true; if (TYPE(this->KEY) > TYPE(rhs.KEY)) return false;

		// Sort first by decreasing bridging angle, so that the bridges are processed with priority when trimming one layer by the other.
		if (this->bridge_angle > rhs.bridge_angle) return true; 
		if (this->bridge_angle < rhs.bridge_angle) return false;

		RETURN_COMPARE_NON_EQUAL(extruder);
		RETURN_COMPARE_NON_EQUAL_TYPED(unsigned, pattern);
		RETURN_COMPARE_NON_EQUAL(spacing);
//		RETURN_COMPARE_NON_EQUAL(overlap);
		RETURN_COMPARE_NON_EQUAL(angle);
		RETURN_COMPARE_NON_EQUAL(density);
//		RETURN_COMPARE_NON_EQUAL_TYPED(unsigned, dont_adjust);
		RETURN_COMPARE_NON_EQUAL(anchor_length);
		RETURN_COMPARE_NON_EQUAL(anchor_length_max);
		RETURN_COMPARE_NON_EQUAL(flow.width());
		RETURN_COMPARE_NON_EQUAL(flow.height());
		RETURN_COMPARE_NON_EQUAL(flow.nozzle_diameter());
		RETURN_COMPARE_NON_EQUAL_TYPED(unsigned, bridge);
		RETURN_COMPARE_NON_EQUAL_TYPED(unsigned, extrusion_role);
		return false;
	}

	bool operator==(const SurfaceFillParams &rhs) const {
		return  this->extruder 			== rhs.extruder 		&&
				this->pattern 			== rhs.pattern 			&&
				this->spacing 			== rhs.spacing 			&&
//				this->overlap 			== rhs.overlap 			&&
				this->angle   			== rhs.angle   			&&
				this->bridge   			== rhs.bridge   		&&
//				this->bridge_angle 		== rhs.bridge_angle		&&
				this->density   		== rhs.density   		&&
//				this->dont_adjust   	== rhs.dont_adjust 		&&
				this->anchor_length  	== rhs.anchor_length    &&
				this->anchor_length_max == rhs.anchor_length_max &&
				this->flow 				== rhs.flow 			&&
				this->extrusion_role	== rhs.extrusion_role;
	}
};

struct SurfaceFill {
	SurfaceFill(const SurfaceFillParams& params) : region_id(size_t(-1)), surface(stCount, ExPolygon()), params(params) {}

	size_t 				region_id;
	Surface 			surface;
	ExPolygons       	expolygons;
	SurfaceFillParams	params;
};

std::vector<SurfaceFill> group_fills(const Layer &layer)
{
	std::vector<SurfaceFill> surface_fills;

	// Fill in a map of a region & surface to SurfaceFillParams.
	std::set<SurfaceFillParams> 						set_surface_params;
	std::vector<std::vector<const SurfaceFillParams*>> 	region_to_surface_params(layer.regions().size(), std::vector<const SurfaceFillParams*>());
    SurfaceFillParams									params;
    bool 												has_internal_voids = false;
	for (size_t region_id = 0; region_id < layer.regions().size(); ++ region_id) {
		const LayerRegion  &layerm = *layer.regions()[region_id];
		region_to_surface_params[region_id].assign(layerm.fill_surfaces.size(), nullptr);
	    for (const Surface &surface : layerm.fill_surfaces.surfaces)
	        if (surface.surface_type == stInternalVoid)
	        	has_internal_voids = true;
	        else {
		        const PrintRegionConfig &region_config = layerm.region().config();
		        FlowRole extrusion_role = surface.is_top() ? frTopSolidInfill : (surface.is_solid() ? frSolidInfill : frInfill);
		        bool     is_bridge 	    = layer.id() > 0 && surface.is_bridge();
		        params.extruder 	 = layerm.region().extruder(extrusion_role);
		        params.pattern 		 = region_config.fill_pattern.value;
		        params.density       = float(region_config.fill_density);

		        if (surface.is_solid()) {
		            params.density = 100.f;
					//FIXME for non-thick bridges, shall we allow a bottom surface pattern?
		            params.pattern = (surface.is_external() && ! is_bridge) ? 
						(surface.is_top() ? region_config.top_fill_pattern.value : region_config.bottom_fill_pattern.value) :
		                region_config.top_fill_pattern == ipMonotonic ? ipMonotonic : ipRectilinear;
		        } else if (params.density <= 0)
		            continue;

		        params.extrusion_role =
		            is_bridge ?
		                erBridgeInfill :
		                (surface.is_solid() ?
		                    (surface.is_top() ? erTopSolidInfill : erSolidInfill) :
		                    erInternalInfill);
		        params.bridge_angle = float(surface.bridge_angle);
		        params.angle 		= float(Geometry::deg2rad(region_config.fill_angle.value));
		        
		        // Calculate the actual flow we'll be using for this infill.
		        params.bridge = is_bridge || Fill::use_bridge_flow(params.pattern);
				params.flow   = params.bridge ?
					layerm.bridging_flow(extrusion_role) :
					layerm.flow(extrusion_role, (surface.thickness == -1) ? layer.height : surface.thickness);

				// Calculate flow spacing for infill pattern generation.
		        if (surface.is_solid() || is_bridge) {
		            params.spacing = params.flow.spacing();
		            // Don't limit anchor length for solid or bridging infill.
		            params.anchor_length = 1000.f;
					params.anchor_length_max = 1000.f;
		        } else {
					// Internal infill. Calculating infill line spacing independent of the current layer height and 1st layer status,
					// so that internall infill will be aligned over all layers of the current region.
		            params.spacing = layerm.region().flow(*layer.object(), frInfill, layer.object()->config().layer_height, false).spacing();
		            // Anchor a sparse infill to inner perimeters with the following anchor length:
			        params.anchor_length = float(region_config.infill_anchor);
					if (region_config.infill_anchor.percent)
						params.anchor_length = float(params.anchor_length * 0.01 * params.spacing);
					params.anchor_length_max = float(region_config.infill_anchor_max);
					if (region_config.infill_anchor_max.percent)
						params.anchor_length_max = float(params.anchor_length_max * 0.01 * params.spacing);
					params.anchor_length = std::min(params.anchor_length, params.anchor_length_max);
				}

		        auto it_params = set_surface_params.find(params);
		        if (it_params == set_surface_params.end())
		        	it_params = set_surface_params.insert(it_params, params);
		        region_to_surface_params[region_id][&surface - &layerm.fill_surfaces.surfaces.front()] = &(*it_params);
		    }
	}

	surface_fills.reserve(set_surface_params.size());
	for (const SurfaceFillParams &params : set_surface_params) {
		const_cast<SurfaceFillParams&>(params).idx = surface_fills.size();
		surface_fills.emplace_back(params);
	}

	for (size_t region_id = 0; region_id < layer.regions().size(); ++ region_id) {
		const LayerRegion &layerm = *layer.regions()[region_id];
	    for (const Surface &surface : layerm.fill_surfaces.surfaces)
	        if (surface.surface_type != stInternalVoid) {
	        	const SurfaceFillParams *params = region_to_surface_params[region_id][&surface - &layerm.fill_surfaces.surfaces.front()];
				if (params != nullptr) {
	        		SurfaceFill &fill = surface_fills[params->idx];
                    if (fill.region_id == size_t(-1)) {
	        			fill.region_id = region_id;
	        			fill.surface = surface;
	        			fill.expolygons.emplace_back(std::move(fill.surface.expolygon));
	        		} else
	        			fill.expolygons.emplace_back(surface.expolygon);
				}
	        }
	}

	{
		Polygons all_polygons;
		for (SurfaceFill &fill : surface_fills)
			if (! fill.expolygons.empty()) {
				if (fill.expolygons.size() > 1 || ! all_polygons.empty()) {
					Polygons polys = to_polygons(std::move(fill.expolygons));
		            // Make a union of polygons, use a safety offset, subtract the preceding polygons.
				    // Bridges are processed first (see SurfaceFill::operator<())
		            fill.expolygons = all_polygons.empty() ? union_safety_offset_ex(polys) : diff_ex(polys, all_polygons, ApplySafetyOffset::Yes);
					append(all_polygons, std::move(polys));
				} else if (&fill != &surface_fills.back())
					append(all_polygons, to_polygons(fill.expolygons));
	        }
	}

    // we need to detect any narrow surfaces that might collapse
    // when adding spacing below
    // such narrow surfaces are often generated in sloping walls
    // by bridge_over_infill() and combine_infill() as a result of the
    // subtraction of the combinable area from the layer infill area,
    // which leaves small areas near the perimeters
    // we are going to grow such regions by overlapping them with the void (if any)
    // TODO: detect and investigate whether there could be narrow regions without
    // any void neighbors
    if (has_internal_voids) {
    	// Internal voids are generated only if "infill_only_where_needed" or "infill_every_layers" are active.
        coord_t  distance_between_surfaces = 0;
        Polygons surfaces_polygons;
        Polygons voids;
		int      region_internal_infill = -1;
		int		 region_solid_infill = -1;
		int		 region_some_infill = -1;
    	for (SurfaceFill &surface_fill : surface_fills)
			if (! surface_fill.expolygons.empty()) {
    			distance_between_surfaces = std::max(distance_between_surfaces, surface_fill.params.flow.scaled_spacing());
				append((surface_fill.surface.surface_type == stInternalVoid) ? voids : surfaces_polygons, to_polygons(surface_fill.expolygons));
				if (surface_fill.surface.surface_type == stInternalSolid)
					region_internal_infill = (int)surface_fill.region_id;
				if (surface_fill.surface.is_solid())
					region_solid_infill = (int)surface_fill.region_id;
				if (surface_fill.surface.surface_type != stInternalVoid)
					region_some_infill = (int)surface_fill.region_id;
			}
    	if (! voids.empty() && ! surfaces_polygons.empty()) {
    		// First clip voids by the printing polygons, as the voids were ignored by the loop above during mutual clipping.
    		voids = diff(voids, surfaces_polygons);
	        // Corners of infill regions, which would not be filled with an extrusion path with a radius of distance_between_surfaces/2
	        Polygons collapsed = diff(
	            surfaces_polygons,
				opening(surfaces_polygons, float(distance_between_surfaces /2), float(distance_between_surfaces / 2 + ClipperSafetyOffset)));
	        //FIXME why the voids are added to collapsed here? First it is expensive, second the result may lead to some unwanted regions being
	        // added if two offsetted void regions merge.
	        // polygons_append(voids, collapsed);
	        ExPolygons extensions = intersection_ex(expand(collapsed, float(distance_between_surfaces)), voids, ApplySafetyOffset::Yes);
	        // Now find an internal infill SurfaceFill to add these extrusions to.
	        SurfaceFill *internal_solid_fill = nullptr;
			unsigned int region_id = 0;
			if (region_internal_infill != -1)
				region_id = region_internal_infill;
			else if (region_solid_infill != -1)
				region_id = region_solid_infill;
			else if (region_some_infill != -1)
				region_id = region_some_infill;
			const LayerRegion& layerm = *layer.regions()[region_id];
	        for (SurfaceFill &surface_fill : surface_fills)
	        	if (surface_fill.surface.surface_type == stInternalSolid && std::abs(layer.height - surface_fill.params.flow.height()) < EPSILON) {
	        		internal_solid_fill = &surface_fill;
	        		break;
	        	}
	        if (internal_solid_fill == nullptr) {
	        	// Produce another solid fill.
<<<<<<< HEAD
		        params.extruder 	 = layerm.region()->extruder(frSolidInfill);
	            params.pattern 		 = layerm.region()->config().top_fill_pattern == ipMonotonic ? ipMonotonic : ipRectilinear;
=======
		        params.extruder 	 = layerm.region().extruder(frSolidInfill);
	            params.pattern 		 = layerm.region().config().top_fill_pattern == ipMonotonic ? ipMonotonic : ipRectilinear;
>>>>>>> master
	            params.density 		 = 100.f;
		        params.extrusion_role = erInternalInfill;
		        params.angle 		= float(Geometry::deg2rad(layerm.region().config().fill_angle.value));
		        // calculate the actual flow we'll be using for this infill
				params.flow = layerm.flow(frSolidInfill);
		        params.spacing = params.flow.spacing();	        
				surface_fills.emplace_back(params);
				surface_fills.back().surface.surface_type = stInternalSolid;
				surface_fills.back().surface.thickness = layer.height;
				surface_fills.back().expolygons = std::move(extensions);
	        } else {
	        	append(extensions, std::move(internal_solid_fill->expolygons));
	        	internal_solid_fill->expolygons = union_ex(extensions);
	        }
		}
    }

	return surface_fills;
}

#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
void export_group_fills_to_svg(const char *path, const std::vector<SurfaceFill> &fills)
{
    BoundingBox bbox;
    for (const auto &fill : fills)
        for (const auto &expoly : fill.expolygons)
            bbox.merge(get_extents(expoly));
    Point legend_size = export_surface_type_legend_to_svg_box_size();
    Point legend_pos(bbox.min(0), bbox.max(1));
    bbox.merge(Point(std::max(bbox.min(0) + legend_size(0), bbox.max(0)), bbox.max(1) + legend_size(1)));

    SVG svg(path, bbox);
    const float transparency = 0.5f;
    for (const auto &fill : fills)
        for (const auto &expoly : fill.expolygons)
            svg.draw(expoly, surface_type_to_color_name(fill.surface.surface_type), transparency);
    export_surface_type_legend_to_svg(svg, legend_pos);
    svg.Close(); 
}
#endif

// friend to Layer
void Layer::make_fills(FillAdaptive::Octree* adaptive_fill_octree, FillAdaptive::Octree* support_fill_octree)
{
	for (LayerRegion *layerm : m_regions)
		layerm->fills.clear();


#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
//	this->export_region_fill_surfaces_to_svg_debug("10_fill-initial");
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */

	std::vector<SurfaceFill>  surface_fills = group_fills(*this);
	const Slic3r::BoundingBox bbox 			= this->object()->bounding_box();
	const auto                resolution 	= this->object()->print()->config().gcode_resolution.value;

#ifdef SLIC3R_DEBUG_SLICE_PROCESSING
	{
		static int iRun = 0;
		export_group_fills_to_svg(debug_out_path("Layer-fill_surfaces-10_fill-final-%d.svg", iRun ++).c_str(), surface_fills);
	}
#endif /* SLIC3R_DEBUG_SLICE_PROCESSING */

    for (SurfaceFill &surface_fill : surface_fills) {
        // Create the filler object.
        std::unique_ptr<Fill> f = std::unique_ptr<Fill>(Fill::new_from_type(surface_fill.params.pattern));
        f->set_bounding_box(bbox);
        f->layer_id = this->id();
        f->z 		= this->print_z;
        f->angle 	= surface_fill.params.angle;
        f->adapt_fill_octree = (surface_fill.params.pattern == ipSupportCubic) ? support_fill_octree : adaptive_fill_octree;

        // calculate flow spacing for infill pattern generation
        bool using_internal_flow = ! surface_fill.surface.is_solid() && ! surface_fill.params.bridge;
        double link_max_length = 0.;
        if (! surface_fill.params.bridge) {
#if 0
            link_max_length = layerm.region()->config().get_abs_value(surface.is_external() ? "external_fill_link_max_length" : "fill_link_max_length", flow.spacing());
//            printf("flow spacing: %f,  is_external: %d, link_max_length: %lf\n", flow.spacing(), int(surface.is_external()), link_max_length);
#else
            if (surface_fill.params.density > 80.) // 80%
                link_max_length = 3. * f->spacing;
#endif
        }

        // Maximum length of the perimeter segment linking two infill lines.
        f->link_max_length = (coord_t)scale_(link_max_length);
        // Used by the concentric infill pattern to clip the loops to create extrusion paths.
        f->loop_clipping = coord_t(scale_(surface_fill.params.flow.nozzle_diameter()) * LOOP_CLIPPING_LENGTH_OVER_NOZZLE_DIAMETER);

        // apply half spacing using this flow's own spacing and generate infill
        FillParams params;
        params.density 		     = float(0.01 * surface_fill.params.density);
		params.dont_adjust		 = false; //  surface_fill.params.dont_adjust;
        params.anchor_length     = surface_fill.params.anchor_length;
		params.anchor_length_max = surface_fill.params.anchor_length_max;
		params.resolution        = resolution;

        for (ExPolygon &expoly : surface_fill.expolygons) {
			// Spacing is modified by the filler to indicate adjustments. Reset it for each expolygon.
			f->spacing = surface_fill.params.spacing;
			surface_fill.surface.expolygon = std::move(expoly);
			Polylines polylines;
			try {
				polylines = f->fill_surface(&surface_fill.surface, params);
			} catch (InfillFailedException &) {
			}
	        if (! polylines.empty()) {
		        // calculate actual flow from spacing (which might have been adjusted by the infill
		        // pattern generator)
		        double flow_mm3_per_mm = surface_fill.params.flow.mm3_per_mm();
		        double flow_width      = surface_fill.params.flow.width();
		        if (using_internal_flow) {
		            // if we used the internal flow we're not doing a solid infill
		            // so we can safely ignore the slight variation that might have
		            // been applied to f->spacing
		        } else {
		            Flow new_flow   = surface_fill.params.flow.with_spacing(float(f->spacing));
		        	flow_mm3_per_mm = new_flow.mm3_per_mm();
		        	flow_width      = new_flow.width();
		        }
		        // Save into layer.
				ExtrusionEntityCollection* eec = nullptr;
		        m_regions[surface_fill.region_id]->fills.entities.push_back(eec = new ExtrusionEntityCollection());
		        // Only concentric fills are not sorted.
		        eec->no_sort = f->no_sort();
		        extrusion_entities_append_paths(
		            eec->entities, std::move(polylines),
		            surface_fill.params.extrusion_role,
		            flow_mm3_per_mm, float(flow_width), surface_fill.params.flow.height());
		    }
		}
    }

    // add thin fill regions
    // Unpacks the collection, creates multiple collections per path.
    // The path type could be ExtrusionPath, ExtrusionLoop or ExtrusionEntityCollection.
    // Why the paths are unpacked?
	for (LayerRegion *layerm : m_regions)
	    for (const ExtrusionEntity *thin_fill : layerm->thin_fills.entities) {
	        ExtrusionEntityCollection &collection = *(new ExtrusionEntityCollection());
	        layerm->fills.entities.push_back(&collection);
	        collection.entities.push_back(thin_fill->clone());
	    }

#ifndef NDEBUG
	for (LayerRegion *layerm : m_regions)
	    for (size_t i = 0; i < layerm->fills.entities.size(); ++ i)
    	    assert(dynamic_cast<ExtrusionEntityCollection*>(layerm->fills.entities[i]) != nullptr);
#endif
}

// Create ironing extrusions over top surfaces.
void Layer::make_ironing()
{
	// LayerRegion::slices contains surfaces marked with SurfaceType.
	// Here we want to collect top surfaces extruded with the same extruder.
	// A surface will be ironed with the same extruder to not contaminate the print with another material leaking from the nozzle.

	// First classify regions based on the extruder used.
	struct IroningParams {
		int 		extruder 	= -1;
		bool 		just_infill = false;
		// Spacing of the ironing lines, also to calculate the extrusion flow from.
		double 		line_spacing;
		// Height of the extrusion, to calculate the extrusion flow from.
		double 		height;
		double 		speed;
		double 		angle;

		bool operator<(const IroningParams &rhs) const {
			if (this->extruder < rhs.extruder)
				return true;
			if (this->extruder > rhs.extruder)
				return false;
			if (int(this->just_infill) < int(rhs.just_infill))
				return true;
			if (int(this->just_infill) > int(rhs.just_infill))
				return false;
			if (this->line_spacing < rhs.line_spacing)
				return true;
			if (this->line_spacing > rhs.line_spacing)
				return false;
			if (this->height < rhs.height)
				return true;
			if (this->height > rhs.height)
				return false;
			if (this->speed < rhs.speed)
				return true;
			if (this->speed > rhs.speed)
				return false;
			if (this->angle < rhs.angle)
				return true;
			if (this->angle > rhs.angle)
				return false;
			return false;
		}

		bool operator==(const IroningParams &rhs) const {
			return this->extruder == rhs.extruder && this->just_infill == rhs.just_infill &&
				   this->line_spacing == rhs.line_spacing && this->height == rhs.height && this->speed == rhs.speed &&
				   this->angle == rhs.angle;
		}

		LayerRegion *layerm		= nullptr;

		// IdeaMaker: ironing
		// ironing flowrate (5% percent)
		// ironing speed (10 mm/sec)

		// Kisslicer: 
		// iron off, Sweep, Group
		// ironing speed: 15 mm/sec

		// Cura:
		// Pattern (zig-zag / concentric)
		// line spacing (0.1mm)
		// flow: from normal layer height. 10%
		// speed: 20 mm/sec
	};

	std::vector<IroningParams> by_extruder;
    double default_layer_height = this->object()->config().layer_height;

	for (LayerRegion *layerm : m_regions)
		if (! layerm->slices.empty()) {
			IroningParams ironing_params;
			const PrintRegionConfig &config = layerm->region().config();
			if (config.ironing && 
				(config.ironing_type == IroningType::AllSolid ||
				 	(config.top_solid_layers > 0 && 
						(config.ironing_type == IroningType::TopSurfaces ||
					 	(config.ironing_type == IroningType::TopmostOnly && layerm->layer()->upper_layer == nullptr))))) {
				if (config.perimeter_extruder == config.solid_infill_extruder || config.perimeters == 0) {
					// Iron the whole face.
					ironing_params.extruder = config.solid_infill_extruder;
				} else {
					// Iron just the infill.
					ironing_params.extruder = config.solid_infill_extruder;
				}
			}
			if (ironing_params.extruder != -1) {
				//TODO just_infill is currently not used.
				ironing_params.just_infill 	= false;
				ironing_params.line_spacing = config.ironing_spacing;
				ironing_params.height 		= default_layer_height * 0.01 * config.ironing_flowrate;
				ironing_params.speed 		= config.ironing_speed;
				ironing_params.angle 		= config.fill_angle * M_PI / 180.;
				ironing_params.layerm 		= layerm;
				by_extruder.emplace_back(ironing_params);
			}
		}
	std::sort(by_extruder.begin(), by_extruder.end());

    FillRectilinear 	fill;
    FillParams 			fill_params;
	fill.set_bounding_box(this->object()->bounding_box());
	fill.layer_id 			 = this->id();
    fill.z 					 = this->print_z;
    fill.overlap 			 = 0;
    fill_params.density 	 = 1.;
    fill_params.monotonic    = true;

	for (size_t i = 0; i < by_extruder.size();) {
		// Find span of regions equivalent to the ironing operation.
		IroningParams &ironing_params = by_extruder[i];
		size_t j = i;
		for (++ j; j < by_extruder.size() && ironing_params == by_extruder[j]; ++ j) ;

		// Create the ironing extrusions for regions <i, j)
		ExPolygons ironing_areas;
		double nozzle_dmr = this->object()->print()->config().nozzle_diameter.values[ironing_params.extruder - 1];
		if (ironing_params.just_infill) {
			//TODO just_infill is currently not used.
			// Just infill.
		} else {
			// Infill and perimeter.
			// Merge top surfaces with the same ironing parameters.
			Polygons polys;
			Polygons infills;
			for (size_t k = i; k < j; ++ k) {
				const IroningParams		 &ironing_params  = by_extruder[k];
				const PrintRegionConfig  &region_config   = ironing_params.layerm->region().config();
				bool					  iron_everything = region_config.ironing_type == IroningType::AllSolid;
				bool					  iron_completely = iron_everything;
				if (iron_everything) {
					// Check whether there is any non-solid hole in the regions.
					bool internal_infill_solid = region_config.fill_density.value > 95.;
					for (const Surface &surface : ironing_params.layerm->fill_surfaces.surfaces)
						if ((! internal_infill_solid && surface.surface_type == stInternal) || surface.surface_type == stInternalBridge || surface.surface_type == stInternalVoid) {
							// Some fill region is not quite solid. Don't iron over the whole surface.
							iron_completely = false;
							break;
						}
				}
				if (iron_completely) {
					// Iron everything. This is likely only good for solid transparent objects.
					for (const Surface &surface : ironing_params.layerm->slices.surfaces)
						polygons_append(polys, surface.expolygon);
				} else {
					for (const Surface &surface : ironing_params.layerm->slices.surfaces)
						if (surface.surface_type == stTop || (iron_everything && surface.surface_type == stBottom))
							// stBottomBridge is not being ironed on purpose, as it would likely destroy the bridges.
							polygons_append(polys, surface.expolygon);
				}
				if (iron_everything && ! iron_completely) {
					// Add solid fill surfaces. This may not be ideal, as one will not iron perimeters touching these
					// solid fill surfaces, but it is likely better than nothing.
					for (const Surface &surface : ironing_params.layerm->fill_surfaces.surfaces)
						if (surface.surface_type == stInternalSolid)
							polygons_append(infills, surface.expolygon);
				}
			}

			if (! infills.empty() || j > i + 1) {
				// Ironing over more than a single region or over solid internal infill.
				if (! infills.empty())
					// For IroningType::AllSolid only:
					// Add solid infill areas for layers, that contain some non-ironable infil (sparse infill, bridge infill).
					append(polys, std::move(infills));
				polys = union_safety_offset(polys);
			}
			// Trim the top surfaces with half the nozzle diameter.
			ironing_areas = intersection_ex(polys, offset(this->lslices, - float(scale_(0.5 * nozzle_dmr))));
		}

        // Create the filler object.
        fill.spacing = ironing_params.line_spacing;
        fill.angle = float(ironing_params.angle + 0.25 * M_PI);
        fill.link_max_length = (coord_t)scale_(3. * fill.spacing);
		double extrusion_height = ironing_params.height * fill.spacing / nozzle_dmr;
		float  extrusion_width  = Flow::rounded_rectangle_extrusion_width_from_spacing(float(nozzle_dmr), float(extrusion_height));
		double flow_mm3_per_mm = nozzle_dmr * extrusion_height;
        Surface surface_fill(stTop, ExPolygon());
        for (ExPolygon &expoly : ironing_areas) {
			surface_fill.expolygon = std::move(expoly);
			Polylines polylines;
			try {
				polylines = fill.fill_surface(&surface_fill, fill_params);
			} catch (InfillFailedException &) {
			}
	        if (! polylines.empty()) {
		        // Save into layer.
				ExtrusionEntityCollection *eec = nullptr;
		        ironing_params.layerm->fills.entities.push_back(eec = new ExtrusionEntityCollection());
		        // Don't sort the ironing infill lines as they are monotonicly ordered.
				eec->no_sort = true;
		        extrusion_entities_append_paths(
		            eec->entities, std::move(polylines),
		            erIroning,
		            flow_mm3_per_mm, extrusion_width, float(extrusion_height));
		    }
		}

		// Regions up to j were processed.
		i = j;
	}
}

} // namespace Slic3r