Welcome to mirror list, hosted at ThFree Co, Russian Federation.

FillBase.cpp « Fill « libslic3r « src - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 39679e3d67fdbdcf415904416090245c35eb1b52 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
#include <stdio.h>

#include "../ClipperUtils.hpp"
#include "../EdgeGrid.hpp"
#include "../Geometry.hpp"
#include "../Surface.hpp"
#include "../PrintConfig.hpp"
#include "../libslic3r.h"

#include "FillBase.hpp"
#include "FillConcentric.hpp"
#include "FillHoneycomb.hpp"
#include "Fill3DHoneycomb.hpp"
#include "FillGyroid.hpp"
#include "FillPlanePath.hpp"
#include "FillRectilinear.hpp"
#include "FillRectilinear2.hpp"
#include "FillRectilinear3.hpp"

namespace Slic3r {

Fill* Fill::new_from_type(const InfillPattern type)
{
    switch (type) {
    case ipConcentric:          return new FillConcentric();
    case ipHoneycomb:           return new FillHoneycomb();
    case ip3DHoneycomb:         return new Fill3DHoneycomb();
    case ipGyroid:              return new FillGyroid();
    case ipRectilinear:         return new FillRectilinear2();
//  case ipRectilinear:         return new FillRectilinear();
    case ipLine:                return new FillLine();
    case ipGrid:                return new FillGrid2();
    case ipTriangles:           return new FillTriangles();
    case ipStars:               return new FillStars();
    case ipCubic:               return new FillCubic();
//  case ipGrid:                return new FillGrid();
    case ipArchimedeanChords:   return new FillArchimedeanChords();
    case ipHilbertCurve:        return new FillHilbertCurve();
    case ipOctagramSpiral:      return new FillOctagramSpiral();
    default: throw std::invalid_argument("unknown type");
    }
}

Fill* Fill::new_from_type(const std::string &type)
{
    const t_config_enum_values &enum_keys_map = ConfigOptionEnum<InfillPattern>::get_enum_values();
    t_config_enum_values::const_iterator it = enum_keys_map.find(type);
    return (it == enum_keys_map.end()) ? nullptr : new_from_type(InfillPattern(it->second));
}

// Force initialization of the Fill::use_bridge_flow() internal static map in a thread safe fashion even on compilers
// not supporting thread safe non-static data member initializers.
static bool use_bridge_flow_initializer = Fill::use_bridge_flow(ipGrid);

bool Fill::use_bridge_flow(const InfillPattern type)
{
	static std::vector<unsigned char> cached;
	if (cached.empty()) {
		cached.assign(size_t(ipCount), 0);
		for (size_t i = 0; i < cached.size(); ++ i) {
			auto *fill = Fill::new_from_type((InfillPattern)i);
			cached[i] = fill->use_bridge_flow();
			delete fill;
		}
	}
	return cached[type] != 0;
}

Polylines Fill::fill_surface(const Surface *surface, const FillParams &params)
{
    // Perform offset.
    Slic3r::ExPolygons expp = offset_ex(surface->expolygon, float(scale_(this->overlap - 0.5 * this->spacing)));
    // Create the infills for each of the regions.
    Polylines polylines_out;
    for (size_t i = 0; i < expp.size(); ++ i)
        _fill_surface_single(
            params,
            surface->thickness_layers,
            _infill_direction(surface),
            expp[i],
            polylines_out);
    return polylines_out;
}

// Calculate a new spacing to fill width with possibly integer number of lines,
// the first and last line being centered at the interval ends.
// This function possibly increases the spacing, never decreases, 
// and for a narrow width the increase in spacing may become severe,
// therefore the adjustment is limited to 20% increase.
coord_t Fill::_adjust_solid_spacing(const coord_t width, const coord_t distance)
{
    assert(width >= 0);
    assert(distance > 0);
    // floor(width / distance)
    coord_t number_of_intervals = (width - EPSILON) / distance;
    coord_t distance_new = (number_of_intervals == 0) ? 
        distance : 
        ((width - EPSILON) / number_of_intervals);
    const coordf_t factor = coordf_t(distance_new) / coordf_t(distance);
    assert(factor > 1. - 1e-5);
    // How much could the extrusion width be increased? By 20%.
    const coordf_t factor_max = 1.2;
    if (factor > factor_max)
        distance_new = coord_t(floor((coordf_t(distance) * factor_max + 0.5)));
    return distance_new;
}

// Returns orientation of the infill and the reference point of the infill pattern.
// For a normal print, the reference point is the center of a bounding box of the STL.
std::pair<float, Point> Fill::_infill_direction(const Surface *surface) const
{
    // set infill angle
    float out_angle = this->angle;

	if (out_angle == FLT_MAX) {
		//FIXME Vojtech: Add a warning?
        printf("Using undefined infill angle\n");
        out_angle = 0.f;
    }

    // Bounding box is the bounding box of a perl object Slic3r::Print::Object (c++ object Slic3r::PrintObject)
    // The bounding box is only undefined in unit tests.
    Point out_shift = empty(this->bounding_box) ? 
    	surface->expolygon.contour.bounding_box().center() : 
        this->bounding_box.center();

#if 0
    if (empty(this->bounding_box)) {
        printf("Fill::_infill_direction: empty bounding box!");
    } else {
        printf("Fill::_infill_direction: reference point %d, %d\n", out_shift.x, out_shift.y);
    }
#endif

    if (surface->bridge_angle >= 0) {
	    // use bridge angle
		//FIXME Vojtech: Add a debugf?
        // Slic3r::debugf "Filling bridge with angle %d\n", rad2deg($surface->bridge_angle);
#ifdef SLIC3R_DEBUG
        printf("Filling bridge with angle %f\n", surface->bridge_angle);
#endif /* SLIC3R_DEBUG */
        out_angle = surface->bridge_angle;
    } else if (this->layer_id != size_t(-1)) {
        // alternate fill direction
        out_angle += this->_layer_angle(this->layer_id / surface->thickness_layers);
    } else {
//    	printf("Layer_ID undefined!\n");
    }

    out_angle += float(M_PI/2.);
    return std::pair<float, Point>(out_angle, out_shift);
}

#if 0
// From pull request "Gyroid improvements" #2730 by @supermerill

/// cut poly between poly.point[idx_1] & poly.point[idx_1+1]
/// add p1+-width to one part and p2+-width to the other one.
/// add the "new" polyline to polylines (to part cut from poly)
/// p1 & p2 have to be between poly.point[idx_1] & poly.point[idx_1+1]
/// if idx_1 is ==0 or == size-1, then we don't need to create a new polyline.
static void cut_polyline(Polyline &poly, Polylines &polylines, size_t idx_1, Point p1, Point p2) {
    //reorder points
    if (p1.distance_to_square(poly.points[idx_1]) > p2.distance_to_square(poly.points[idx_1])) {
        Point temp = p2;
        p2 = p1;
        p1 = temp;
    }
    if (idx_1 == poly.points.size() - 1) {
        //shouldn't be possible.
        poly.points.erase(poly.points.end() - 1);
    } else {
        // create new polyline
        Polyline new_poly;
        //put points in new_poly
        new_poly.points.push_back(p2);
        new_poly.points.insert(new_poly.points.end(), poly.points.begin() + idx_1 + 1, poly.points.end());
        //erase&put points in poly
        poly.points.erase(poly.points.begin() + idx_1 + 1, poly.points.end());
        poly.points.push_back(p1);
        //safe test
        if (poly.length() == 0)
            poly.points = new_poly.points;
        else
            polylines.emplace_back(new_poly);
    }
}

/// the poly is like a polygon but with first_point != last_point (already removed)
static void cut_polygon(Polyline &poly, size_t idx_1, Point p1, Point p2) {
    //reorder points
    if (p1.distance_to_square(poly.points[idx_1]) > p2.distance_to_square(poly.points[idx_1])) {
        Point temp = p2;
        p2 = p1;
        p1 = temp;
    }
    //check if we need to rotate before cutting
    if (idx_1 != poly.size() - 1) {
        //put points in new_poly 
        poly.points.insert(poly.points.end(), poly.points.begin(), poly.points.begin() + idx_1 + 1);
        poly.points.erase(poly.points.begin(), poly.points.begin() + idx_1 + 1);
    }
    //put points in poly
    poly.points.push_back(p1);
    poly.points.insert(poly.points.begin(), p2);
}

/// check if the polyline from pts_to_check may be at 'width' distance of a point in polylines_blocker
/// it use equally_spaced_points with width/2 precision, so don't worry with pts_to_check number of points.
/// it use the given polylines_blocker points, be sure to put enough of them to be reliable.
/// complexity : N(pts_to_check.equally_spaced_points(width / 2)) x N(polylines_blocker.points)
static bool collision(const Points &pts_to_check, const Polylines &polylines_blocker, const coordf_t width) {
    //check if it's not too close to a polyline
    coordf_t min_dist_square = width * width * 0.9 - SCALED_EPSILON;
    Polyline better_polylines(pts_to_check);
    Points better_pts = better_polylines.equally_spaced_points(width / 2);
    for (const Point &p : better_pts) {
        for (const Polyline &poly2 : polylines_blocker) {
            for (const Point &p2 : poly2.points) {
                if (p.distance_to_square(p2) < min_dist_square) {
                    return true;
                }
            }
        }
    }
    return false;
}

/// Try to find a path inside polylines that allow to go from p1 to p2.
/// width if the width of the extrusion
/// polylines_blockers are the array of polylines to check if the path isn't blocked by something.
/// complexity: N(polylines.points) + a collision check after that if we finded a path: N(2(p2-p1)/width) x N(polylines_blocker.points)
static Points get_frontier(Polylines &polylines, const Point& p1, const Point& p2, const coord_t width, const Polylines &polylines_blockers, coord_t max_size = -1) {
    for (size_t idx_poly = 0; idx_poly < polylines.size(); ++idx_poly) {
        Polyline &poly = polylines[idx_poly];
        if (poly.size() <= 1) continue;

        //loop?
        if (poly.first_point() == poly.last_point()) {
            //polygon : try to find a line for p1 & p2.
            size_t idx_11, idx_12, idx_21, idx_22;
            idx_11 = poly.closest_point_index(p1);
            idx_12 = idx_11;
            if (Line(poly.points[idx_11], poly.points[(idx_11 + 1) % (poly.points.size() - 1)]).distance_to(p1) < SCALED_EPSILON) {
                idx_12 = (idx_11 + 1) % (poly.points.size() - 1);
            } else if (Line(poly.points[(idx_11 > 0) ? (idx_11 - 1) : (poly.points.size() - 2)], poly.points[idx_11]).distance_to(p1) < SCALED_EPSILON) {
                idx_11 = (idx_11 > 0) ? (idx_11 - 1) : (poly.points.size() - 2);
            } else {
                continue;
            }
            idx_21 = poly.closest_point_index(p2);
            idx_22 = idx_21;
            if (Line(poly.points[idx_21], poly.points[(idx_21 + 1) % (poly.points.size() - 1)]).distance_to(p2) < SCALED_EPSILON) {
                idx_22 = (idx_21 + 1) % (poly.points.size() - 1);
            } else if (Line(poly.points[(idx_21 > 0) ? (idx_21 - 1) : (poly.points.size() - 2)], poly.points[idx_21]).distance_to(p2) < SCALED_EPSILON) {
                idx_21 = (idx_21 > 0) ? (idx_21 - 1) : (poly.points.size() - 2);
            } else {
                continue;
            }


            //edge case: on the same line
            if (idx_11 == idx_21 && idx_12 == idx_22) {
                if (collision(Points() = { p1, p2 }, polylines_blockers, width)) return Points();
                //break loop
                poly.points.erase(poly.points.end() - 1);
                cut_polygon(poly, idx_11, p1, p2);
                return Points() = { Line(p1, p2).midpoint() };
            }

            //compute distance & array for the ++ path
            Points ret_1_to_2;
            double dist_1_to_2 = p1.distance_to(poly.points[idx_12]);
            ret_1_to_2.push_back(poly.points[idx_12]);
            size_t max = idx_12 <= idx_21 ? idx_21+1 : poly.points.size();
            for (size_t i = idx_12 + 1; i < max; i++) {
                dist_1_to_2 += poly.points[i - 1].distance_to(poly.points[i]);
                ret_1_to_2.push_back(poly.points[i]);
            }
            if (idx_12 > idx_21) {
                dist_1_to_2 += poly.points.back().distance_to(poly.points.front());
                ret_1_to_2.push_back(poly.points[0]);
                for (size_t i = 1; i <= idx_21; i++) {
                    dist_1_to_2 += poly.points[i - 1].distance_to(poly.points[i]);
                    ret_1_to_2.push_back(poly.points[i]);
                }
            }
            dist_1_to_2 += p2.distance_to(poly.points[idx_21]);

            //compute distance & array for the -- path
            Points ret_2_to_1;
            double dist_2_to_1 = p1.distance_to(poly.points[idx_11]);
            ret_2_to_1.push_back(poly.points[idx_11]);
            size_t min = idx_22 <= idx_11 ? idx_22 : 0;
            for (size_t i = idx_11; i > min; i--) {
                dist_2_to_1 += poly.points[i - 1].distance_to(poly.points[i]);
                ret_2_to_1.push_back(poly.points[i - 1]);
            }
            if (idx_22 > idx_11) {
                dist_2_to_1 += poly.points.back().distance_to(poly.points.front());
                ret_2_to_1.push_back(poly.points[poly.points.size() - 1]);
                for (size_t i = poly.points.size() - 1; i > idx_22; i--) {
                    dist_2_to_1 += poly.points[i - 1].distance_to(poly.points[i]);
                    ret_2_to_1.push_back(poly.points[i - 1]);
                }
            }
            dist_2_to_1 += p2.distance_to(poly.points[idx_22]);

            if (max_size < dist_2_to_1 && max_size < dist_1_to_2) {
                return Points();
            }

            //choose between the two direction (keep the short one)
            if (dist_1_to_2 < dist_2_to_1) {
                if (collision(ret_1_to_2, polylines_blockers, width)) return Points();
                //break loop
                poly.points.erase(poly.points.end() - 1);
                //remove points
                if (idx_12 <= idx_21) {
                    poly.points.erase(poly.points.begin() + idx_12, poly.points.begin() + idx_21 + 1);
                    if (idx_12 != 0) {
                        cut_polygon(poly, idx_11, p1, p2);
                    } //else : already cut at the good place
                } else {
                    poly.points.erase(poly.points.begin() + idx_12, poly.points.end());
                    poly.points.erase(poly.points.begin(), poly.points.begin() + idx_21);
                    cut_polygon(poly, poly.points.size() - 1, p1, p2);
                }
                return ret_1_to_2;
            } else {
                if (collision(ret_2_to_1, polylines_blockers, width)) return Points();
                //break loop
                poly.points.erase(poly.points.end() - 1);
                //remove points
                if (idx_22 <= idx_11) {
                    poly.points.erase(poly.points.begin() + idx_22, poly.points.begin() + idx_11 + 1);
                    if (idx_22 != 0) {
                        cut_polygon(poly, idx_21, p1, p2);
                    } //else : already cut at the good place
                } else {
                    poly.points.erase(poly.points.begin() + idx_22, poly.points.end());
                    poly.points.erase(poly.points.begin(), poly.points.begin() + idx_11);
                    cut_polygon(poly, poly.points.size() - 1, p1, p2);
                }
                return ret_2_to_1;
            }
        } else {
            //polyline : try to find a line for p1 & p2.
            size_t idx_1, idx_2;
            idx_1 = poly.closest_point_index(p1);
            if (idx_1 < poly.points.size() - 1 && Line(poly.points[idx_1], poly.points[idx_1 + 1]).distance_to(p1) < SCALED_EPSILON) {
            } else if (idx_1 > 0 && Line(poly.points[idx_1 - 1], poly.points[idx_1]).distance_to(p1) < SCALED_EPSILON) {
                idx_1 = idx_1 - 1;
            } else {
                continue;
            }
            idx_2 = poly.closest_point_index(p2);
            if (idx_2 < poly.points.size() - 1 && Line(poly.points[idx_2], poly.points[idx_2 + 1]).distance_to(p2) < SCALED_EPSILON) {
            } else if (idx_2 > 0 && Line(poly.points[idx_2 - 1], poly.points[idx_2]).distance_to(p2) < SCALED_EPSILON) {
                idx_2 = idx_2 - 1;
            } else {
                continue;
            }

            //edge case: on the same line
            if (idx_1 == idx_2) {
                if (collision(Points() = { p1, p2 }, polylines_blockers, width)) return Points();
                cut_polyline(poly, polylines, idx_1, p1, p2);
                return Points() = { Line(p1, p2).midpoint() };
            }

            //create ret array
            size_t first_idx = idx_1;
            size_t last_idx = idx_2 + 1;
            if (idx_1 > idx_2) {
                first_idx = idx_2;
                last_idx = idx_1 + 1;
            }
            Points p_ret;
            p_ret.insert(p_ret.end(), poly.points.begin() + first_idx + 1, poly.points.begin() + last_idx);

            coordf_t length = 0;
            for (size_t i = 1; i < p_ret.size(); i++) length += p_ret[i - 1].distance_to(p_ret[i]);

            if (max_size < length) {
                return Points();
            }

            if (collision(p_ret, polylines_blockers, width)) return Points();
            //cut polyline
            poly.points.erase(poly.points.begin() + first_idx + 1, poly.points.begin() + last_idx);
            cut_polyline(poly, polylines, first_idx, p1, p2);
            //order the returned array to be p1->p2
            if (idx_1 > idx_2) {
                std::reverse(p_ret.begin(), p_ret.end());
            }
            return p_ret;
        }

    }

    return Points();
}

/// Connect the infill_ordered polylines, in this order, from the back point to the next front point.
/// It uses only the boundary polygons to do so, and can't pass two times at the same place.
/// It avoid passing over the infill_ordered's polylines (preventing local over-extrusion).
/// return the connected polylines in polylines_out. Can output polygons (stored as polylines with first_point = last_point).
/// complexity: worst: N(infill_ordered.points) x N(boundary.points)
///             typical: N(infill_ordered) x ( N(boundary.points) + N(infill_ordered.points) )
void Fill::connect_infill(Polylines &&infill_ordered, const ExPolygon &boundary, Polylines &polylines_out, const FillParams &params) {

    //TODO: fallback to the quick & dirty old algorithm when n(points) is too high.
    Polylines polylines_frontier = to_polylines(((Polygons)boundary));

    Polylines polylines_blocker;
    coord_t clip_size = scale_(this->spacing) * 2;
    for (const Polyline &polyline : infill_ordered) {
        if (polyline.length() > 2.01 * clip_size) {
            polylines_blocker.push_back(polyline);
            polylines_blocker.back().clip_end(clip_size);
            polylines_blocker.back().clip_start(clip_size);
        }
    }

    //length between two lines
    coordf_t ideal_length = (1 / params.density) * this->spacing;

    Polylines polylines_connected_first;
    bool first = true;
    for (const Polyline &polyline : infill_ordered) {
        if (!first) {
            // Try to connect the lines.
            Points &pts_end = polylines_connected_first.back().points;
            const Point &last_point = pts_end.back();
            const Point &first_point = polyline.points.front();
            if (last_point.distance_to(first_point) < scale_(this->spacing) * 10) {
                Points pts_frontier = get_frontier(polylines_frontier, last_point, first_point, scale_(this->spacing), polylines_blocker, (coord_t)scale_(ideal_length) * 2);
                if (!pts_frontier.empty()) {
                    // The lines can be connected.
                    pts_end.insert(pts_end.end(), pts_frontier.begin(), pts_frontier.end());
                    pts_end.insert(pts_end.end(), polyline.points.begin(), polyline.points.end());
                    continue;
                }
            }
        }
        // The lines cannot be connected.
        polylines_connected_first.emplace_back(std::move(polyline));

        first = false;
    }

    Polylines polylines_connected;
    first = true;
    for (const Polyline &polyline : polylines_connected_first) {
        if (!first) {
            // Try to connect the lines.
            Points &pts_end = polylines_connected.back().points;
            const Point &last_point = pts_end.back();
            const Point &first_point = polyline.points.front();

            Polylines before = polylines_frontier;
            Points pts_frontier = get_frontier(polylines_frontier, last_point, first_point, scale_(this->spacing), polylines_blocker);
            if (!pts_frontier.empty()) {
                // The lines can be connected.
                pts_end.insert(pts_end.end(), pts_frontier.begin(), pts_frontier.end());
                pts_end.insert(pts_end.end(), polyline.points.begin(), polyline.points.end());
                continue;
            }
        }
        // The lines cannot be connected.
        polylines_connected.emplace_back(std::move(polyline));

        first = false;
    }

    //try to link to nearest point if possible
    for (size_t idx1 = 0; idx1 < polylines_connected.size(); idx1++) {
        size_t min_idx = 0;
        coordf_t min_length = 0;
        bool switch_id1 = false;
        bool switch_id2 = false;
        for (size_t idx2 = idx1 + 1; idx2 < polylines_connected.size(); idx2++) {
            double last_first = polylines_connected[idx1].last_point().distance_to_square(polylines_connected[idx2].first_point());
            double first_first = polylines_connected[idx1].first_point().distance_to_square(polylines_connected[idx2].first_point());
            double first_last = polylines_connected[idx1].first_point().distance_to_square(polylines_connected[idx2].last_point());
            double last_last = polylines_connected[idx1].last_point().distance_to_square(polylines_connected[idx2].last_point());
            double min = std::min(std::min(last_first, last_last), std::min(first_first, first_last));
            if (min < min_length || min_length == 0) {
                min_idx = idx2;
                switch_id1 = (std::min(last_first, last_last) > std::min(first_first, first_last));
                switch_id2 = (std::min(last_first, first_first) > std::min(last_last, first_last));
                min_length = min;
            }
        }
        if (min_idx > idx1 && min_idx < polylines_connected.size()){
            Points pts_frontier = get_frontier(polylines_frontier, 
                switch_id1 ? polylines_connected[idx1].first_point() : polylines_connected[idx1].last_point(), 
                switch_id2 ? polylines_connected[min_idx].last_point() : polylines_connected[min_idx].first_point(),
                scale_(this->spacing), polylines_blocker);
            if (!pts_frontier.empty()) {
                if (switch_id1) polylines_connected[idx1].reverse();
                if (switch_id2) polylines_connected[min_idx].reverse();
                Points &pts_end = polylines_connected[idx1].points;
                pts_end.insert(pts_end.end(), pts_frontier.begin(), pts_frontier.end());
                pts_end.insert(pts_end.end(), polylines_connected[min_idx].points.begin(), polylines_connected[min_idx].points.end());
                polylines_connected.erase(polylines_connected.begin() + min_idx);
            }
        }
    }

    //try to create some loops if possible
    for (Polyline &polyline : polylines_connected) {
        Points pts_frontier = get_frontier(polylines_frontier, polyline.last_point(), polyline.first_point(), scale_(this->spacing), polylines_blocker);
        if (!pts_frontier.empty()) {
            polyline.points.insert(polyline.points.end(), pts_frontier.begin(), pts_frontier.end());
            polyline.points.insert(polyline.points.begin(), polyline.points.back());
        }
        polylines_out.emplace_back(polyline);
    }
}

#else

struct ContourPointData {
	ContourPointData(float param) : param(param) {}
	// Eucleidean position of the contour point along the contour.
	float param				= 0.f;
	// Was the segment starting with this contour point extruded?
	bool  segment_consumed	= false;
	// Was this point extruded over?
	bool  point_consumed	= false;
};

// Verify whether the contour from point idx_start to point idx_end could be taken (whether all segments along the contour were not yet extruded).
static bool could_take(const std::vector<ContourPointData> &contour_data, size_t idx_start, size_t idx_end)
{
	assert(idx_start != idx_end);
	for (size_t i = idx_start; i != idx_end; ) {
		if (contour_data[i].segment_consumed || contour_data[i].point_consumed)
			return false;
		if (++ i == contour_data.size())
			i = 0;
	}
	return ! contour_data[idx_end].point_consumed;
}

// Connect end of pl1 to the start of pl2 using the perimeter contour.
// The idx_start and idx_end are ordered so that the connecting polyline points will be taken with increasing indices.
static void take(Polyline &pl1, Polyline &&pl2, const Points &contour, std::vector<ContourPointData> &contour_data, size_t idx_start, size_t idx_end, bool reversed)
{
#ifndef NDEBUG
	size_t num_points_initial = pl1.points.size();
	assert(idx_start != idx_end);
#endif /* NDEBUG */

	{
		// Reserve memory at pl1 for the connecting contour and pl2.
		int new_points = int(idx_end) - int(idx_start) - 1;
		if (new_points < 0)
			new_points += int(contour.size());
		pl1.points.reserve(pl1.points.size() + size_t(new_points) + pl2.points.size());
	}

	contour_data[idx_start].point_consumed   = true;
	contour_data[idx_start].segment_consumed = true;
	contour_data[idx_end  ].point_consumed   = true;

	if (reversed) {
		size_t i = (idx_end == 0) ? contour_data.size() - 1 : idx_end - 1;
		while (i != idx_start) {
			contour_data[i].point_consumed   = true;
			contour_data[i].segment_consumed = true;
			pl1.points.emplace_back(contour[i]);
			if (i == 0)
				i = contour_data.size();
			-- i;
		}
	} else {
		size_t i = idx_start;
		if (++ i == contour_data.size())
			i = 0;
		while (i != idx_end) {
			contour_data[i].point_consumed   = true;
			contour_data[i].segment_consumed = true;
			pl1.points.emplace_back(contour[i]);
			if (++ i == contour_data.size())
				i = 0;
		}
	}

	append(pl1.points, std::move(pl2.points));
}

// Return an index of start of a segment and a point of the clipping point at distance from the end of polyline.
struct SegmentPoint {
	// Segment index, defining a line <idx_segment, idx_segment + 1).
	size_t idx_segment = std::numeric_limits<size_t>::max();
	// Parameter of point in <0, 1) along the line <idx_segment, idx_segment + 1)
	double t;
	Vec2d  point;

	bool valid() const { return idx_segment != std::numeric_limits<size_t>::max(); }
};

static inline SegmentPoint clip_start_segment_and_point(const Points &polyline, double distance)
{
	assert(polyline.size() >= 2);
	assert(distance > 0.);
	// Initialized to "invalid".
	SegmentPoint out;
	if (polyline.size() >= 2) {
	    Vec2d pt_prev = polyline.front().cast<double>();
		for (int i = 1; i < polyline.size(); ++ i) {
			Vec2d pt = polyline[i].cast<double>();
			Vec2d v = pt - pt_prev;
	        double l2 = v.squaredNorm();
	        if (l2 > distance * distance) {
	        	out.idx_segment = i;
	        	out.t 			= distance / sqrt(l2);
	        	out.point 		= pt_prev + out.t * v;
	            break;
	        }
	        distance -= sqrt(l2);
	        pt_prev = pt;
	    }
	}
	return out;
}

static inline SegmentPoint clip_end_segment_and_point(const Points &polyline, double distance)
{
	assert(polyline.size() >= 2);
	assert(distance > 0.);
	// Initialized to "invalid".
	SegmentPoint out;
	if (polyline.size() >= 2) {
	    Vec2d pt_next = polyline.back().cast<double>();
		for (int i = int(polyline.size()) - 2; i >= 0; -- i) {
			Vec2d pt = polyline[i].cast<double>();
			Vec2d v = pt - pt_next;
	        double l2 = v.squaredNorm();
	        if (l2 > distance * distance) {
	        	out.idx_segment = i;
	        	out.t 			= distance / sqrt(l2);
	        	out.point 		= pt_next + out.t * v;
				// Store the parameter referenced to the starting point of a segment.
				out.t			= 1. - out.t;
	            break;
	        }
	        distance -= sqrt(l2);
	        pt_next = pt;
	    }
	}
	return out;
}

// Optimized version with the precalculated v1 = p1b - p1a and l1_2 = v1.squaredNorm().
// Assumption: l1_2 < EPSILON.
static inline double segment_point_distance_squared(const Vec2d &p1a, const Vec2d &p1b, const Vec2d &v1, const double l1_2, const Vec2d &p2)
{
	assert(l1_2 > EPSILON);
	Vec2d  v12 = p2 - p1a;
	double t   = v12.dot(v1);
	return (t <= 0.  ) ? v12.squaredNorm() :
	       (t >= l1_2) ? (p2 - p1a).squaredNorm() :
		   ((t / l1_2) * v1 - v12).squaredNorm();
}

static inline double segment_point_distance_squared(const Vec2d &p1a, const Vec2d &p1b, const Vec2d &p2)
{
    const Vec2d  v  = p1b - p1a;
    const double l2 = v.squaredNorm();
    if (l2 < EPSILON)
        // p1a == p1b
        return (p2  - p1a).squaredNorm();
	return segment_point_distance_squared(p1a, p1b, v, v.squaredNorm(), p2);
}

// Distance to the closest point of line.
static inline double min_distance_of_segments(const Vec2d &p1a, const Vec2d &p1b, const Vec2d &p2a, const Vec2d &p2b)
{
    Vec2d   v1 		= p1b - p1a;
    double  l1_2 	= v1.squaredNorm();
    if (l1_2 < EPSILON)
        // p1a == p1b: Return distance of p1a from the (p2a, p2b) segment.
        return segment_point_distance_squared(p2a, p2b, p1a);

    Vec2d   v2 		= p2b - p2a;
    double  l2_2 	= v2.squaredNorm();
    if (l2_2 < EPSILON)
        // p2a == p2b: Return distance of p2a from the (p1a, p1b) segment.
        return segment_point_distance_squared(p1a, p1b, v1, l1_2, p2a);

	return std::min(
		std::min(segment_point_distance_squared(p1a, p1b, v1, l1_2, p2a), segment_point_distance_squared(p1a, p1b, v1, l1_2, p2b)),
		std::min(segment_point_distance_squared(p2a, p2b, v2, l2_2, p1a), segment_point_distance_squared(p2a, p2b, v2, l2_2, p1b)));
}

// Mark the segments of split boundary as consumed if they are very close to some of the infill line.
void mark_boundary_segments_touching_infill(
	const std::vector<Points> 					&boundary,
	std::vector<std::vector<ContourPointData>> 	&boundary_data,
	const BoundingBox 							&boundary_bbox,
	const Polylines 							&infill,
	const double							     clip_distance,
	const double 								 distance_colliding)
{
	EdgeGrid::Grid grid;
	grid.set_bbox(boundary_bbox);
	// Inflate the bounding box by a thick line width.
	grid.create(boundary, clip_distance + scale_(10.));

	struct Visitor {
		Visitor(const EdgeGrid::Grid &grid, const std::vector<Points> &boundary, std::vector<std::vector<ContourPointData>> &boundary_data, const double dist2_max) :
			grid(grid), boundary(boundary), boundary_data(boundary_data), dist2_max(dist2_max) {}

		void init(const Vec2d &pt1, const Vec2d &pt2) {
			this->pt1 = &pt1;
			this->pt2 = &pt2;
		}

		bool operator()(coord_t iy, coord_t ix) {
			// Called with a row and colum of the grid cell, which is intersected by a line.
			auto cell_data_range = this->grid.cell_data_range(iy, ix);
			for (auto it_contour_and_segment = cell_data_range.first; it_contour_and_segment != cell_data_range.second; ++ it_contour_and_segment) {
				// End points of the line segment and their vector.
				auto segment = this->grid.segment(*it_contour_and_segment);
				const Vec2d seg_pt1 = segment.first.cast<double>();
				const Vec2d seg_pt2 = segment.second.cast<double>();
				if (min_distance_of_segments(seg_pt1, seg_pt2, *this->pt1, *this->pt2) < this->dist2_max) {
					// Mark this boundary segment as touching the infill line.
					ContourPointData &bdp = boundary_data[it_contour_and_segment->first][it_contour_and_segment->second];
					bdp.segment_consumed = true;
					// There is no need for checking seg_pt2 as it will be checked the next time.
					bool point_touching = false;
					if (segment_point_distance_squared(*this->pt1, *this->pt2, seg_pt1) < this->dist2_max) {
						point_touching = true;
						bdp.point_consumed = true;
					}
#if 0
					{
						static size_t iRun = 0;
						ExPolygon expoly(Polygon(*grid.contours().front()));
						for (size_t i = 1; i < grid.contours().size(); ++i)
							expoly.holes.emplace_back(Polygon(*grid.contours()[i]));
						SVG svg(debug_out_path("%s-%d.svg", "FillBase-mark_boundary_segments_touching_infill", iRun ++).c_str(), get_extents(expoly));
						svg.draw(expoly, "green");
						svg.draw(Line(segment.first, segment.second), "red");
						svg.draw(Line(this->pt1->cast<coord_t>(), this->pt2->cast<coord_t>()), "magenta");
					}
#endif
				}
			}
			// Continue traversing the grid along the edge.
			return true;
		}

		const EdgeGrid::Grid 			   			&grid;
		const std::vector<Points> 					&boundary;
		std::vector<std::vector<ContourPointData>> 	&boundary_data;
		// Maximum distance between the boundary and the infill line allowed to consider the boundary not touching the infill line.
		const double								 dist2_max;

		const Vec2d 								*pt1;
		const Vec2d 								*pt2;
	} visitor(grid, boundary, boundary_data, distance_colliding * distance_colliding);

	BoundingBoxf bboxf(boundary_bbox.min.cast<double>(), boundary_bbox.max.cast<double>());
	bboxf.offset(- SCALED_EPSILON);

	for (const Polyline &polyline : infill) {
		// Clip the infill polyline by the Eucledian distance along the polyline.
		SegmentPoint start_point = clip_start_segment_and_point(polyline.points, clip_distance);
		SegmentPoint end_point   = clip_end_segment_and_point(polyline.points, clip_distance);
		if (start_point.valid() && end_point.valid() && 
			(start_point.idx_segment < end_point.idx_segment || (start_point.idx_segment == end_point.idx_segment && start_point.t < end_point.t))) {
			// The clipped polyline is non-empty.
			for (size_t point_idx = start_point.idx_segment; point_idx <= end_point.idx_segment; ++ point_idx) {
//FIXME extend the EdgeGrid to suport tracing a thick line.
#if 0
				Point pt1, pt2;
				Vec2d pt1d, pt2d;
				if (point_idx == start_point.idx_segment) {
					pt1d = start_point.point;
					pt1  = pt1d.cast<coord_t>();
				} else {
					pt1  = polyline.points[point_idx];
					pt1d = pt1.cast<double>();
				}
				if (point_idx == start_point.idx_segment) {
					pt2d = end_point.point;
					pt2  = pt1d.cast<coord_t>();
				} else {
					pt2  = polyline.points[point_idx];
					pt2d = pt2.cast<double>();
				}
				visitor.init(pt1d, pt2d);
				grid.visit_cells_intersecting_thick_line(pt1, pt2, distance_colliding, visitor);
#else
				Vec2d pt1 = (point_idx == start_point.idx_segment) ? start_point.point : polyline.points[point_idx    ].cast<double>();
				Vec2d pt2 = (point_idx == end_point  .idx_segment) ? end_point  .point : polyline.points[point_idx + 1].cast<double>();
#if 0
					{
						static size_t iRun = 0;
						ExPolygon expoly(Polygon(*grid.contours().front()));
						for (size_t i = 1; i < grid.contours().size(); ++i)
							expoly.holes.emplace_back(Polygon(*grid.contours()[i]));
						SVG svg(debug_out_path("%s-%d.svg", "FillBase-mark_boundary_segments_touching_infill0", iRun ++).c_str(), get_extents(expoly));
						svg.draw(expoly, "green");
						svg.draw(polyline, "blue");
						svg.draw(Line(pt1.cast<coord_t>(), pt2.cast<coord_t>()), "magenta", scale_(0.1));
					}
#endif
				visitor.init(pt1, pt2);
				// Simulate tracing of a thick line. This only works reliably if distance_colliding <= grid cell size.
				Vec2d v = (pt2 - pt1).normalized() * distance_colliding;
				Vec2d vperp(-v.y(), v.x());
				Vec2d a = pt1 - v - vperp;
				Vec2d b = pt1 + v - vperp;
				if (Geometry::liang_barsky_line_clipping(a, b, bboxf))
					grid.visit_cells_intersecting_line(a.cast<coord_t>(), b.cast<coord_t>(), visitor);
				a = pt1 - v + vperp;
				b = pt1 + v + vperp;
				if (Geometry::liang_barsky_line_clipping(a, b, bboxf))
					grid.visit_cells_intersecting_line(a.cast<coord_t>(), b.cast<coord_t>(), visitor);
#endif
			}
		}
	}
}

void Fill::connect_infill(Polylines &&infill_ordered, const ExPolygon &boundary_src, Polylines &polylines_out, const double spacing, const FillParams &params)
{
	assert(! infill_ordered.empty());
	assert(! boundary_src.contour.points.empty());

	BoundingBox bbox = get_extents(boundary_src.contour);
	bbox.offset(SCALED_EPSILON);

	// 1) Add the end points of infill_ordered to boundary_src.
	std::vector<Points>					   		boundary;
	std::vector<std::vector<ContourPointData>> 	boundary_data;
	boundary.assign(boundary_src.holes.size() + 1, Points());
	boundary_data.assign(boundary_src.holes.size() + 1, std::vector<ContourPointData>());
	// Mapping the infill_ordered end point to a (contour, point) of boundary.
	std::vector<std::pair<size_t, size_t>> map_infill_end_point_to_boundary;
	map_infill_end_point_to_boundary.assign(infill_ordered.size() * 2, std::pair<size_t, size_t>(std::numeric_limits<size_t>::max(), std::numeric_limits<size_t>::max()));
	{
		// Project the infill_ordered end points onto boundary_src.
		std::vector<std::pair<EdgeGrid::Grid::ClosestPointResult, size_t>> intersection_points;
		{
			EdgeGrid::Grid grid;
			grid.set_bbox(bbox);
			grid.create(boundary_src, scale_(10.));
			intersection_points.reserve(infill_ordered.size() * 2);
			for (const Polyline &pl : infill_ordered)
				for (const Point *pt : { &pl.points.front(), &pl.points.back() }) {
					EdgeGrid::Grid::ClosestPointResult cp = grid.closest_point(*pt, SCALED_EPSILON);
					if (cp.valid()) {
						// The infill end point shall lie on the contour.
						assert(cp.distance < 2.);
						intersection_points.emplace_back(cp, (&pl - infill_ordered.data()) * 2 + (pt == &pl.points.front() ? 0 : 1));
					}
				}
			std::sort(intersection_points.begin(), intersection_points.end(), [](const std::pair<EdgeGrid::Grid::ClosestPointResult, size_t> &cp1, const std::pair<EdgeGrid::Grid::ClosestPointResult, size_t> &cp2) {
				return   cp1.first.contour_idx < cp2.first.contour_idx ||
						(cp1.first.contour_idx == cp2.first.contour_idx &&
							(cp1.first.start_point_idx < cp2.first.start_point_idx ||
								(cp1.first.start_point_idx == cp2.first.start_point_idx && cp1.first.t < cp2.first.t)));
			});
		}
		auto it = intersection_points.begin();
		auto it_end = intersection_points.end();
		for (size_t idx_contour = 0; idx_contour <= boundary_src.holes.size(); ++ idx_contour) {
			const Polygon &contour_src = (idx_contour == 0) ? boundary_src.contour : boundary_src.holes[idx_contour - 1];
			Points		  &contour_dst = boundary[idx_contour];
			for (size_t idx_point = 0; idx_point < contour_src.points.size(); ++ idx_point) {
				contour_dst.emplace_back(contour_src.points[idx_point]);
				for (; it != it_end && it->first.contour_idx == idx_contour && it->first.start_point_idx == idx_point; ++ it) {
					// Add these points to the destination contour.
					const Vec2d pt1 = contour_src[idx_point].cast<double>();
					const Vec2d pt2 = (idx_point + 1 == contour_src.size() ? contour_src.points.front() : contour_src.points[idx_point + 1]).cast<double>();
					const Vec2d pt  = lerp(pt1, pt2, it->first.t);
					map_infill_end_point_to_boundary[it->second] = std::make_pair(idx_contour, contour_dst.size());
					contour_dst.emplace_back(pt.cast<coord_t>());
				}
			}
			// Parametrize the curve.
			std::vector<ContourPointData> &contour_data = boundary_data[idx_contour];
			contour_data.reserve(contour_dst.size());
			contour_data.emplace_back(ContourPointData(0.f));
			for (size_t i = 1; i < contour_dst.size(); ++ i)
				contour_data.emplace_back(contour_data.back().param + (contour_dst[i].cast<float>() - contour_dst[i - 1].cast<float>()).norm());
			contour_data.front().param = contour_data.back().param + (contour_dst.back().cast<float>() - contour_dst.front().cast<float>()).norm();
		}

#ifndef NDEBUG
		assert(boundary.size() == boundary_src.num_contours());
		assert(std::all_of(map_infill_end_point_to_boundary.begin(), map_infill_end_point_to_boundary.end(),
			[&boundary](const std::pair<size_t, size_t> &contour_point) {
				return contour_point.first < boundary.size() && contour_point.second < boundary[contour_point.first].size();
			}));
#endif /* NDEBUG */
	}

	// Mark the points and segments of split boundary as consumed if they are very close to some of the infill line.
	{
		// @supermerill used 2. * scale_(spacing)
		const double clip_distance		= 3. * scale_(spacing);
		const double distance_colliding = 1.1 * scale_(spacing);
		mark_boundary_segments_touching_infill(boundary, boundary_data, bbox, infill_ordered, clip_distance, distance_colliding);
	}

	// Connection from end of one infill line to the start of another infill line.
	//const float length_max = scale_(spacing);
//	const float length_max = scale_((2. / params.density) * spacing);
	const float length_max = scale_((1000. / params.density) * spacing);
	std::vector<size_t> merged_with(infill_ordered.size());
	for (size_t i = 0; i < merged_with.size(); ++ i)
		merged_with[i] = i;
	struct ConnectionCost {
		ConnectionCost(size_t idx_first, double cost, bool reversed) : idx_first(idx_first), cost(cost), reversed(reversed) {}
		size_t  idx_first;
		double  cost;
		bool 	reversed;
	};
	std::vector<ConnectionCost> connections_sorted;
	connections_sorted.reserve(infill_ordered.size() * 2 - 2);
	for (size_t idx_chain = 1; idx_chain < infill_ordered.size(); ++ idx_chain) {
		const Polyline 						&pl1 			= infill_ordered[idx_chain - 1];
		const Polyline 						&pl2 			= infill_ordered[idx_chain];
		const std::pair<size_t, size_t>		*cp1			= &map_infill_end_point_to_boundary[(idx_chain - 1) * 2 + 1];
		const std::pair<size_t, size_t>		*cp2			= &map_infill_end_point_to_boundary[idx_chain * 2];
		const std::vector<ContourPointData>	&contour_data	= boundary_data[cp1->first];
		if (cp1->first == cp2->first) {
			// End points on the same contour. Try to connect them.
			float param_lo  = (cp1->second == 0) ? 0.f : contour_data[cp1->second].param;
			float param_hi  = (cp2->second == 0) ? 0.f : contour_data[cp2->second].param;
			float param_end = contour_data.front().param;
			bool  reversed  = false;
			if (param_lo > param_hi) {
				std::swap(param_lo, param_hi);
				reversed = true;
			}
			assert(param_lo >= 0.f && param_lo <= param_end);
			assert(param_hi >= 0.f && param_hi <= param_end);
			double len = param_hi - param_lo;
			if (len < length_max)
				connections_sorted.emplace_back(idx_chain - 1, len, reversed);
			len = param_lo + param_end - param_hi;
			if (len < length_max)
				connections_sorted.emplace_back(idx_chain - 1, len, ! reversed);
		}
	}
	std::sort(connections_sorted.begin(), connections_sorted.end(), [](const ConnectionCost& l, const ConnectionCost& r) { return l.cost < r.cost; });

	size_t idx_chain_last = 0;
	for (ConnectionCost &connection_cost : connections_sorted) {
		const std::pair<size_t, size_t>	*cp1     = &map_infill_end_point_to_boundary[connection_cost.idx_first * 2 + 1];
		const std::pair<size_t, size_t>	*cp1prev = cp1 - 1;
		const std::pair<size_t, size_t>	*cp2     = &map_infill_end_point_to_boundary[(connection_cost.idx_first + 1) * 2];
		const std::pair<size_t, size_t>	*cp2next = cp2 + 1;
		assert(cp1->first == cp2->first);
		std::vector<ContourPointData>	&contour_data = boundary_data[cp1->first];
		if (connection_cost.reversed)
			std::swap(cp1, cp2);
		// Mark the the other end points of the segments to be taken as consumed temporarily, so they will not be crossed
		// by the new connection line.
		bool prev_marked = false;
		bool next_marked = false;
		if (cp1prev->first == cp1->first && ! contour_data[cp1prev->second].point_consumed) {
			contour_data[cp1prev->second].point_consumed = true;
			prev_marked = true;
		}
		if (cp2next->first == cp1->first && ! contour_data[cp2next->second].point_consumed) {
			contour_data[cp2next->second].point_consumed = true;
			next_marked = true;
		}
		if (could_take(contour_data, cp1->second, cp2->second)) {
			// Indices of the polygons to be connected.
			size_t idx_first  = connection_cost.idx_first;
			size_t idx_second = idx_first + 1;
			for (size_t last = idx_first;;) {
				size_t lower = merged_with[last];
				if (lower == last) {
					merged_with[idx_first] = lower;
					idx_first = lower;
					break;
				}
				last = lower;
			}
			// Connect the two polygons using the boundary contour.
			take(infill_ordered[idx_first], std::move(infill_ordered[idx_second]), boundary[cp1->first], contour_data, cp1->second, cp2->second, connection_cost.reversed);
			// Mark the second polygon as merged with the first one.
			merged_with[idx_second] = merged_with[idx_first];
		}
		if (prev_marked)
			contour_data[cp1prev->second].point_consumed = false;
		if (next_marked)
			contour_data[cp2next->second].point_consumed = false;
	}
	polylines_out.reserve(polylines_out.size() + std::count_if(infill_ordered.begin(), infill_ordered.end(), [](const Polyline &pl) { return ! pl.empty(); }));
	for (Polyline &pl : infill_ordered)
		if (! pl.empty())
			polylines_out.emplace_back(std::move(pl));
}

#endif

} // namespace Slic3r