Welcome to mirror list, hosted at ThFree Co, Russian Federation.

FillBase.cpp « Fill « libslic3r « src - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 20d32f3e28c7f0ea08c6f5717aa922cea91800a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
#include <stdio.h>
#include <numeric>

#include "../ClipperUtils.hpp"
#include "../EdgeGrid.hpp"
#include "../Geometry.hpp"
#include "../Point.hpp"
#include "../PrintConfig.hpp"
#include "../Surface.hpp"
#include "../libslic3r.h"

#include "FillBase.hpp"
#include "FillConcentric.hpp"
#include "FillHoneycomb.hpp"
#include "Fill3DHoneycomb.hpp"
#include "FillGyroid.hpp"
#include "FillPlanePath.hpp"
#include "FillLine.hpp"
#include "FillRectilinear.hpp"
#include "FillAdaptive.hpp"

namespace Slic3r {

Fill* Fill::new_from_type(const InfillPattern type)
{
    switch (type) {
    case ipConcentric:          return new FillConcentric();
    case ipHoneycomb:           return new FillHoneycomb();
    case ip3DHoneycomb:         return new Fill3DHoneycomb();
    case ipGyroid:              return new FillGyroid();
    case ipRectilinear:         return new FillRectilinear();
    case ipAlignedRectilinear:  return new FillAlignedRectilinear();
    case ipMonotonic:           return new FillMonotonic();
    case ipLine:                return new FillLine();
    case ipGrid:                return new FillGrid();
    case ipTriangles:           return new FillTriangles();
    case ipStars:               return new FillStars();
    case ipCubic:               return new FillCubic();
    case ipArchimedeanChords:   return new FillArchimedeanChords();
    case ipHilbertCurve:        return new FillHilbertCurve();
    case ipOctagramSpiral:      return new FillOctagramSpiral();
    case ipAdaptiveCubic:       return new FillAdaptive::Filler();
    case ipSupportCubic:        return new FillAdaptive::Filler();
    default: throw Slic3r::InvalidArgument("unknown type");
    }
}

Fill* Fill::new_from_type(const std::string &type)
{
    const t_config_enum_values &enum_keys_map = ConfigOptionEnum<InfillPattern>::get_enum_values();
    t_config_enum_values::const_iterator it = enum_keys_map.find(type);
    return (it == enum_keys_map.end()) ? nullptr : new_from_type(InfillPattern(it->second));
}

// Force initialization of the Fill::use_bridge_flow() internal static map in a thread safe fashion even on compilers
// not supporting thread safe non-static data member initializers.
static bool use_bridge_flow_initializer = Fill::use_bridge_flow(ipGrid);

bool Fill::use_bridge_flow(const InfillPattern type)
{
	static std::vector<unsigned char> cached;
	if (cached.empty()) {
		cached.assign(size_t(ipCount), 0);
		for (size_t i = 0; i < cached.size(); ++ i) {
			auto *fill = Fill::new_from_type((InfillPattern)i);
			cached[i] = fill->use_bridge_flow();
			delete fill;
		}
	}
	return cached[type] != 0;
}

Polylines Fill::fill_surface(const Surface *surface, const FillParams &params)
{
    // Perform offset.
    Slic3r::ExPolygons expp = offset_ex(surface->expolygon, float(scale_(this->overlap - 0.5 * this->spacing)));
    // Create the infills for each of the regions.
    Polylines polylines_out;
    for (size_t i = 0; i < expp.size(); ++ i)
        _fill_surface_single(
            params,
            surface->thickness_layers,
            _infill_direction(surface),
            std::move(expp[i]),
            polylines_out);
    return polylines_out;
}

// Calculate a new spacing to fill width with possibly integer number of lines,
// the first and last line being centered at the interval ends.
// This function possibly increases the spacing, never decreases, 
// and for a narrow width the increase in spacing may become severe,
// therefore the adjustment is limited to 20% increase.
coord_t Fill::_adjust_solid_spacing(const coord_t width, const coord_t distance)
{
    assert(width >= 0);
    assert(distance > 0);
    // floor(width / distance)
    const auto  number_of_intervals = coord_t((width - EPSILON) / distance);
    coord_t     distance_new        = (number_of_intervals == 0) ? 
        distance : 
        coord_t((width - EPSILON) / number_of_intervals);
    const coordf_t factor = coordf_t(distance_new) / coordf_t(distance);
    assert(factor > 1. - 1e-5);
    // How much could the extrusion width be increased? By 20%.
    const coordf_t factor_max = 1.2;
    if (factor > factor_max)
        distance_new = coord_t(floor((coordf_t(distance) * factor_max + 0.5)));
    return distance_new;
}

// Returns orientation of the infill and the reference point of the infill pattern.
// For a normal print, the reference point is the center of a bounding box of the STL.
std::pair<float, Point> Fill::_infill_direction(const Surface *surface) const
{
    // set infill angle
    float out_angle = this->angle;

	if (out_angle == FLT_MAX) {
		//FIXME Vojtech: Add a warning?
        printf("Using undefined infill angle\n");
        out_angle = 0.f;
    }

    // Bounding box is the bounding box of a perl object Slic3r::Print::Object (c++ object Slic3r::PrintObject)
    // The bounding box is only undefined in unit tests.
    Point out_shift = empty(this->bounding_box) ? 
    	surface->expolygon.contour.bounding_box().center() : 
        this->bounding_box.center();

#if 0
    if (empty(this->bounding_box)) {
        printf("Fill::_infill_direction: empty bounding box!");
    } else {
        printf("Fill::_infill_direction: reference point %d, %d\n", out_shift.x, out_shift.y);
    }
#endif

    if (surface->bridge_angle >= 0) {
	    // use bridge angle
		//FIXME Vojtech: Add a debugf?
        // Slic3r::debugf "Filling bridge with angle %d\n", rad2deg($surface->bridge_angle);
#ifdef SLIC3R_DEBUG
        printf("Filling bridge with angle %f\n", surface->bridge_angle);
#endif /* SLIC3R_DEBUG */
        out_angle = float(surface->bridge_angle);
    } else if (this->layer_id != size_t(-1)) {
        // alternate fill direction
        out_angle += this->_layer_angle(this->layer_id / surface->thickness_layers);
    } else {
//    	printf("Layer_ID undefined!\n");
    }

    out_angle += float(M_PI/2.);
    return std::pair<float, Point>(out_angle, out_shift);
}

// A single T joint of an infill line to a closed contour or one of its holes.
struct ContourIntersectionPoint {
    // Contour and point on a contour where an infill line is connected to.
    size_t                      contour_idx;
    size_t                      point_idx;
    // Eucleidean parameter of point_idx along its contour.
    double                      param;
    // Other intersection points along the same contour. If there is only a single T-joint on a contour
    // with an intersection line, then the prev_on_contour and next_on_contour remain nulls.
    ContourIntersectionPoint*   prev_on_contour { nullptr };
    ContourIntersectionPoint*   next_on_contour { nullptr };
    // Length of the contour not yet allocated to some extrusion path going back (clockwise), or masked out by some overlapping infill line.
    double                      contour_not_taken_length_prev { std::numeric_limits<double>::max() };
    // Length of the contour not yet allocated to some extrusion path going forward (counter-clockwise), or masked out by some overlapping infill line.
    double                      contour_not_taken_length_next { std::numeric_limits<double>::max() };
    // End point is consumed if an infill line connected to this T-joint was already connected left or right along the contour,
    // or if the infill line was processed, but it was not possible to connect it left or right along the contour.
    bool                        consumed { false };
    // Whether the contour was trimmed by an overlapping infill line, or whether part of this contour was connected to some infill line.
    bool                        prev_trimmed { false };
    bool                        next_trimmed { false };

    void                        consume_prev() { this->contour_not_taken_length_prev = 0.; this->prev_trimmed = true; this->consumed = true; }
    void                        consume_next() { this->contour_not_taken_length_next = 0.; this->next_trimmed = true; this->consumed = true; }

    void                        trim_prev(const double new_len) {
        if (new_len < this->contour_not_taken_length_prev) {
            this->contour_not_taken_length_prev = new_len;
            this->prev_trimmed = true;
        }
    }
    void                        trim_next(const double new_len) {
        if (new_len < this->contour_not_taken_length_next) {
            this->contour_not_taken_length_next = new_len;
            this->next_trimmed = true;
        }
    }

    // The end point of an infill line connected to this T-joint was not processed yet and a piece of the contour could be extruded going backwards.
    bool                        could_take_prev() const throw() { return ! this->consumed && this->contour_not_taken_length_prev > SCALED_EPSILON; }
    // The end point of an infill line connected to this T-joint was not processed yet and a piece of the contour could be extruded going forward.
    bool                        could_take_next() const throw() { return ! this->consumed && this->contour_not_taken_length_next > SCALED_EPSILON; }

    // Could extrude a complete segment from this to this->prev_on_contour.
    bool                        could_connect_prev() const throw() 
        { return ! this->consumed && this->prev_on_contour != this && ! this->prev_on_contour->consumed && ! this->prev_trimmed && ! this->prev_on_contour->next_trimmed; }
    // Could extrude a complete segment from this to this->next_on_contour.
    bool                        could_connect_next() const throw() 
        { return ! this->consumed && this->next_on_contour != this && ! this->next_on_contour->consumed && ! this->next_trimmed && ! this->next_on_contour->prev_trimmed; }
};

// Distance from param1 to param2 when going counter-clockwise.
static inline double closed_contour_distance_ccw(double param1, double param2, double contour_length)
{
    assert(param1 >= 0. && param1 <= contour_length);
    assert(param2 >= 0. && param2 <= contour_length);
    double d = param2 - param1;
    if (d < 0.)
        d += contour_length;
    return d;
}

// Distance from param1 to param2 when going clockwise.
static inline double closed_contour_distance_cw(double param1, double param2, double contour_length)
{
    return closed_contour_distance_ccw(param2, param1, contour_length);
}

// Length along the contour from cp1 to cp2 going counter-clockwise.
double path_length_along_contour_ccw(const ContourIntersectionPoint *cp1, const ContourIntersectionPoint *cp2, double contour_length)
{
    assert(cp1 != nullptr);
    assert(cp2 != nullptr);
    assert(cp1->contour_idx == cp2->contour_idx);
    assert(cp1 != cp2);
    return closed_contour_distance_ccw(cp1->param, cp2->param, contour_length);
}

// Lengths along the contour from cp1 to cp2 going CCW and going CW.
std::pair<double, double> path_lengths_along_contour(const ContourIntersectionPoint *cp1, const ContourIntersectionPoint *cp2, double contour_length)
{
    // Zero'th param is the length of the contour.
    double param_lo  = cp1->param;
    double param_hi  = cp2->param;
    assert(param_lo >= 0. && param_lo <= contour_length);
    assert(param_hi >= 0. && param_hi <= contour_length);
    bool  reversed  = false;
    if (param_lo > param_hi) {
        std::swap(param_lo, param_hi);
        reversed = true;
    }
    auto out = std::make_pair(param_hi - param_lo, param_lo + contour_length - param_hi);
    if (reversed)
        std::swap(out.first, out.second);
    return out;
}

// Add contour points from interval (idx_start, idx_end> to polyline.
static inline void take_cw_full(Polyline &pl, const Points& contour, size_t idx_start, size_t idx_end)
{
    assert(! pl.empty() && pl.points.back() == contour[idx_start]);
    size_t i = (idx_end == 0) ? contour.size() - 1 : idx_start - 1;
    while (i != idx_end) {
        pl.points.emplace_back(contour[i]);
        if (i == 0)
            i = contour.size();
        --i;
    }
    pl.points.emplace_back(contour[i]);
}

// Add contour points from interval (idx_start, idx_end> to polyline, limited by the Eucleidean length taken.
static inline double take_cw_limited(Polyline &pl, const Points &contour, const std::vector<double> &params, size_t idx_start, size_t idx_end, double length_to_take)
{
    // If appending to an infill line, then the start point of a perimeter line shall match the end point of an infill line.
    assert(pl.empty() || pl.points.back() == contour[idx_start]);
    assert(contour.size() + 1 == params.size());
    assert(length_to_take > SCALED_EPSILON);
    // Length of the contour.
    double length = params.back();
    // Parameter (length from contour.front()) for the first point.
    double p0     = params[idx_start];
    // Current (2nd) point of the contour.
    size_t i      = (idx_start == 0) ? contour.size() - 1 : idx_start - 1;
    // Previous point of the contour.
    size_t iprev  = idx_start;
    // Length of the contour curve taken for iprev.
    double lprev  = 0.;

    for (;;) {
        double l = closed_contour_distance_cw(p0, params[i], length);
        if (l >= length_to_take) {
            // Trim the last segment.
            double t = double(length_to_take - lprev) / (l - lprev);
            pl.points.emplace_back(lerp(contour[iprev], contour[i], t));
            return length_to_take;
        }
        // Continue with the other segments.
        pl.points.emplace_back(contour[i]);
        if (i == idx_end)
            return l;
        iprev = i;
        lprev = l;
        if (i == 0)
            i = contour.size();
        -- i;
    }
    assert(false);
    return 0;
}

// Add contour points from interval (idx_start, idx_end> to polyline.
static inline void take_ccw_full(Polyline &pl, const Points &contour, size_t idx_start, size_t idx_end)
{
    assert(! pl.empty() && pl.points.back() == contour[idx_start]);
    size_t i = idx_start;
    if (++ i == contour.size())
        i = 0;
    while (i != idx_end) {
        pl.points.emplace_back(contour[i]);
        if (++ i == contour.size())
            i = 0;
    }
    pl.points.emplace_back(contour[i]);
}

// Add contour points from interval (idx_start, idx_end> to polyline, limited by the Eucleidean length taken.
// Returns length of the contour taken.
static inline double take_ccw_limited(Polyline &pl, const Points &contour, const std::vector<double> &params, size_t idx_start, size_t idx_end, double length_to_take)
{
    // If appending to an infill line, then the start point of a perimeter line shall match the end point of an infill line.
    assert(pl.empty() || pl.points.back() == contour[idx_start]);
    assert(contour.size() + 1 == params.size());
    assert(length_to_take > SCALED_EPSILON);
    // Length of the contour.
    double length = params.back();
    // Parameter (length from contour.front()) for the first point.
    double p0     = params[idx_start];
    // Current (2nd) point of the contour.
    size_t i      = idx_start;
    if (++ i == contour.size())
        i = 0;
    // Previous point of the contour.
    size_t iprev  = idx_start;
    // Length of the contour curve taken at iprev.
    double lprev  = 0;
    for (;;) {
        double l = closed_contour_distance_ccw(p0, params[i], length);
        if (l >= length_to_take) {
            // Trim the last segment.
            double t = double(length_to_take - lprev) / (l - lprev);
            pl.points.emplace_back(lerp(contour[iprev], contour[i], t));
            return length_to_take;
        }
        // Continue with the other segments.
        pl.points.emplace_back(contour[i]);
        if (i == idx_end)
            return l;
        iprev = i;
        lprev = l;
        if (++ i == contour.size())
            i = 0;
    }
    assert(false);
    return 0;
}

// Connect end of pl1 to the start of pl2 using the perimeter contour.
// If clockwise, then a clockwise segment from idx_start to idx_end is taken, otherwise a counter-clockwise segment is being taken.
static void take(Polyline &pl1, const Polyline &pl2, const Points &contour, size_t idx_start, size_t idx_end, bool clockwise)
{
#ifndef NDEBUG
	assert(idx_start != idx_end);
    assert(pl1.size() >= 2);
    assert(pl2.size() >= 2);
#endif /* NDEBUG */

	{
		// Reserve memory at pl1 for the connecting contour and pl2.
		int new_points = int(idx_end) - int(idx_start) - 1;
		if (new_points < 0)
			new_points += int(contour.size());
		pl1.points.reserve(pl1.points.size() + size_t(new_points) + pl2.points.size());
	}

	if (clockwise)
        take_cw_full(pl1, contour, idx_start, idx_end);
	else
        take_ccw_full(pl1, contour, idx_start, idx_end);

    pl1.points.insert(pl1.points.end(), pl2.points.begin() + 1, pl2.points.end());
}

static void take(Polyline &pl1, const Polyline &pl2, const Points &contour, ContourIntersectionPoint *cp_start, ContourIntersectionPoint *cp_end, bool clockwise)
{
    assert(cp_start->prev_on_contour != nullptr);
    assert(cp_start->next_on_contour != nullptr);
    assert(cp_end  ->prev_on_contour != nullptr);
    assert(cp_end  ->next_on_contour != nullptr);
    assert(cp_start != cp_end);

    take(pl1, pl2, contour, cp_start->point_idx, cp_end->point_idx, clockwise);

    // Mark the contour segments in between cp_start and cp_end as consumed.
    if (clockwise)
        std::swap(cp_start, cp_end);
    if (cp_start->next_on_contour != cp_end)
        for (auto *cp = cp_start->next_on_contour; cp->next_on_contour != cp_end; cp = cp->next_on_contour) {
            cp->consume_prev();
            cp->consume_next();
        }
    cp_start->consume_next();
    cp_end->consume_prev();
}

static void take_limited(
    Polyline &pl1, const Points &contour, const std::vector<double> &params, 
    ContourIntersectionPoint *cp_start, ContourIntersectionPoint *cp_end, bool clockwise, double take_max_length, double line_half_width)
{
#ifndef NDEBUG
    // This is a valid case, where a single infill line connect to two different contours (outer contour + hole or two holes).
//    assert(cp_start != cp_end);
    assert(cp_start->prev_on_contour != nullptr);
    assert(cp_start->next_on_contour != nullptr);
    assert(cp_end  ->prev_on_contour != nullptr);
    assert(cp_end  ->next_on_contour != nullptr);
    assert(pl1.size() >= 2);
    assert(contour.size() + 1 == params.size());
#endif /* NDEBUG */

    if (! (clockwise ? cp_start->could_take_prev() : cp_start->could_take_next()))
        return;

    assert(pl1.points.front() == contour[cp_start->point_idx] || pl1.points.back() == contour[cp_start->point_idx]);
    bool        add_at_start = pl1.points.front() == contour[cp_start->point_idx];
    Points      pl_tmp;
    if (add_at_start) {
        pl_tmp = std::move(pl1.points);
        pl1.points.clear();
    }

    {
        // Reserve memory at pl1 for the perimeter segment.
        // Pessimizing - take the complete segment.
        int new_points = int(cp_end->point_idx) - int(cp_start->point_idx) - 1;
        if (new_points < 0)
            new_points += int(contour.size());
        pl1.points.reserve(pl1.points.size() + pl_tmp.size() + size_t(new_points));
    }

    double length = params.back();
    double length_to_go = take_max_length;
    cp_start->consumed = true;
    if (cp_start == cp_end) {
        length_to_go = std::max(0., std::min(length_to_go, length - line_half_width));
        length_to_go = std::min(length_to_go, clockwise ? cp_start->contour_not_taken_length_prev : cp_start->contour_not_taken_length_next);
        cp_start->consume_prev();
        cp_start->consume_next();
        if (length_to_go > SCALED_EPSILON)
            clockwise ?
                take_cw_limited (pl1, contour, params, cp_start->point_idx, cp_start->point_idx, length_to_go) :
                take_ccw_limited(pl1, contour, params, cp_start->point_idx, cp_start->point_idx, length_to_go);
    } else if (clockwise) {
        // Going clockwise from cp_start to cp_end.
        assert(cp_start != cp_end);
        for (ContourIntersectionPoint *cp = cp_start; cp != cp_end; cp = cp->prev_on_contour) {
            // Length of the segment from cp to cp->prev_on_contour.
            double l = closed_contour_distance_cw(cp->param, cp->prev_on_contour->param, length);
            length_to_go = std::min(length_to_go, cp->contour_not_taken_length_prev);
            //if (cp->prev_on_contour->consumed)
                // Don't overlap with an already extruded infill line.
                length_to_go = std::max(0., std::min(length_to_go, l - line_half_width));
            cp->consume_prev();
            if (l >= length_to_go) {
                if (length_to_go > SCALED_EPSILON) {
                    cp->prev_on_contour->trim_next(l - length_to_go);
                    take_cw_limited(pl1, contour, params, cp->point_idx, cp->prev_on_contour->point_idx, length_to_go);
                }
                break;
            } else {
                cp->prev_on_contour->trim_next(0.);
                take_cw_full(pl1, contour, cp->point_idx, cp->prev_on_contour->point_idx);
                length_to_go -= l;
            }
        }
    } else {
        assert(cp_start != cp_end);
        for (ContourIntersectionPoint *cp = cp_start; cp != cp_end; cp = cp->next_on_contour) {
            double l = closed_contour_distance_ccw(cp->param, cp->next_on_contour->param, length);
            length_to_go = std::min(length_to_go, cp->contour_not_taken_length_next);
            //if (cp->next_on_contour->consumed)
                // Don't overlap with an already extruded infill line.
                length_to_go = std::max(0., std::min(length_to_go, l - line_half_width));
            cp->consume_next();
            if (l >= length_to_go) {
                if (length_to_go > SCALED_EPSILON) {
                    cp->next_on_contour->trim_prev(l - length_to_go);
                    take_ccw_limited(pl1, contour, params, cp->point_idx, cp->next_on_contour->point_idx, length_to_go);
                }
                break;
            } else {
                cp->next_on_contour->trim_prev(0.);
                take_ccw_full(pl1, contour, cp->point_idx, cp->next_on_contour->point_idx);
                length_to_go -= l;
            }
        }
    }

    if (add_at_start) {
        pl1.reverse();
        append(pl1.points, pl_tmp);
    }
}

// Return an index of start of a segment and a point of the clipping point at distance from the end of polyline.
struct SegmentPoint {
	// Segment index, defining a line <idx_segment, idx_segment + 1).
	size_t idx_segment = std::numeric_limits<size_t>::max();
	// Parameter of point in <0, 1) along the line <idx_segment, idx_segment + 1)
	double t;
	Vec2d  point;

	bool valid() const { return idx_segment != std::numeric_limits<size_t>::max(); }
};

static inline SegmentPoint clip_start_segment_and_point(const Points &polyline, double distance)
{
	assert(polyline.size() >= 2);
	assert(distance > 0.);
	// Initialized to "invalid".
	SegmentPoint out;
	if (polyline.size() >= 2) {
	    Vec2d pt_prev = polyline.front().cast<double>();
        for (size_t i = 1; i < polyline.size(); ++ i) {
			Vec2d pt = polyline[i].cast<double>();
			Vec2d v = pt - pt_prev;
	        double l = v.norm();
	        if (l > distance) {
	        	out.idx_segment = i - 1;
	        	out.t 			= distance / l;
	        	out.point 		= pt_prev + out.t * v;
	            break;
	        }
	        distance -= l;
	        pt_prev = pt;
	    }
	}
	return out;
}

static inline SegmentPoint clip_end_segment_and_point(const Points &polyline, double distance)
{
	assert(polyline.size() >= 2);
	assert(distance > 0.);
	// Initialized to "invalid".
	SegmentPoint out;
	if (polyline.size() >= 2) {
	    Vec2d pt_next = polyline.back().cast<double>();
		for (int i = int(polyline.size()) - 2; i >= 0; -- i) {
			Vec2d pt = polyline[i].cast<double>();
			Vec2d v = pt - pt_next;
	        double l = v.norm();
	        if (l > distance) {
	        	out.idx_segment = i;
	        	out.t 			= distance / l;
	        	out.point 		= pt_next + out.t * v;
				// Store the parameter referenced to the starting point of a segment.
				out.t			= 1. - out.t;
	            break;
	        }
	        distance -= l;
	        pt_next = pt;
	    }
	}
	return out;
}

// Calculate intersection of a line with a thick segment.
// Returns Eucledian parameters of the line / thick segment overlap.
static inline bool line_rounded_thick_segment_collision(
    const Vec2d &line_a,    const Vec2d &line_b, 
    const Vec2d &segment_a, const Vec2d &segment_b, const double offset, 
    std::pair<double, double> &out_interval)
{
    const Vec2d  line_v0   = line_b - line_a;
    double       lv        = line_v0.squaredNorm();

    const Vec2d  segment_v = segment_b - segment_a;
    const double segment_l = segment_v.norm();
    const double offset2   = offset * offset;

    bool intersects = false;
    if (lv < SCALED_EPSILON * SCALED_EPSILON)
    {
        // Very short line vector. Just test whether the center point is inside the offset line.
        Vec2d lpt = 0.5 * (line_a + line_b);
        if (segment_l > SCALED_EPSILON) {
            struct Linef { Vec2d a, b; };
            intersects = line_alg::distance_to_squared(Linef{ segment_a, segment_b }, lpt) < offset2;
        } else
            intersects = (0.5 * (segment_a + segment_b) - lpt).squaredNorm() < offset2;
        if (intersects) {
            out_interval.first = 0.;
            out_interval.second = sqrt(lv);
        }
    }
    else
    {
        // Output interval.
        double tmin = std::numeric_limits<double>::max();
        double tmax = -tmin;
        auto extend_interval = [&tmin, &tmax](double atmin, double atmax) {
            tmin = std::min(tmin, atmin);
            tmax = std::max(tmax, atmax);
        };

        // Intersections with the inflated segment end points.
        auto ray_circle_intersection_interval_extend = [&extend_interval, &line_v0](const Vec2d &segment_pt, const double offset2, const Vec2d &line_pt, const Vec2d &line_vec) {
            std::pair<Vec2d, Vec2d> pts;
            Vec2d  p0 = line_pt - segment_pt;
            double c  = - line_pt.dot(p0);
            if (Geometry::ray_circle_intersections_r2_lv2_c(offset2, line_vec.x(), line_vec.y(), line_vec.squaredNorm(), c, pts)) {
                double tmin = (pts.first  - p0).dot(line_v0);
                double tmax = (pts.second - p0).dot(line_v0);
                if (tmin > tmax)
                    std::swap(tmin, tmax);
                tmin = std::max(tmin, 0.);
                tmax = std::min(tmax, 1.);
                if (tmin <= tmax)
                    extend_interval(tmin, tmax);
            }
        };

        // Intersections with the inflated segment.
        if (segment_l > SCALED_EPSILON) {
            ray_circle_intersection_interval_extend(segment_a, offset2, line_a, line_v0);
            ray_circle_intersection_interval_extend(segment_b, offset2, line_a, line_v0);
            // Clip the line segment transformed into a coordinate space of the segment,
            // where the segment spans (0, 0) to (segment_l, 0).
            const Vec2d dir_x = segment_v / segment_l;
            const Vec2d dir_y(- dir_x.y(), dir_x.x());
            const Vec2d line_p0(line_a - segment_a);
            std::pair<double, double> interval;
            if (Geometry::liang_barsky_line_clipping_interval(
                    Vec2d(line_p0.dot(dir_x), line_p0.dot(dir_y)),
                    Vec2d(line_v0.dot(dir_x), line_v0.dot(dir_y)), 
                    BoundingBoxf(Vec2d(0., - offset), Vec2d(segment_l, offset)), 
                    interval))
                extend_interval(interval.first, interval.second);
        } else
            ray_circle_intersection_interval_extend(0.5 * (segment_a + segment_b), offset, line_a, line_v0);

        intersects = tmin <= tmax;
        if (intersects) {
            lv = sqrt(lv);
            out_interval.first  = tmin * lv;
            out_interval.second = tmax * lv;
        }
    }

#if 0
    {
        BoundingBox bbox;
        bbox.merge(line_a.cast<coord_t>());
        bbox.merge(line_a.cast<coord_t>());
        bbox.merge(segment_a.cast<coord_t>());
        bbox.merge(segment_b.cast<coord_t>());
        static int iRun = 0;
        ::Slic3r::SVG svg(debug_out_path("%s-%03d.svg", "line-thick-segment-intersect", iRun ++), bbox);
        svg.draw(Line(line_a.cast<coord_t>(), line_b.cast<coord_t>()), "black");
        svg.draw(Line(segment_a.cast<coord_t>(), segment_b.cast<coord_t>()), "blue", offset * 2.);
        svg.draw(segment_a.cast<coord_t>(), "blue", offset);
        svg.draw(segment_b.cast<coord_t>(), "blue", offset);
        svg.draw(Line(segment_a.cast<coord_t>(), segment_b.cast<coord_t>()), "black");
        if (intersects)
            svg.draw(Line((line_a + (line_b - line_a).normalized() * out_interval.first).cast<coord_t>(),
                          (line_a + (line_b - line_a).normalized() * out_interval.second).cast<coord_t>()), "red");
    }
#endif

    return intersects;
}

static inline bool inside_interval(double low, double high, double p)
{
    return p >= low && p <= high;
}

static inline bool interval_inside_interval(double outer_low, double outer_high, double inner_low, double inner_high, double epsilon)
{
    outer_low -= epsilon;
    outer_high += epsilon;
    return inside_interval(outer_low, outer_high, inner_low) && inside_interval(outer_low, outer_high, inner_high);
}

static inline bool cyclic_interval_inside_interval(double outer_low, double outer_high, double inner_low, double inner_high, double length)
{
    if (outer_low > outer_high)
        outer_high += length;
    if (inner_low > inner_high)
        inner_high += length;
    else if (inner_high < outer_low) {
        inner_low += length;
        inner_high += length;
    }
    return interval_inside_interval(outer_low, outer_high, inner_low, inner_high, double(SCALED_EPSILON));
}

// #define INFILL_DEBUG_OUTPUT

#ifdef INFILL_DEBUG_OUTPUT
static void export_infill_to_svg(
    // Boundary contour, along which the perimeter extrusions will be drawn.
    const std::vector<Points>                              &boundary,
    // Parametrization of boundary with Euclidian length.
    const std::vector<std::vector<double>>                 &boundary_parameters,
    // Intersections (T-joints) of the infill lines with the boundary.
    std::vector<std::vector<ContourIntersectionPoint*>>    &boundary_intersections,
    // Infill lines, either completely inside the boundary, or touching the boundary.
    const Polylines                                        &infill,
    const coord_t                                           scaled_spacing,
    const std::string                                      &path,
    const Polylines                                        &overlap_lines = Polylines(),
    const Polylines                                        &polylines = Polylines(),
    const Points                                           &pts = Points())
{
    Polygons    polygons;
    std::transform(boundary.begin(), boundary.end(), std::back_inserter(polygons), [](auto &pts) { return Polygon(pts); });
    ExPolygons  expolygons = union_ex(polygons);
    BoundingBox bbox = get_extents(polygons);
    bbox.offset(scale_(3.));

    ::Slic3r::SVG svg(path, bbox);
    // Draw the filled infill polygons.
    svg.draw(expolygons);

    // Draw the pieces of boundary allowed to be used as anchors of infill lines, not yet consumed.
    const std::string color_boundary_trimmed     = "blue";
    const std::string color_boundary_not_trimmed = "yellow";
    const coordf_t    boundary_line_width        = scaled_spacing;
    svg.draw_outline(polygons, "red", boundary_line_width);
    for (const std::vector<ContourIntersectionPoint*> &intersections : boundary_intersections) {
        const size_t                 boundary_idx  = &intersections - boundary_intersections.data();
        const Points                &contour       = boundary[boundary_idx];
        const std::vector<double>   &contour_param = boundary_parameters[boundary_idx];
        for (const ContourIntersectionPoint *ip : intersections) {
            assert(ip->next_trimmed == ip->next_on_contour->prev_trimmed);
            assert(ip->prev_trimmed == ip->prev_on_contour->next_trimmed);
            {
                Polyline pl { contour[ip->point_idx] };
                if (ip->next_trimmed) {
                    if (ip->contour_not_taken_length_next > SCALED_EPSILON) {
                        take_ccw_limited(pl, contour, contour_param, ip->point_idx, ip->next_on_contour->point_idx, ip->contour_not_taken_length_next);
                        svg.draw(pl, color_boundary_trimmed, boundary_line_width);
                    }
                } else {
                    take_ccw_full(pl, contour, ip->point_idx, ip->next_on_contour->point_idx);
                    svg.draw(pl, color_boundary_not_trimmed, boundary_line_width);
                }
            }
            {
                Polyline pl { contour[ip->point_idx] };
                if (ip->prev_trimmed) {
                    if (ip->contour_not_taken_length_prev > SCALED_EPSILON) {
                        take_cw_limited(pl, contour, contour_param, ip->point_idx, ip->prev_on_contour->point_idx, ip->contour_not_taken_length_prev);
                        svg.draw(pl, color_boundary_trimmed, boundary_line_width);
                    }
                } else {
                    take_cw_full(pl, contour, ip->point_idx, ip->prev_on_contour->point_idx);
                    svg.draw(pl, color_boundary_not_trimmed, boundary_line_width);
                }
            }
        }
    }

    // Draw the full infill polygon boundary.
    svg.draw_outline(polygons, "green");

    // Draw the infill lines, first the full length with red color, then a slightly shortened length with black color.
    svg.draw(infill, "brown");
    static constexpr double trim_length = scale_(0.15);
    for (Polyline polyline : infill)
        if (! polyline.empty()) {
            Vec2d a = polyline.points.front().cast<double>();
            Vec2d d = polyline.points.back().cast<double>();
            if (polyline.size() == 2) {
                Vec2d v = d - a;
                double l = v.norm();
                if (l > 2. * trim_length) {
                    a += v * trim_length / l;
                    d -= v * trim_length / l;
                    polyline.points.front() = a.cast<coord_t>();
                    polyline.points.back() = d.cast<coord_t>();
                } else
                    polyline.points.clear();
            } else if (polyline.size() > 2) {
                Vec2d b = polyline.points[1].cast<double>();
                Vec2d c = polyline.points[polyline.points.size() - 2].cast<double>();
                Vec2d v = b - a;
                double l = v.norm();
                if (l > trim_length) {
                    a += v * trim_length / l;
                    polyline.points.front() = a.cast<coord_t>();
                } else
                    polyline.points.erase(polyline.points.begin());
                v = d - c;
                l = v.norm();
                if (l > trim_length)
                    polyline.points.back() = (d - v * trim_length / l).cast<coord_t>();
                else
                    polyline.points.pop_back();
            }
            svg.draw(polyline, "black");
        }

    svg.draw(overlap_lines, "red", scale_(0.05));
    svg.draw(polylines, "magenta", scale_(0.05));
    svg.draw(pts, "magenta");
}
#endif // INFILL_DEBUG_OUTPUT

#ifndef NDEBUG
bool validate_boundary_intersections(const std::vector<std::vector<ContourIntersectionPoint*>> &boundary_intersections)
{
    for (const std::vector<ContourIntersectionPoint*>& contour : boundary_intersections) {
        for (ContourIntersectionPoint* ip : contour) {
            assert(ip->next_trimmed == ip->next_on_contour->prev_trimmed);
            assert(ip->prev_trimmed == ip->prev_on_contour->next_trimmed);
        }
    }
    return true;
}
#endif // NDEBUG

// Mark the segments of split boundary as consumed if they are very close to some of the infill line.
void mark_boundary_segments_touching_infill(
    // Boundary contour, along which the perimeter extrusions will be drawn.
	const std::vector<Points>                              &boundary,
    // Parametrization of boundary with Euclidian length.
	const std::vector<std::vector<double>>                 &boundary_parameters,
    // Intersections (T-joints) of the infill lines with the boundary.
    std::vector<std::vector<ContourIntersectionPoint*>>    &boundary_intersections,
    // Bounding box around the boundary.
	const BoundingBox 		                               &boundary_bbox,
    // Infill lines, either completely inside the boundary, or touching the boundary.
	const Polylines 		                               &infill,
    // How much of the infill ends should be ignored when marking the boundary segments?
	const double			                                clip_distance,
    // Roughly width of the infill line.
	const double 				                            distance_colliding)
{
    assert(boundary.size() == boundary_parameters.size());
#ifndef NDEBUG
    for (size_t i = 0; i < boundary.size(); ++ i)
        assert(boundary[i].size() + 1 == boundary_parameters[i].size());
    assert(validate_boundary_intersections(boundary_intersections));
#endif

#ifdef INFILL_DEBUG_OUTPUT
    static int iRun = 0;
    ++ iRun;
    int iStep = 0;
    export_infill_to_svg(boundary, boundary_parameters, boundary_intersections, infill, distance_colliding * 2, debug_out_path("%s-%03d.svg", "FillBase-mark_boundary_segments_touching_infill-start", iRun));
    Polylines perimeter_overlaps;
#endif // INFILL_DEBUG_OUTPUT

	EdgeGrid::Grid grid;
    // Make sure that the the grid is big enough for queries against the thick segment.
	grid.set_bbox(boundary_bbox.inflated(distance_colliding * 1.43));
	// Inflate the bounding box by a thick line width.
	grid.create(boundary, coord_t(std::max(clip_distance, distance_colliding) + scale_(10.)));

    // Visitor for the EdgeGrid to trim boundary_intersections with existing infill lines.
	struct Visitor {
		Visitor(const EdgeGrid::Grid &grid,
                const std::vector<Points> &boundary, const std::vector<std::vector<double>> &boundary_parameters, std::vector<std::vector<ContourIntersectionPoint*>> &boundary_intersections,
                const double radius) :
			grid(grid), boundary(boundary), boundary_parameters(boundary_parameters), boundary_intersections(boundary_intersections), radius(radius), trim_l_threshold(0.5 * radius) {}

        // Init with a segment of an infill line.
		void init(const Vec2d &infill_pt1, const Vec2d &infill_pt2) {
			this->infill_pt1 = &infill_pt1;
			this->infill_pt2 = &infill_pt2;
            this->infill_bbox.reset();
            this->infill_bbox.merge(infill_pt1);
            this->infill_bbox.merge(infill_pt2);
            this->infill_bbox.offset(this->radius + SCALED_EPSILON);
        }

		bool operator()(coord_t iy, coord_t ix) {
			// Called with a row and colum of the grid cell, which is intersected by a line.
			auto cell_data_range = this->grid.cell_data_range(iy, ix);
			for (auto it_contour_and_segment = cell_data_range.first; it_contour_and_segment != cell_data_range.second; ++ it_contour_and_segment) {
				// End points of the line segment and their vector.
				auto segment = this->grid.segment(*it_contour_and_segment);
                std::vector<ContourIntersectionPoint*> &intersections = boundary_intersections[it_contour_and_segment->first];
                if (intersections.empty())
                    // There is no infil line touching this contour, thus effort will be saved to calculate overlap with other infill lines.
                    continue;
				const Vec2d seg_pt1 = segment.first.cast<double>();
				const Vec2d seg_pt2 = segment.second.cast<double>();
                std::pair<double, double> interval;
                BoundingBoxf bbox_seg;
                bbox_seg.merge(seg_pt1);
                bbox_seg.merge(seg_pt2);
#ifdef INFILL_DEBUG_OUTPUT
                //if (this->infill_bbox.overlap(bbox_seg)) this->perimeter_overlaps.push_back({ segment.first, segment.second });
#endif // INFILL_DEBUG_OUTPUT
                if (this->infill_bbox.overlap(bbox_seg) && line_rounded_thick_segment_collision(seg_pt1, seg_pt2, *this->infill_pt1, *this->infill_pt2, this->radius, interval)) {
                    // The boundary segment intersects with the infill segment thickened by radius.
                    // Interval is specified in Euclidian length from seg_pt1 to seg_pt2.
                    // 1) Find the Euclidian parameters of seg_pt1 and seg_pt2 on its boundary contour.
                    const std::vector<double> &contour_parameters = boundary_parameters[it_contour_and_segment->first];
                    const double contour_length = contour_parameters.back();
					const double param_seg_pt1  = contour_parameters[it_contour_and_segment->second];
                    const double param_seg_pt2  = contour_parameters[it_contour_and_segment->second + 1];
#ifdef INFILL_DEBUG_OUTPUT
                    this->perimeter_overlaps.push_back({ Point((seg_pt1 + (seg_pt2 - seg_pt1).normalized() * interval.first).cast<coord_t>()),
                                                         Point((seg_pt1 + (seg_pt2 - seg_pt1).normalized() * interval.second).cast<coord_t>()) });
#endif // INFILL_DEBUG_OUTPUT
                    assert(interval.first >= 0.);
                    assert(interval.second >= 0.);
                    assert(interval.first <= interval.second);
                    const auto param_overlap1 = std::min(param_seg_pt2, param_seg_pt1 + interval.first);
                    const auto param_overlap2 = std::min(param_seg_pt2, param_seg_pt1 + interval.second);
                    // 2) Find the ContourIntersectionPoints before param_overlap1 and after param_overlap2.
                    // Find the span of ContourIntersectionPoints, that is trimmed by the interval (param_overlap1, param_overlap2).
                    ContourIntersectionPoint *ip_low, *ip_high;
                    if (intersections.size() == 1) {
                        // Only a single infill line touches this contour.
                        ip_low = ip_high = intersections.front();
                    } else {
                        assert(intersections.size() > 1);
                        auto it_low  = Slic3r::lower_bound_by_predicate(intersections.begin(), intersections.end(), [param_overlap1](const ContourIntersectionPoint *l) { return l->param < param_overlap1; });
                        auto it_high = Slic3r::lower_bound_by_predicate(intersections.begin(), intersections.end(), [param_overlap2](const ContourIntersectionPoint *l) { return l->param < param_overlap2; });
                        ip_low  = it_low  == intersections.end() ? intersections.front() : *it_low;
                        ip_high = it_high == intersections.end() ? intersections.front() : *it_high;
                        if (ip_low->param != param_overlap1)
                            ip_low = ip_low->prev_on_contour;
                        assert(ip_low != ip_high);
                        // Verify that the interval (param_overlap1, param_overlap2) is inside the interval (ip_low->param, ip_high->param).
                        assert(cyclic_interval_inside_interval(ip_low->param, ip_high->param, param_overlap1, param_overlap2, contour_length));
                    }
                    assert(validate_boundary_intersections(boundary_intersections));
                    // Mark all ContourIntersectionPoints between ip_low and ip_high as consumed.
                    if (ip_low->next_on_contour != ip_high)
                        for (ContourIntersectionPoint *ip = ip_low->next_on_contour; ip != ip_high; ip = ip->next_on_contour) {
                            ip->consume_prev();
                            ip->consume_next();
                        }
                    // Subtract the interval from the first and last segments.
                    double trim_l = closed_contour_distance_ccw(ip_low->param, param_overlap1, contour_length);
                    //if (trim_l > trim_l_threshold)
                        ip_low->trim_next(trim_l);
                    trim_l = closed_contour_distance_ccw(param_overlap2, ip_high->param, contour_length);
                    //if (trim_l > trim_l_threshold)
                        ip_high->trim_prev(trim_l);
                    assert(ip_low->next_trimmed == ip_high->prev_trimmed);
                    assert(validate_boundary_intersections(boundary_intersections));
                    //FIXME mark point as consumed?
                    //FIXME verify the sequence between prev and next?
#ifdef INFILL_DEBUG_OUTPUT
					{
#if 0
                        static size_t iRun = 0;
						ExPolygon expoly(Polygon(*grid.contours().front()));
						for (size_t i = 1; i < grid.contours().size(); ++i)
							expoly.holes.emplace_back(Polygon(*grid.contours()[i]));
						SVG svg(debug_out_path("%s-%d.svg", "FillBase-mark_boundary_segments_touching_infill", iRun ++).c_str(), get_extents(expoly));
						svg.draw(expoly, "green");
						svg.draw(Line(segment.first, segment.second), "red");
						svg.draw(Line(this->infill_pt1->cast<coord_t>(), this->infill_pt2->cast<coord_t>()), "magenta");
#endif
                    }
#endif // INFILL_DEBUG_OUTPUT
				}
			}
			// Continue traversing the grid along the edge.
			return true;
		}

		const EdgeGrid::Grid 			   			        &grid;
		const std::vector<Points> 					        &boundary;
        const std::vector<std::vector<double>>              &boundary_parameters;
        std::vector<std::vector<ContourIntersectionPoint*>> &boundary_intersections;
		// Maximum distance between the boundary and the infill line allowed to consider the boundary not touching the infill line.
		const double								         radius;
        // Region around the contour / infill line intersection point, where the intersections are ignored.
        const double                                         trim_l_threshold;

		const Vec2d 								        *infill_pt1;
		const Vec2d 								        *infill_pt2;
        BoundingBoxf                                         infill_bbox;

#ifdef INFILL_DEBUG_OUTPUT
        Polylines                                            perimeter_overlaps;
#endif // INFILL_DEBUG_OUTPUT
	} visitor(grid, boundary, boundary_parameters, boundary_intersections, distance_colliding);

	for (const Polyline &polyline : infill) {
#ifdef INFILL_DEBUG_OUTPUT
        ++ iStep;
#endif // INFILL_DEBUG_OUTPUT
		// Clip the infill polyline by the Eucledian distance along the polyline.
		SegmentPoint start_point = clip_start_segment_and_point(polyline.points, clip_distance);
		SegmentPoint end_point   = clip_end_segment_and_point(polyline.points, clip_distance);
		if (start_point.valid() && end_point.valid() && 
			(start_point.idx_segment < end_point.idx_segment || (start_point.idx_segment == end_point.idx_segment && start_point.t < end_point.t))) {
			// The clipped polyline is non-empty.
#ifdef INFILL_DEBUG_OUTPUT
            visitor.perimeter_overlaps.clear();
#endif // INFILL_DEBUG_OUTPUT
			for (size_t point_idx = start_point.idx_segment; point_idx <= end_point.idx_segment; ++ point_idx) {
//FIXME extend the EdgeGrid to suport tracing a thick line.
#if 0
				Point pt1, pt2;
				Vec2d pt1d, pt2d;
				if (point_idx == start_point.idx_segment) {
					pt1d = start_point.point;
					pt1  = pt1d.cast<coord_t>();
				} else {
					pt1  = polyline.points[point_idx];
					pt1d = pt1.cast<double>();
				}
				if (point_idx == start_point.idx_segment) {
					pt2d = end_point.point;
					pt2  = pt1d.cast<coord_t>();
				} else {
					pt2  = polyline.points[point_idx];
					pt2d = pt2.cast<double>();
				}
				visitor.init(pt1d, pt2d);
				grid.visit_cells_intersecting_thick_line(pt1, pt2, distance_colliding, visitor);
#else
				Vec2d pt1 = (point_idx == start_point.idx_segment) ? start_point.point : polyline.points[point_idx    ].cast<double>();
				Vec2d pt2 = (point_idx == end_point  .idx_segment) ? end_point  .point : polyline.points[point_idx + 1].cast<double>();
#if 0
					{
						static size_t iRun = 0;
						ExPolygon expoly(Polygon(*grid.contours().front()));
						for (size_t i = 1; i < grid.contours().size(); ++i)
							expoly.holes.emplace_back(Polygon(*grid.contours()[i]));
						SVG svg(debug_out_path("%s-%d.svg", "FillBase-mark_boundary_segments_touching_infill0", iRun ++).c_str(), get_extents(expoly));
						svg.draw(expoly, "green");
						svg.draw(polyline, "blue");
						svg.draw(Line(pt1.cast<coord_t>(), pt2.cast<coord_t>()), "magenta", scale_(0.1));
					}
#endif
				visitor.init(pt1, pt2);
				// Simulate tracing of a thick line. This only works reliably if distance_colliding <= grid cell size.
				Vec2d v = (pt2 - pt1).normalized() * distance_colliding;
				Vec2d vperp = perp(v);
				Vec2d a = pt1 - v - vperp;
				Vec2d b = pt2 + v - vperp;
                assert(grid.bbox().contains(a.cast<coord_t>()));
                assert(grid.bbox().contains(b.cast<coord_t>()));
				grid.visit_cells_intersecting_line(a.cast<coord_t>(), b.cast<coord_t>(), visitor);
				a = pt1 - v + vperp;
				b = pt2 + v + vperp;
                assert(grid.bbox().contains(a.cast<coord_t>()));
                assert(grid.bbox().contains(b.cast<coord_t>()));
                grid.visit_cells_intersecting_line(a.cast<coord_t>(), b.cast<coord_t>(), visitor);
#endif
#ifdef INFILL_DEBUG_OUTPUT
//                export_infill_to_svg(boundary, boundary_parameters, boundary_intersections, infill, distance_colliding * 2, debug_out_path("%s-%03d-%03d-%03d.svg", "FillBase-mark_boundary_segments_touching_infill-step", iRun, iStep, int(point_idx)), { polyline });
#endif // INFILL_DEBUG_OUTPUT
			}
#ifdef INFILL_DEBUG_OUTPUT
            Polylines perimeter_overlaps;
            export_infill_to_svg(boundary, boundary_parameters, boundary_intersections, infill, distance_colliding * 2, debug_out_path("%s-%03d-%03d.svg", "FillBase-mark_boundary_segments_touching_infill-step", iRun, iStep), visitor.perimeter_overlaps, { polyline });
            append(perimeter_overlaps, std::move(visitor.perimeter_overlaps));
            perimeter_overlaps.clear();
#endif // INFILL_DEBUG_OUTPUT
        }
	}

#ifdef INFILL_DEBUG_OUTPUT
    export_infill_to_svg(boundary, boundary_parameters, boundary_intersections, infill, distance_colliding * 2, debug_out_path("%s-%03d.svg", "FillBase-mark_boundary_segments_touching_infill-end", iRun), perimeter_overlaps);
#endif // INFILL_DEBUG_OUTPUT
    assert(validate_boundary_intersections(boundary_intersections));
}

void Fill::connect_infill(Polylines &&infill_ordered, const ExPolygon &boundary_src, Polylines &polylines_out, const double spacing, const FillParams &params)
{
	assert(! boundary_src.contour.points.empty());
    auto polygons_src = reserve_vector<const Polygon*>(boundary_src.holes.size() + 1);
    polygons_src.emplace_back(&boundary_src.contour);
    for (const Polygon &polygon : boundary_src.holes)
        polygons_src.emplace_back(&polygon);

    connect_infill(std::move(infill_ordered), polygons_src, get_extents(boundary_src.contour), polylines_out, spacing, params);
}

void Fill::connect_infill(Polylines &&infill_ordered, const Polygons &boundary_src, const BoundingBox &bbox, Polylines &polylines_out, const double spacing, const FillParams &params)
{
    auto polygons_src = reserve_vector<const Polygon*>(boundary_src.size());
    for (const Polygon &polygon : boundary_src)
        polygons_src.emplace_back(&polygon);

    connect_infill(std::move(infill_ordered), polygons_src, bbox, polylines_out, spacing, params);
}

void Fill::connect_infill(Polylines &&infill_ordered, const std::vector<const Polygon*> &boundary_src, const BoundingBox &bbox, Polylines &polylines_out, const double spacing, const FillParams &params)
{
	assert(! infill_ordered.empty());
    assert(params.anchor_length     >= 0.);
    assert(params.anchor_length_max >= 0.01f);
    assert(params.anchor_length_max >= params.anchor_length);
    const double anchor_length     = scale_(params.anchor_length);
    const double anchor_length_max = scale_(params.anchor_length_max);

#if 0
    append(polylines_out, infill_ordered);
    return;
#endif

	// 1) Add the end points of infill_ordered to boundary_src.
	std::vector<Points>					   	boundary;
	std::vector<std::vector<double>>        boundary_params;
	boundary.assign(boundary_src.size(), Points());
	boundary_params.assign(boundary_src.size(), std::vector<double>());
	// Mapping the infill_ordered end point to a (contour, point) of boundary.
    static constexpr auto                   boundary_idx_unconnected = std::numeric_limits<size_t>::max();
	std::vector<ContourIntersectionPoint>   map_infill_end_point_to_boundary(infill_ordered.size() * 2, ContourIntersectionPoint{ boundary_idx_unconnected, boundary_idx_unconnected });
	{
		// Project the infill_ordered end points onto boundary_src.
		std::vector<std::pair<EdgeGrid::Grid::ClosestPointResult, size_t>> intersection_points;
		{
			EdgeGrid::Grid grid;
			grid.set_bbox(bbox.inflated(SCALED_EPSILON));
			grid.create(boundary_src, coord_t(scale_(10.)));
			intersection_points.reserve(infill_ordered.size() * 2);
			for (const Polyline &pl : infill_ordered)
				for (const Point *pt : { &pl.points.front(), &pl.points.back() }) {
					EdgeGrid::Grid::ClosestPointResult cp = grid.closest_point(*pt, coord_t(SCALED_EPSILON));
					if (cp.valid()) {
						// The infill end point shall lie on the contour.
						assert(cp.distance <= 3.);
						intersection_points.emplace_back(cp, (&pl - infill_ordered.data()) * 2 + (pt == &pl.points.front() ? 0 : 1));
					}
				}
			std::sort(intersection_points.begin(), intersection_points.end(), [](const std::pair<EdgeGrid::Grid::ClosestPointResult, size_t> &cp1, const std::pair<EdgeGrid::Grid::ClosestPointResult, size_t> &cp2) {
				return   cp1.first.contour_idx < cp2.first.contour_idx ||
						(cp1.first.contour_idx == cp2.first.contour_idx &&
							(cp1.first.start_point_idx < cp2.first.start_point_idx ||
								(cp1.first.start_point_idx == cp2.first.start_point_idx && cp1.first.t < cp2.first.t)));
			});
		}
		auto it = intersection_points.begin();
		auto it_end = intersection_points.end();
        std::vector<std::vector<ContourIntersectionPoint*>> boundary_intersection_points(boundary.size(), std::vector<ContourIntersectionPoint*>());
		for (size_t idx_contour = 0; idx_contour < boundary_src.size(); ++ idx_contour) {
            // Copy contour_src to contour_dst while adding intersection points.
            // Map infill end points map_infill_end_point_to_boundary to the newly inserted boundary points of contour_dst.
            // chain the points of map_infill_end_point_to_boundary along their respective contours.
			const Polygon &contour_src = *boundary_src[idx_contour];
			Points		  &contour_dst = boundary[idx_contour];
            std::vector<ContourIntersectionPoint*> &contour_intersection_points = boundary_intersection_points[idx_contour];
            ContourIntersectionPoint *pfirst = nullptr;
            ContourIntersectionPoint *pprev  = nullptr;
            {
                // Reserve intersection points.
                size_t n_intersection_points = 0;
                for (auto itx = it; itx != it_end && itx->first.contour_idx == idx_contour; ++ itx)
                    ++ n_intersection_points;
                contour_intersection_points.reserve(n_intersection_points);
            }
			for (size_t idx_point = 0; idx_point < contour_src.points.size(); ++ idx_point) {
                const Point &ipt = contour_src.points[idx_point];
                if (contour_dst.empty() || contour_dst.back() != ipt)
				    contour_dst.emplace_back(ipt);
				for (; it != it_end && it->first.contour_idx == idx_contour && it->first.start_point_idx == idx_point; ++ it) {
					// Add these points to the destination contour.
                    const Polyline  &infill_line = infill_ordered[it->second / 2];
                    const Point     &pt          = (it->second & 1) ? infill_line.points.back() : infill_line.points.front();
#ifndef NDEBUG
                    {
					    const Vec2d pt1 = ipt.cast<double>();
					    const Vec2d pt2 = (idx_point + 1 == contour_src.size() ? contour_src.points.front() : contour_src.points[idx_point + 1]).cast<double>();
					    const Vec2d ptx = lerp(pt1, pt2, it->first.t);
                        assert(std::abs(pt.x() - pt.x()) < SCALED_EPSILON);
                        assert(std::abs(pt.y() - pt.y()) < SCALED_EPSILON);
                    }
#endif // NDEBUG
                    size_t idx_tjoint_pt = 0;
                    if (idx_point + 1 < contour_src.size() || pt != contour_dst.front()) {
                        if (pt != contour_dst.back())
                            contour_dst.emplace_back(pt);
                        idx_tjoint_pt = contour_dst.size() - 1;
                    }
					map_infill_end_point_to_boundary[it->second] = ContourIntersectionPoint{ idx_contour, idx_tjoint_pt };
                    ContourIntersectionPoint *pthis = &map_infill_end_point_to_boundary[it->second];
                    if (pprev) {
                        pprev->next_on_contour = pthis;
                        pthis->prev_on_contour = pprev;                        
                    } else
                        pfirst = pthis;
                    contour_intersection_points.emplace_back(pthis);
                    pprev = pthis;
				}
                if (pfirst) {
                    pprev->next_on_contour = pfirst;
                    pfirst->prev_on_contour = pprev;
                }
			}
			// Parametrize the new boundary with the intersection points inserted.
			std::vector<double> &contour_params = boundary_params[idx_contour];
			contour_params.assign(contour_dst.size() + 1, 0.);
            for (size_t i = 1; i < contour_dst.size(); ++i) {
                contour_params[i] = contour_params[i - 1] + (contour_dst[i].cast<double>() - contour_dst[i - 1].cast<double>()).norm();
                assert(contour_params[i] > contour_params[i - 1]);
            }
            contour_params.back() = contour_params[contour_params.size() - 2] + (contour_dst.back().cast<double>() - contour_dst.front().cast<double>()).norm();
            assert(contour_params.back() > contour_params[contour_params.size() - 2]);
            // Map parameters from contour_params to boundary_intersection_points.
            for (ContourIntersectionPoint *ip : contour_intersection_points)
                ip->param = contour_params[ip->point_idx];
            // and measure distance to the previous and next intersection point.
            const double contour_length = contour_params.back();
            for (ContourIntersectionPoint *ip : contour_intersection_points) 
                if (ip->next_on_contour == ip) {
                    assert(ip->prev_on_contour == ip);
                    ip->contour_not_taken_length_prev = ip->contour_not_taken_length_next = contour_length;
                } else {
                    assert(ip->prev_on_contour != ip);
                    ip->contour_not_taken_length_prev = closed_contour_distance_ccw(ip->prev_on_contour->param, ip->param, contour_length);
                    ip->contour_not_taken_length_next = closed_contour_distance_ccw(ip->param, ip->next_on_contour->param, contour_length);
                }
		}

		assert(boundary.size() == boundary_src.size());
#if 0
        // Adaptive Cubic Infill produces infill lines, which not always end at the outer boundary.
        assert(std::all_of(map_infill_end_point_to_boundary.begin(), map_infill_end_point_to_boundary.end(),
			[&boundary](const ContourIntersectionPoint &contour_point) {
				return contour_point.contour_idx < boundary.size() && contour_point.point_idx < boundary[contour_point.contour_idx].size();
			}));
#endif

        // Mark the points and segments of split boundary as consumed if they are very close to some of the infill line.
        {
            // @supermerill used 2. * scale_(spacing)
            const double clip_distance      = 1.7 * scale_(spacing);
            // Allow a bit of overlap. This value must be slightly higher than the overlap of FillAdaptive, otherwise
            // the anchors of the adaptive infill will mask the other side of the perimeter line.
            // (see connect_lines_using_hooks() in FillAdaptive.cpp)
            const double distance_colliding = 0.8 * scale_(spacing);
            mark_boundary_segments_touching_infill(boundary, boundary_params, boundary_intersection_points, bbox, infill_ordered, clip_distance, distance_colliding);
        }
	}

	// Connection from end of one infill line to the start of another infill line.
	//const double length_max = scale_(spacing);
//	const auto length_max = double(scale_((2. / params.density) * spacing));
	const auto length_max = double(scale_((1000. / params.density) * spacing));
	std::vector<size_t> merged_with(infill_ordered.size());
    std::iota(merged_with.begin(), merged_with.end(), 0);
	struct ConnectionCost {
		ConnectionCost(size_t idx_first, double cost, bool reversed) : idx_first(idx_first), cost(cost), reversed(reversed) {}
		size_t  idx_first;
		double  cost;
		bool 	reversed;
	};
	std::vector<ConnectionCost> connections_sorted;
	connections_sorted.reserve(infill_ordered.size() * 2 - 2);
	for (size_t idx_chain = 1; idx_chain < infill_ordered.size(); ++ idx_chain) {
		const Polyline 						&pl1 			= infill_ordered[idx_chain - 1];
		const Polyline 						&pl2 			= infill_ordered[idx_chain];
		const ContourIntersectionPoint		*cp1			= &map_infill_end_point_to_boundary[(idx_chain - 1) * 2 + 1];
		const ContourIntersectionPoint		*cp2			= &map_infill_end_point_to_boundary[idx_chain * 2];
		if (cp1->contour_idx != boundary_idx_unconnected && cp1->contour_idx == cp2->contour_idx) {
			// End points on the same contour. Try to connect them.
            std::pair<double, double> len = path_lengths_along_contour(cp1, cp2, boundary_params[cp1->contour_idx].back());
			if (len.first < length_max)
				connections_sorted.emplace_back(idx_chain - 1, len.first, false);
			if (len.second < length_max)
				connections_sorted.emplace_back(idx_chain - 1, len.second, true);
		}
	}
	std::sort(connections_sorted.begin(), connections_sorted.end(), [](const ConnectionCost& l, const ConnectionCost& r) { return l.cost < r.cost; });

    auto get_and_update_merged_with = [&merged_with](size_t polyline_idx) -> size_t {
        for (size_t last = polyline_idx;;) {
            size_t lower = merged_with[last];
            assert(lower <= last);
            if (lower == last) {
                merged_with[polyline_idx] = last;
                return last;
            }
            last = lower;
        }
        assert(false);
        return std::numeric_limits<size_t>::max();
    };

    const double line_half_width = 0.5 * scale_(spacing);

#if 0
    for (ConnectionCost &connection_cost : connections_sorted) {
		ContourIntersectionPoint *cp1    = &map_infill_end_point_to_boundary[connection_cost.idx_first * 2 + 1];
		ContourIntersectionPoint *cp2    = &map_infill_end_point_to_boundary[(connection_cost.idx_first + 1) * 2];
        assert(cp1 != cp2);
        assert(cp1->contour_idx == cp2->contour_idx && cp1->contour_idx != boundary_idx_unconnected);
        if (cp1->consumed || cp2->consumed)
            continue;
        const double              length = connection_cost.cost;
        bool                      could_connect;
        {
            // cp1, cp2 sorted CCW.
            ContourIntersectionPoint *cp_low  = connection_cost.reversed ? cp2 : cp1;
            ContourIntersectionPoint *cp_high = connection_cost.reversed ? cp1 : cp2;
            assert(std::abs(length - closed_contour_distance_ccw(cp_low->param, cp_high->param, boundary_params[cp1->contour_idx].back())) < SCALED_EPSILON);
            could_connect = ! cp_low->next_trimmed && ! cp_high->prev_trimmed;
            if (could_connect && cp_low->next_on_contour != cp_high) {
                // Other end of cp1, may or may not be on the same contour as cp1.
                const ContourIntersectionPoint *cp1prev = cp1 - 1;
                // Other end of cp2, may or may not be on the same contour as cp2.
                const ContourIntersectionPoint *cp2next = cp2 + 1;
                for (auto *cp = cp_low->next_on_contour; cp != cp_high; cp = cp->next_on_contour)
                    if (cp->consumed || cp == cp1prev || cp == cp2next || cp->prev_trimmed || cp->next_trimmed) {
                        could_connect = false;
                        break;
                    }
            }
        }
        // Indices of the polylines to be connected by a perimeter segment.
        size_t idx_first  = connection_cost.idx_first;
        size_t idx_second = idx_first + 1;
        idx_first = get_and_update_merged_with(idx_first);
        assert(idx_first < idx_second);
        assert(idx_second == merged_with[idx_second]);
        if (could_connect && length < anchor_length_max) {
            // Take the complete contour.
            // Connect the two polygons using the boundary contour.
            take(infill_ordered[idx_first], infill_ordered[idx_second], boundary[cp1->contour_idx], cp1, cp2, connection_cost.reversed);
            // Mark the second polygon as merged with the first one.
            merged_with[idx_second] = merged_with[idx_first];
            infill_ordered[idx_second].points.clear();
        } else {
            // Try to connect cp1 resp. cp2 with a piece of perimeter line.
            take_limited(infill_ordered[idx_first],  boundary[cp1->contour_idx], boundary_params[cp1->contour_idx], cp1, cp2, connection_cost.reversed, anchor_length, line_half_width);
            take_limited(infill_ordered[idx_second], boundary[cp1->contour_idx], boundary_params[cp1->contour_idx], cp2, cp1, ! connection_cost.reversed, anchor_length, line_half_width);
        }
	}
#endif

    struct Arc {
        ContourIntersectionPoint    *intersection;
        double                       arc_length;
    };
    std::vector<Arc> arches;
    arches.reserve(map_infill_end_point_to_boundary.size());
    for (ContourIntersectionPoint &cp : map_infill_end_point_to_boundary)
        if (cp.contour_idx != boundary_idx_unconnected && cp.next_on_contour != &cp && cp.could_connect_next())
            arches.push_back({ &cp, path_length_along_contour_ccw(&cp, cp.next_on_contour, boundary_params[cp.contour_idx].back()) });
    std::sort(arches.begin(), arches.end(), [](const auto &l, const auto &r) { return l.arc_length < r.arc_length; });

    //FIXME improve the Traveling Salesman problem with 2-opt and 3-opt local optimization.
    for (Arc &arc : arches)
        if (! arc.intersection->consumed && ! arc.intersection->next_on_contour->consumed) {
            // Indices of the polylines to be connected by a perimeter segment.
            ContourIntersectionPoint *cp1            = arc.intersection;
            ContourIntersectionPoint *cp2            = arc.intersection->next_on_contour;
            size_t                    polyline_idx1  = get_and_update_merged_with(((cp1 - map_infill_end_point_to_boundary.data()) / 2));
            size_t                    polyline_idx2  = get_and_update_merged_with(((cp2 - map_infill_end_point_to_boundary.data()) / 2));
            const Points             &contour        = boundary[cp1->contour_idx];
            const std::vector<double> &contour_params = boundary_params[cp1->contour_idx];
            if (polyline_idx1 != polyline_idx2) {
                Polyline &polyline1 = infill_ordered[polyline_idx1];
                Polyline &polyline2 = infill_ordered[polyline_idx2];
                if (arc.arc_length < anchor_length_max) {
                    // Not closing a loop, connecting the lines.
                    assert(contour[cp1->point_idx] == polyline1.points.front() || contour[cp1->point_idx] == polyline1.points.back());
                    if (contour[cp1->point_idx] == polyline1.points.front())
                        polyline1.reverse();
                    assert(contour[cp2->point_idx] == polyline2.points.front() || contour[cp2->point_idx] == polyline2.points.back());
                    if (contour[cp2->point_idx] == polyline2.points.back())
                        polyline2.reverse();
                    take(polyline1, polyline2, contour, cp1, cp2, false);
                    // Mark the second polygon as merged with the first one.
                    if (polyline_idx2 < polyline_idx1) {
                        polyline2 = std::move(polyline1);
                        polyline1.points.clear();
                        merged_with[polyline_idx1] = merged_with[polyline_idx2];
                    } else {
                        polyline2.points.clear();
                        merged_with[polyline_idx2] = merged_with[polyline_idx1];
                    }
                } else if (anchor_length > SCALED_EPSILON) {
                    // Move along the perimeter, but don't take the whole arc.
                    take_limited(polyline1, contour, contour_params, cp1, cp2, false, anchor_length, line_half_width);
                    take_limited(polyline2, contour, contour_params, cp2, cp1, true,  anchor_length, line_half_width);
                }
            }
        }

    // Connect the remaining open infill lines to the perimeter lines if possible.
    for (ContourIntersectionPoint &contour_point : map_infill_end_point_to_boundary)
        if (! contour_point.consumed && contour_point.contour_idx != boundary_idx_unconnected) {
            const Points              &contour        = boundary[contour_point.contour_idx];
            const std::vector<double> &contour_params = boundary_params[contour_point.contour_idx];
            const size_t               contour_pt_idx = contour_point.point_idx;

            double    lprev         = contour_point.could_connect_prev() ?
                path_length_along_contour_ccw(contour_point.prev_on_contour, &contour_point, contour_params.back()) :
                std::numeric_limits<double>::max();
            double    lnext         = contour_point.could_connect_next() ?
                path_length_along_contour_ccw(&contour_point, contour_point.next_on_contour, contour_params.back()) :
                std::numeric_limits<double>::max();
            size_t    polyline_idx  = get_and_update_merged_with(((&contour_point - map_infill_end_point_to_boundary.data()) / 2));
            Polyline &polyline      = infill_ordered[polyline_idx];
            assert(! polyline.empty());
            assert(contour[contour_point.point_idx] == polyline.points.front() || contour[contour_point.point_idx] == polyline.points.back());
            bool connected = false;
            for (double l : { std::min(lprev, lnext), std::max(lprev, lnext) }) {
                if (l == std::numeric_limits<double>::max() || l > anchor_length_max)
                    break;
                // Take the complete contour.
                bool      reversed      = l == lprev;
                ContourIntersectionPoint *cp2 = reversed ? contour_point.prev_on_contour : contour_point.next_on_contour;
                // Identify which end of the polyline touches the boundary.
                size_t    polyline_idx2 = get_and_update_merged_with(((cp2 - map_infill_end_point_to_boundary.data()) / 2));
                if (polyline_idx == polyline_idx2)
                    // Try the other side.
                    continue;
                // Not closing a loop.
                if (contour[contour_point.point_idx] == polyline.points.front())
                    polyline.reverse();
                Polyline &polyline2 = infill_ordered[polyline_idx2];
                assert(! polyline.empty());
                assert(contour[cp2->point_idx] == polyline2.points.front() || contour[cp2->point_idx] == polyline2.points.back());
                if (contour[cp2->point_idx] == polyline2.points.back())
                    polyline2.reverse();
                take(polyline, polyline2, contour, &contour_point, cp2, reversed);
                if (polyline_idx < polyline_idx2) {
                    // Mark the second polyline as merged with the first one.
                    merged_with[polyline_idx2] = polyline_idx;
                    polyline2.points.clear();
                } else {
                    // Mark the first polyline as merged with the second one.
                    merged_with[polyline_idx] = polyline_idx2;
                    polyline2 = std::move(polyline);
                    polyline.points.clear();
                }
                connected = true;
                break;
            }
            if (! connected && anchor_length > SCALED_EPSILON) {
                // Which to take? One could optimize for:
                // 1) Shortest path
                // 2) Hook length
                // ...
                // Let's take the longer now, as this improves the chance of another hook to be placed on the other side of this contour point.
                double l = std::max(contour_point.contour_not_taken_length_prev, contour_point.contour_not_taken_length_next);
                if (l > SCALED_EPSILON) {
                    if (contour_point.contour_not_taken_length_prev > contour_point.contour_not_taken_length_next)
                        take_limited(polyline, contour, contour_params, &contour_point, contour_point.prev_on_contour, true, anchor_length, line_half_width);
                    else
                        take_limited(polyline, contour, contour_params, &contour_point, contour_point.next_on_contour, false, anchor_length, line_half_width);
                }
            }
        }

    polylines_out.reserve(polylines_out.size() + std::count_if(infill_ordered.begin(), infill_ordered.end(), [](const Polyline &pl) { return ! pl.empty(); }));
	for (Polyline &pl : infill_ordered)
		if (! pl.empty())
			polylines_out.emplace_back(std::move(pl));
}

} // namespace Slic3r