Welcome to mirror list, hosted at ThFree Co, Russian Federation.

FillRectilinear.cpp « Fill « libslic3r « src - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: ba7461c5f5230a805c899c65ab77064a358bc945 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
#include <stdlib.h>
#include <stdint.h>

#include <algorithm>
#include <cmath>
#include <limits>
#include <random>

#include <boost/container/small_vector.hpp>
#include <boost/log/trivial.hpp>
#include <boost/static_assert.hpp>

#include "../ClipperUtils.hpp"
#include "../ExPolygon.hpp"
#include "../Geometry.hpp"
#include "../Surface.hpp"
#include "../ShortestPath.hpp"

#include "FillRectilinear.hpp"

// #define SLIC3R_DEBUG
// #define INFILL_DEBUG_OUTPUT

// Make assert active if SLIC3R_DEBUG
#ifdef SLIC3R_DEBUG
    #undef NDEBUG
    #include "SVG.hpp"
#endif

#if defined(SLIC3R_DEBUG) || defined(INFILL_DEBUG_OUTPUT)
    #include "SVG.hpp"
#endif

#include <cassert>

// We want our version of assert.
#include "../libslic3r.h"

namespace Slic3r {

// Having a segment of a closed polygon, calculate its Euclidian length.
// The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop,
// therefore the point p1 lies on poly.points[seg1-1], poly.points[seg1] etc.
static inline coordf_t segment_length(const Polygon &poly, size_t seg1, const Point &p1, size_t seg2, const Point &p2)
{
#ifdef SLIC3R_DEBUG
    // Verify that p1 lies on seg1. This is difficult to verify precisely,
    // but at least verify, that p1 lies in the bounding box of seg1.
    for (size_t i = 0; i < 2; ++ i) {
        size_t seg = (i == 0) ? seg1 : seg2;
        Point  px  = (i == 0) ? p1   : p2;
        Point  pa  = poly.points[((seg == 0) ? poly.points.size() : seg) - 1];
        Point  pb  = poly.points[seg];
        if (pa(0) > pb(0))
            std::swap(pa(0), pb(0));
        if (pa(1) > pb(1))
            std::swap(pa(1), pb(1));
        assert(px(0) >= pa(0) && px(0) <= pb(0));
        assert(px(1) >= pa(1) && px(1) <= pb(1));
    }
#endif /* SLIC3R_DEBUG */
    const Point *pPrev = &p1;
    const Point *pThis = NULL;
    coordf_t len = 0;
    if (seg1 <= seg2) {
        for (size_t i = seg1; i < seg2; ++ i, pPrev = pThis)
           len += (*pPrev - *(pThis = &poly.points[i])).cast<double>().norm();
    } else {
        for (size_t i = seg1; i < poly.points.size(); ++ i, pPrev = pThis)
           len += (*pPrev - *(pThis = &poly.points[i])).cast<double>().norm();
        for (size_t i = 0; i < seg2; ++ i, pPrev = pThis)
           len += (*pPrev - *(pThis = &poly.points[i])).cast<double>().norm();
    }
    len += (*pPrev - p2).cast<double>().norm();
    return len;
}

// Append a segment of a closed polygon to a polyline.
// The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop.
// Only insert intermediate points between seg1 and seg2.
static inline void polygon_segment_append(Points &out, const Polygon &polygon, size_t seg1, size_t seg2)
{
    if (seg1 == seg2) {
        // Nothing to append from this segment.
    } else if (seg1 < seg2) {
        // Do not append a point pointed to by seg2.
        out.insert(out.end(), polygon.points.begin() + seg1, polygon.points.begin() + seg2);
    } else {
        out.reserve(out.size() + seg2 + polygon.points.size() - seg1);
        out.insert(out.end(), polygon.points.begin() + seg1, polygon.points.end());
        // Do not append a point pointed to by seg2.
        out.insert(out.end(), polygon.points.begin(), polygon.points.begin() + seg2);
    }
}

// Append a segment of a closed polygon to a polyline.
// The segment indices seg1 and seg2 signify an end point of an edge in the forward direction of the loop,
// but this time the segment is traversed backward.
// Only insert intermediate points between seg1 and seg2.
static inline void polygon_segment_append_reversed(Points &out, const Polygon &polygon, size_t seg1, size_t seg2)
{
    if (seg1 >= seg2) {
        out.reserve(seg1 - seg2);
        for (size_t i = seg1; i > seg2; -- i)
            out.push_back(polygon.points[i - 1]);
    } else {
        // it could be, that seg1 == seg2. In that case, append the complete loop.
        out.reserve(out.size() + seg2 + polygon.points.size() - seg1);
        for (size_t i = seg1; i > 0; -- i)
            out.push_back(polygon.points[i - 1]);
        for (size_t i = polygon.points.size(); i > seg2; -- i)
            out.push_back(polygon.points[i - 1]);
    }
}

// Intersection point of a vertical line with a polygon segment.
struct SegmentIntersection
{
    // Index of a contour in ExPolygonWithOffset, with which this vertical line intersects.
    size_t      iContour { 0 };
    // Index of a segment in iContour, with which this vertical line intersects.
    size_t      iSegment { 0 };
    // y position of the intersection, rational number.
    int64_t     pos_p { 0 };
    uint32_t    pos_q { 1 };

    coord_t     pos() const {
        // Division rounds both positive and negative down to zero.
        // Add half of q for an arithmetic rounding effect.
        int64_t p = pos_p;
        if (p < 0)
            p -= int64_t(pos_q>>1);
        else
            p += int64_t(pos_q>>1);
        return coord_t(p / int64_t(pos_q)); 
    }

    // Left vertical line / contour intersection point.
    // null if next_on_contour_vertical.
    int32_t	prev_on_contour { 0 };
    // Right vertical line / contour intersection point.
    // If next_on_contour_vertical, then then next_on_contour contains next contour point on the same vertical line.
    int32_t	next_on_contour { 0 };

    // Kind of intersection. With the original contour, or with the inner offestted contour?
    // A vertical segment will be at least intersected by OUTER_LOW, OUTER_HIGH,
    // but it could be intersected with OUTER_LOW, INNER_LOW, INNER_HIGH, OUTER_HIGH,
    // and there may be more than one pair of INNER_LOW, INNER_HIGH between OUTER_LOW, OUTER_HIGH.
    enum SegmentIntersectionType : char {
        UNKNOWN,
        OUTER_LOW,
        OUTER_HIGH,
        INNER_LOW,
        INNER_HIGH,
    };
    SegmentIntersectionType type { UNKNOWN };

    enum class LinkType : uint8_t {
    	// Horizontal link (left or right).
    	Horizontal,
    	// Vertical link, up.
    	Up,
    	// Vertical link, down.
    	Down,
        // Phony intersection point has no link.
        Phony,
    };

    enum class LinkQuality : uint8_t {
    	Invalid,
        Valid,
    	// Valid link, but too long to be followed.
    	TooLong,
    };

    // Kept grouped with other booleans for smaller memory footprint.
    LinkType 		prev_on_contour_type { LinkType::Horizontal };
    LinkType 		next_on_contour_type { LinkType::Horizontal };
    LinkQuality 	prev_on_contour_quality { LinkQuality::Valid };
    LinkQuality 	next_on_contour_quality { LinkQuality::Valid };
    // Was this segment along the y axis consumed?
    // Up means up along the vertical segment.
    bool 	 		consumed_vertical_up { false };
    // Was a segment of the inner perimeter contour consumed?
    // Right means right from the vertical segment.
    bool 	 		consumed_perimeter_right { false };

    // For the INNER_LOW type, this point may be connected to another INNER_LOW point following a perimeter contour.
    // For the INNER_HIGH type, this point may be connected to another INNER_HIGH point following a perimeter contour.
    // If INNER_LOW is connected to INNER_HIGH or vice versa,
    // one has to make sure the vertical infill line does not overlap with the connecting perimeter line.
    bool 	is_inner() const { return type == INNER_LOW  || type == INNER_HIGH; }
    bool 	is_outer() const { return type == OUTER_LOW  || type == OUTER_HIGH; }
    bool 	is_low  () const { return type == INNER_LOW  || type == OUTER_LOW; }
    bool 	is_high () const { return type == INNER_HIGH || type == OUTER_HIGH; }

    enum class Side {
    	Left,
    	Right
    };
    enum class Direction {
    	Up,
    	Down
    };

    bool 	has_left_horizontal()    		 	const { return this->prev_on_contour_type == LinkType::Horizontal; }
    bool 	has_right_horizontal()   		 	const { return this->next_on_contour_type == LinkType::Horizontal; }
    bool 	has_horizontal(Side side)		 	const { return side == Side::Left ? this->has_left_horizontal() : this->has_right_horizontal(); }

    bool 	has_left_vertical_up()   		 	const { return this->prev_on_contour_type == LinkType::Up; }
    bool 	has_left_vertical_down() 		 	const { return this->prev_on_contour_type == LinkType::Down; }
    bool 	has_left_vertical(Direction dir) 	const { return dir == Direction::Up ? this->has_left_vertical_up() : this->has_left_vertical_down(); }
    bool 	has_left_vertical()    	 		 	const { return this->has_left_vertical_up() || this->has_left_vertical_down(); }
    bool 	has_left_vertical_outside()			const { return this->is_low() ? this->has_left_vertical_down() : this->has_left_vertical_up(); }

    bool 	has_right_vertical_up()   			const { return this->next_on_contour_type == LinkType::Up; }
    bool 	has_right_vertical_down() 			const { return this->next_on_contour_type == LinkType::Down; }
    bool 	has_right_vertical(Direction dir) 	const { return dir == Direction::Up ? this->has_right_vertical_up() : this->has_right_vertical_down(); }
    bool 	has_right_vertical()    			const { return this->has_right_vertical_up() || this->has_right_vertical_down(); }
    bool 	has_right_vertical_outside()		const { return this->is_low() ? this->has_right_vertical_down() : this->has_right_vertical_up(); }

    bool 	has_vertical()						const { return this->has_left_vertical() || this->has_right_vertical(); }
    bool 	has_vertical(Side side)				const { return side == Side::Left ? this->has_left_vertical() : this->has_right_vertical(); }
    bool 	has_vertical_up()					const { return this->has_left_vertical_up() || this->has_right_vertical_up(); }
    bool 	has_vertical_down()					const { return this->has_left_vertical_down() || this->has_right_vertical_down(); }
    bool 	has_vertical(Direction dir)			const { return dir == Direction::Up ? this->has_vertical_up() : this->has_vertical_down(); }

    int 	left_horizontal()  					const { return this->has_left_horizontal() 	? this->prev_on_contour : -1; }
    int 	right_horizontal()  				const { return this->has_right_horizontal() ? this->next_on_contour : -1; }
    int 	horizontal(Side side)  				const { return side == Side::Left ? this->left_horizontal() : this->right_horizontal(); }
    LinkQuality horizontal_quality(Side side)	const {
    	assert(this->has_horizontal(side));
    	return side == Side::Left ? this->prev_on_contour_quality : this->next_on_contour_quality;
    }

    int 	left_vertical_up()   		 		const { return this->has_left_vertical_up()    ? this->prev_on_contour : -1; }
    int 	left_vertical_down()   		 		const { return this->has_left_vertical_down()  ? this->prev_on_contour : -1; }
    int 	left_vertical(Direction dir) 		const { return (dir == Direction::Up ? this->has_left_vertical_up() : this->has_left_vertical_down()) ? this->prev_on_contour : -1; }
    int 	left_vertical()   			 		const { return this->has_left_vertical() 	   ? this->prev_on_contour : -1; }
    int 	left_vertical_outside()				const { return this->is_low() ? this->left_vertical_down() : this->left_vertical_up(); }
    int 	right_vertical_up()   		 		const { return this->has_right_vertical_up()   ? this->next_on_contour : -1; }
    int 	right_vertical_down()   	 		const { return this->has_right_vertical_down() ? this->next_on_contour : -1; }
    int 	right_vertical(Direction dir) 		const { return (dir == Direction::Up ? this->has_right_vertical_up() : this->has_right_vertical_down()) ? this->next_on_contour : -1; }
    int 	right_vertical()   			 		const { return this->has_right_vertical() 	   ? this->next_on_contour : -1; }
    int 	right_vertical_outside()			const { return this->is_low() ? this->right_vertical_down() : this->right_vertical_up(); }

    int 	vertical_up(Side side)				const { return side == Side::Left ? this->left_vertical_up() : this->right_vertical_up(); }
    int 	vertical_down(Side side)			const { return side == Side::Left ? this->left_vertical_down() : this->right_vertical_down(); }
    int 	vertical_outside(Side side)			const { return side == Side::Left ? this->left_vertical_outside() : this->right_vertical_outside(); }
    // Returns -1 if there is no link up.
    int 	vertical_up()						const { 
    	return this->has_left_vertical_up() ? this->left_vertical_up() : this->right_vertical_up();
    }
    LinkQuality vertical_up_quality()			const {
    	return this->has_left_vertical_up() ? this->prev_on_contour_quality : this->next_on_contour_quality;
    }
    // Returns -1 if there is no link down.
    int 	vertical_down()						const {
//    	assert(! this->has_left_vertical_down() || ! this->has_right_vertical_down());
    	return this->has_left_vertical_down() ? this->left_vertical_down() : this->right_vertical_down();
    }
    LinkQuality vertical_down_quality()			const {
    	return this->has_left_vertical_down() ? this->prev_on_contour_quality : this->next_on_contour_quality;
    }
    int 	vertical_outside()					const { return this->is_low() ? this->vertical_down() : this->vertical_up(); }
    LinkQuality vertical_outside_quality()		const { return this->is_low() ? this->vertical_down_quality() : this->vertical_up_quality(); }

    // Compare two y intersection points given by rational numbers.
    // Note that the rational number is given as pos_p/pos_q, where pos_p is int64 and pos_q is uint32.
    // This function calculates pos_p * other.pos_q < other.pos_p * pos_q as a 48bit number.
    // We don't use 128bit intrinsic data types as these are usually not supported by 32bit compilers and
    // we don't need the full 128bit precision anyway.
    bool operator<(const SegmentIntersection &other) const
    {
        assert(pos_q > 0);
        assert(other.pos_q > 0);
        if (pos_p == 0 || other.pos_p == 0) {
            // Because the denominators are positive and one of the nominators is zero,
            // following simple statement holds.
            return pos_p < other.pos_p;
        } else {
            // None of the nominators is zero.
            int sign1 = (pos_p > 0) ? 1 : -1;
            int sign2 = (other.pos_p > 0) ? 1 : -1;
            int signs = sign1 * sign2;
            assert(signs == 1 || signs == -1);
            if (signs < 0) {
                // The nominators have different signs.
                return sign1 < 0;
            } else {
                // The nominators have the same sign.
                // Absolute values
                uint64_t p1, p2;
                if (sign1 > 0) {
                    p1 = uint64_t(pos_p);
                    p2 = uint64_t(other.pos_p);
                } else {
                    p1 = uint64_t(- pos_p);
                    p2 = uint64_t(- other.pos_p);
                };
                // Multiply low and high 32bit words of p1 by other_pos.q
                // 32bit x 32bit => 64bit
                // l_hi and l_lo overlap by 32 bits.
                uint64_t l_hi = (p1 >> 32) * uint64_t(other.pos_q);
                uint64_t l_lo = (p1 & 0xffffffffll) * uint64_t(other.pos_q);
                l_hi += (l_lo >> 32);
                uint64_t r_hi = (p2 >> 32) * uint64_t(pos_q);
                uint64_t r_lo = (p2 & 0xffffffffll) * uint64_t(pos_q);
                r_hi += (r_lo >> 32);
                // Compare the high 64 bits.
                if (l_hi == r_hi) {
                    // Compare the low 32 bits.
                    l_lo &= 0xffffffffll;
                    r_lo &= 0xffffffffll;
                    return (sign1 < 0) ? (l_lo > r_lo) : (l_lo < r_lo);
                }
                return (sign1 < 0) ? (l_hi > r_hi) : (l_hi < r_hi);
            }
        }
    }

    bool operator==(const SegmentIntersection &other) const 
    {
        assert(pos_q > 0);
        assert(other.pos_q > 0);
        if (pos_p == 0 || other.pos_p == 0) {
            // Because the denominators are positive and one of the nominators is zero,
            // following simple statement holds.
            return pos_p == other.pos_p;
        }

        // None of the nominators is zero, none of the denominators is zero.
        bool positive = pos_p > 0;
        if (positive != (other.pos_p > 0))
            return false;
        // The nominators have the same sign.
        // Absolute values
        uint64_t p1 = positive ? uint64_t(pos_p) : uint64_t(- pos_p);
        uint64_t p2 = positive ? uint64_t(other.pos_p) : uint64_t(- other.pos_p);
        // Multiply low and high 32bit words of p1 by other_pos.q
        // 32bit x 32bit => 64bit
        // l_hi and l_lo overlap by 32 bits.
        uint64_t l_lo = (p1 & 0xffffffffll) * uint64_t(other.pos_q);
        uint64_t r_lo = (p2 & 0xffffffffll) * uint64_t(pos_q);
        if (l_lo != r_lo)
            return false;
        uint64_t l_hi = (p1 >> 32) * uint64_t(other.pos_q);
        uint64_t r_hi = (p2 >> 32) * uint64_t(pos_q);
        return l_hi + (l_lo >> 32) == r_hi + (r_lo >> 32);
    }
};
static_assert(sizeof(SegmentIntersection::pos_q) == 4, "SegmentIntersection::pos_q has to be 32bit long!");

// A vertical line with intersection points with polygons.
struct SegmentedIntersectionLine
{
    // Index of this vertical intersection line.
    size_t                              idx;
    // x position of this vertical intersection line.
    coord_t                             pos;
    // List of intersection points with polygons, sorted increasingly by the y axis.
    std::vector<SegmentIntersection>    intersections;
};

static SegmentIntersection phony_outer_intersection(SegmentIntersection::SegmentIntersectionType type, coord_t pos)
{
    assert(type == SegmentIntersection::OUTER_LOW || type == SegmentIntersection::OUTER_HIGH);
    SegmentIntersection out;
    // Invalid contour & segment.
    out.iContour                = std::numeric_limits<size_t>::max();
    out.iSegment                = std::numeric_limits<size_t>::max();
    out.pos_p                   = pos;
    out.type                    = type;
    // Invalid prev / next.
    out.prev_on_contour         = -1;
    out.next_on_contour         = -1;
    out.prev_on_contour_type    = SegmentIntersection::LinkType::Phony;
    out.next_on_contour_type    = SegmentIntersection::LinkType::Phony;
    out.prev_on_contour_quality = SegmentIntersection::LinkQuality::Invalid;
    out.next_on_contour_quality = SegmentIntersection::LinkQuality::Invalid;
    return out;
}

// A container maintaining an expolygon with its inner offsetted polygon.
// The purpose of the inner offsetted polygon is to provide segments to connect the infill lines.
struct ExPolygonWithOffset
{
public:
    ExPolygonWithOffset(
        const ExPolygon &expolygon,
        float   angle,
        coord_t aoffset1,
        // If the 2nd offset is zero, then it is ignored and only OUTER_LOW / OUTER_HIGH intersections are
        // populated into vertical intersection lines.
        coord_t aoffset2 = 0)
    {
        // Copy and rotate the source polygons.
        polygons_src = expolygon;
        if (angle != 0.f) {
            polygons_src.contour.rotate(angle);
            for (Polygon &hole : polygons_src.holes)
                hole.rotate(angle);
        }

        double miterLimit = DefaultMiterLimit;
        // for the infill pattern, don't cut the corners.
        // default miterLimt = 3
        //double miterLimit = 10.;
        // FIXME: Resolve properly the cases when it is constructed with aoffset1 = 0 and aoffset2 = 0,
        //        that is used in sample_grid_pattern() for Lightning infill.
        // assert(aoffset1 < 0);
        assert(aoffset2 <= 0);
        // assert(aoffset2 == 0 || aoffset2 < aoffset1);
//        bool sticks_removed = 
        remove_sticks(polygons_src);
//        if (sticks_removed) BOOST_LOG_TRIVIAL(error) << "Sticks removed!";
        polygons_outer = aoffset1 == 0 ? polygons_src : offset(polygons_src, float(aoffset1), ClipperLib::jtMiter, miterLimit);
        if (aoffset2 < 0)
            polygons_inner = shrink(polygons_outer, float(aoffset1 - aoffset2), ClipperLib::jtMiter, miterLimit);
		// Filter out contours with zero area or small area, contours with 2 points only.
        const double min_area_threshold = 0.01 * aoffset2 * aoffset2;
        remove_small(polygons_outer, min_area_threshold);
        remove_small(polygons_inner, min_area_threshold);
        remove_sticks(polygons_outer);
        remove_sticks(polygons_inner);
		n_contours_outer = polygons_outer.size();
        n_contours_inner = polygons_inner.size();
        n_contours = n_contours_outer + n_contours_inner;
        polygons_ccw.assign(n_contours, false);
        for (size_t i = 0; i < n_contours; ++ i) {
            contour(i).remove_duplicate_points();
            assert(! contour(i).has_duplicate_points());
            polygons_ccw[i] = Slic3r::Geometry::is_ccw(contour(i));
        }
    }

    ExPolygonWithOffset(const ExPolygonWithOffset &rhs, float angle) : ExPolygonWithOffset(rhs) {
        if (angle != 0.f) {
            this->polygons_src.contour.rotate(angle);
            for (Polygon &hole : this->polygons_src.holes)
                hole.rotate(angle);
            for (Polygon &poly : this->polygons_outer)
                poly.rotate(angle);
            for (Polygon &poly : this->polygons_inner)
                poly.rotate(angle);
        }
    }

    // Any contour with offset1
    bool             is_contour_outer(size_t idx) const { return idx < n_contours_outer; }
    // Any contour with offset2
    bool             is_contour_inner(size_t idx) const { return idx >= n_contours_outer; }

    const Polygon&   contour(size_t idx) const 
        { return is_contour_outer(idx) ? polygons_outer[idx] : polygons_inner[idx - n_contours_outer]; }

    Polygon&         contour(size_t idx)
        { return is_contour_outer(idx) ? polygons_outer[idx] : polygons_inner[idx - n_contours_outer]; }

    bool             is_contour_ccw(size_t idx) const { return polygons_ccw[idx]; }

    BoundingBox      bounding_box_src() const 
        { return get_extents(polygons_src); }
    BoundingBox      bounding_box_outer() const 
        { return get_extents(polygons_outer); }
    BoundingBox      bounding_box_inner() const 
        { return get_extents(polygons_inner); }

#ifdef SLIC3R_DEBUG
    void export_to_svg(Slic3r::SVG &svg) {
        svg.draw_outline(polygons_src,   "black");
        svg.draw_outline(polygons_outer, "green");
        svg.draw_outline(polygons_inner, "brown");
    }
#endif /* SLIC3R_DEBUG */

    ExPolygon        polygons_src;
    Polygons         polygons_outer;
    Polygons         polygons_inner;

    size_t           n_contours_outer;
    size_t           n_contours_inner;
    size_t           n_contours;

protected:
    // For each polygon of polygons_inner, remember its orientation.
    std::vector<unsigned char> polygons_ccw;
};

static inline int distance_of_segmens(const Polygon &poly, size_t seg1, size_t seg2, bool forward)
{
    int d = int(seg2) - int(seg1);
    if (! forward)
        d = - d;
    if (d < 0)
        d += int(poly.points.size());
    return d;
}

// Find an intersection on a previous line, but return -1, if the connecting segment of a perimeter was already extruded.
static inline bool intersection_on_prev_next_vertical_line_valid(
    const std::vector<SegmentedIntersectionLine>  &segs,
    size_t                                         iVerticalLine,
    size_t                                         iIntersection,
    SegmentIntersection::Side                      side)
{
    const SegmentedIntersectionLine &vline_this = segs[iVerticalLine];
    const SegmentIntersection       &it_this    = vline_this.intersections[iIntersection];
	if (it_this.has_vertical(side))
	    // Not the first intersection along the contor. This intersection point
	    // has been preceded by an intersection point along the vertical line.
		return false;
    int iIntersectionOther = it_this.horizontal(side);
    if (iIntersectionOther == -1)
        return false;
    assert(side == SegmentIntersection::Side::Right ? (iVerticalLine + 1 < segs.size()) : (iVerticalLine > 0));
    const SegmentedIntersectionLine &vline_other = segs[side == SegmentIntersection::Side::Right ? (iVerticalLine + 1) : (iVerticalLine - 1)];
    const SegmentIntersection       &it_other    = vline_other.intersections[iIntersectionOther];
    assert(it_other.is_inner());
    assert(iIntersectionOther > 0 && size_t(iIntersectionOther + 1) < vline_other.intersections.size());
    // Is iIntersectionOther at the boundary of a vertical segment?
    const SegmentIntersection       &it_other2   = vline_other.intersections[it_other.is_low() ? iIntersectionOther - 1 : iIntersectionOther + 1];
    if (it_other2.is_inner())
        // Cannot follow a perimeter segment into the middle of another vertical segment.
        // Only perimeter segments connecting to the end of a vertical segment are followed.
        return false;
    assert(it_other.is_low() == it_other2.is_low());
    if (it_this.horizontal_quality(side) != SegmentIntersection::LinkQuality::Valid)
    	return false;
    if (side == SegmentIntersection::Side::Right ? it_this.consumed_perimeter_right : it_other.consumed_perimeter_right)
        // This perimeter segment was already consumed.
        return false;
    if (it_other.is_low() ? it_other.consumed_vertical_up : vline_other.intersections[iIntersectionOther - 1].consumed_vertical_up)
        // This vertical segment was already consumed.
        return false;
#if 0
    if (it_other.vertical_outside() != -1 && it_other.vertical_outside_quality() == SegmentIntersection::LinkQuality::Valid)
        // Landed inside a vertical run. Stop here.
        return false;
#endif
    return true;
}

static inline bool intersection_on_prev_vertical_line_valid(
    const std::vector<SegmentedIntersectionLine>  &segs, 
    size_t                                         iVerticalLine, 
    size_t                                         iIntersection)
{
    return intersection_on_prev_next_vertical_line_valid(segs, iVerticalLine, iIntersection, SegmentIntersection::Side::Left);
}

static inline bool intersection_on_next_vertical_line_valid(
    const std::vector<SegmentedIntersectionLine>  &segs, 
    size_t                                         iVerticalLine, 
    size_t                                         iIntersection)
{
    return intersection_on_prev_next_vertical_line_valid(segs, iVerticalLine, iIntersection, SegmentIntersection::Side::Right);
}

// Measure an Euclidian length of a perimeter segment when going from iIntersection to iIntersection2.
static inline coordf_t measure_perimeter_horizontal_segment_length(
    const ExPolygonWithOffset                     &poly_with_offset, 
    const std::vector<SegmentedIntersectionLine>  &segs,
    size_t                                         iVerticalLine,
    size_t                                         iIntersection,
    size_t                                         iIntersection2)
{
    size_t                           iVerticalLineOther = iVerticalLine + 1;
    assert(iVerticalLineOther < segs.size());
    const SegmentedIntersectionLine &vline  = segs[iVerticalLine];
    const SegmentIntersection       &it     = vline.intersections[iIntersection];
    const SegmentedIntersectionLine &vline2 = segs[iVerticalLineOther];
    const SegmentIntersection       &it2    = vline2.intersections[iIntersection2];
    assert(it.iContour == it2.iContour);
    const Polygon                   &poly   = poly_with_offset.contour(it.iContour);
//    const bool                       ccw    = poly_with_offset.is_contour_ccw(vline.iContour);
    assert(it.type == it2.type);
    assert(it.iContour == it2.iContour);

    Point p1(vline.pos,  it.pos());
    Point p2(vline2.pos, it2.pos());
    return it.is_low() ?
        segment_length(poly, it .iSegment, p1, it2.iSegment, p2) :
        segment_length(poly, it2.iSegment, p2, it .iSegment, p1);
}

// Append the points of a perimeter segment when going from iIntersection to iIntersection2.
// The first point (the point of iIntersection) will not be inserted,
// the last point will be inserted.
static inline void emit_perimeter_prev_next_segment(
    const ExPolygonWithOffset                     &poly_with_offset,
    const std::vector<SegmentedIntersectionLine>  &segs,
    size_t                                         iVerticalLine,
    size_t                                         iInnerContour,
    size_t                                         iIntersection,
    size_t                                         iIntersection2,
    Polyline                                      &out,
    bool                                           dir_is_next)
{
    size_t iVerticalLineOther = iVerticalLine;
    if (dir_is_next) {
        ++ iVerticalLineOther;
        assert(iVerticalLineOther < segs.size());
    } else {
        assert(iVerticalLineOther > 0);
        -- iVerticalLineOther;
    }

    const SegmentedIntersectionLine &il     = segs[iVerticalLine];
    const SegmentIntersection       &itsct  = il.intersections[iIntersection];
    const SegmentedIntersectionLine &il2    = segs[iVerticalLineOther];
    const SegmentIntersection       &itsct2 = il2.intersections[iIntersection2];
    const Polygon                   &poly   = poly_with_offset.contour(iInnerContour);
//    const bool                       ccw    = poly_with_offset.is_contour_ccw(iInnerContour);
    assert(itsct.type == itsct2.type);
    assert(itsct.iContour == itsct2.iContour);
    assert(itsct.is_inner());
    const bool                       forward = itsct.is_low() == dir_is_next;
    // Do not append the first point.
    // out.points.push_back(Point(il.pos, itsct.pos));
    if (forward)
        polygon_segment_append(out.points, poly, itsct.iSegment, itsct2.iSegment);
    else
        polygon_segment_append_reversed(out.points, poly, itsct.iSegment, itsct2.iSegment);
    // Append the last point.
    out.points.push_back(Point(il2.pos, itsct2.pos()));
}

static inline coordf_t measure_perimeter_segment_on_vertical_line_length(
    const ExPolygonWithOffset                     &poly_with_offset,
    const std::vector<SegmentedIntersectionLine>  &segs,
    size_t                                         iVerticalLine,
    size_t                                         iIntersection,
    size_t                                         iIntersection2,
    bool                                           forward)
{
    const SegmentedIntersectionLine &il = segs[iVerticalLine];
    const SegmentIntersection       &itsct = il.intersections[iIntersection];
    const SegmentIntersection       &itsct2 = il.intersections[iIntersection2];
    const Polygon                   &poly = poly_with_offset.contour(itsct.iContour);
    assert(itsct.is_inner() == itsct2.is_inner());
    assert(itsct.type != itsct2.type);
    assert(itsct.iContour == itsct2.iContour);
    Point p1(il.pos, itsct.pos());
    Point p2(il.pos, itsct2.pos());
    return forward ?
        segment_length(poly, itsct .iSegment, p1, itsct2.iSegment, p2) :
        segment_length(poly, itsct2.iSegment, p2, itsct .iSegment, p1);
}

// Append the points of a perimeter segment when going from iIntersection to iIntersection2.
// The first point (the point of iIntersection) will not be inserted,
// the last point will be inserted.
static inline void emit_perimeter_segment_on_vertical_line(
	const ExPolygonWithOffset                     &poly_with_offset,
	const std::vector<SegmentedIntersectionLine>  &segs,
	size_t                                         iVerticalLine,
	size_t                                         iInnerContour,
	size_t                                         iIntersection,
	size_t                                         iIntersection2,
	Polyline                                      &out,
	bool                                           forward)
{
	const SegmentedIntersectionLine &il = segs[iVerticalLine];
	const SegmentIntersection       &itsct = il.intersections[iIntersection];
	const SegmentIntersection       &itsct2 = il.intersections[iIntersection2];
	const Polygon                   &poly = poly_with_offset.contour(iInnerContour);
	assert(itsct.is_inner());
	assert(itsct2.is_inner());
	assert(itsct.type != itsct2.type);
    assert(itsct.iContour == iInnerContour);
	assert(itsct.iContour == itsct2.iContour);
	// Do not append the first point.
	// out.points.push_back(Point(il.pos, itsct.pos));
	if (forward)
		polygon_segment_append(out.points, poly, itsct.iSegment, itsct2.iSegment);
	else
		polygon_segment_append_reversed(out.points, poly, itsct.iSegment, itsct2.iSegment);
	// Append the last point.
	out.points.push_back(Point(il.pos, itsct2.pos()));
}

//TBD: For precise infill, measure the area of a slab spanned by an infill line.
/*
static inline float measure_outer_contour_slab(
    const ExPolygonWithOffset                     &poly_with_offset,
    const std::vector<SegmentedIntersectionLine>  &segs,
    size_t                                         i_vline,
    size_t                                         iIntersection)
{
    const SegmentedIntersectionLine &il     = segs[i_vline];
    const SegmentIntersection       &itsct  = il.intersections[i_vline];
    const SegmentIntersection       &itsct2 = il.intersections[iIntersection2];
    const Polygon                   &poly   = poly_with_offset.contour((itsct.iContour);
    assert(itsct.is_outer());
    assert(itsct2.is_outer());
    assert(itsct.type != itsct2.type);
    assert(itsct.iContour == itsct2.iContour);
    if (! itsct.is_outer() || ! itsct2.is_outer() || itsct.type == itsct2.type || itsct.iContour != itsct2.iContour)
        // Error, return zero area.
        return 0.f;

    // Find possible connection points on the previous / next vertical line.
    int iPrev = intersection_on_prev_vertical_line(poly_with_offset, segs, i_vline, itsct.iContour, i_intersection);
    int iNext = intersection_on_next_vertical_line(poly_with_offset, segs, i_vline, itsct.iContour, i_intersection);
    // Find possible connection points on the same vertical line.
    int iAbove = iBelow = -1;
    // Does the perimeter intersect the current vertical line above intrsctn?
    for (size_t i = i_intersection + 1; i + 1 < seg.intersections.size(); ++ i)
        if (seg.intersections[i].iContour == itsct.iContour)
            { iAbove = i; break; }
    // Does the perimeter intersect the current vertical line below intrsctn?
    for (int i = int(i_intersection) - 1; i > 0; -- i)
        if (seg.intersections[i].iContour == itsct.iContour)
            { iBelow = i; break; }

    if (iSegAbove != -1 && seg.intersections[iAbove].type == SegmentIntersection::OUTER_HIGH) {
        // Invalidate iPrev resp. iNext, if the perimeter crosses the current vertical line earlier than iPrev resp. iNext.
        // The perimeter contour orientation.
        const Polygon &poly = poly_with_offset.contour(itsct.iContour);
        {
            int d_horiz = (iPrev  == -1) ? std::numeric_limits<int>::max() :
                distance_of_segmens(poly, segs[i_vline-1].intersections[iPrev].iSegment, itsct.iSegment, true);
            int d_down  = (iBelow == -1) ? std::numeric_limits<int>::max() :
                distance_of_segmens(poly, iSegBelow, itsct.iSegment, true);
            int d_up    = (iAbove == -1) ? std::numeric_limits<int>::max() :
                distance_of_segmens(poly, iSegAbove, itsct.iSegment, true);
            if (intrsection_type_prev == INTERSECTION_TYPE_OTHER_VLINE_OK && d_horiz > std::min(d_down, d_up))
                // The vertical crossing comes eralier than the prev crossing.
                // Disable the perimeter going back.
                intrsection_type_prev = INTERSECTION_TYPE_OTHER_VLINE_NOT_FIRST;
            if (d_up > std::min(d_horiz, d_down))
                // The horizontal crossing comes earlier than the vertical crossing.
                vert_seg_dir_valid_mask &= ~DIR_BACKWARD;
        }
        {
            int d_horiz = (iNext     == -1) ? std::numeric_limits<int>::max() :
                distance_of_segmens(poly, itsct.iSegment, segs[i_vline+1].intersections[iNext].iSegment, true);
            int d_down  = (iSegBelow == -1) ? std::numeric_limits<int>::max() :
                distance_of_segmens(poly, itsct.iSegment, iSegBelow, true);
            int d_up    = (iSegAbove == -1) ? std::numeric_limits<int>::max() :
                distance_of_segmens(poly, itsct.iSegment, iSegAbove, true);
            if (d_up > std::min(d_horiz, d_down))
                // The horizontal crossing comes earlier than the vertical crossing.
                vert_seg_dir_valid_mask &= ~DIR_FORWARD;
        }
    }
}
*/

enum DirectionMask
{
    DIR_FORWARD  = 1,
    DIR_BACKWARD = 2
};

static std::vector<SegmentedIntersectionLine> slice_region_by_vertical_lines(const ExPolygonWithOffset &poly_with_offset, size_t n_vlines, coord_t x0, coord_t line_spacing)
{
    // Allocate storage for the segments.
    std::vector<SegmentedIntersectionLine> segs(n_vlines, SegmentedIntersectionLine());
    for (coord_t i = 0; i < coord_t(n_vlines); ++ i) {
        segs[i].idx = i;
        segs[i].pos = x0 + i * line_spacing;
    }
    // For each contour
    for (size_t iContour = 0; iContour < poly_with_offset.n_contours; ++ iContour) {
        const Points &contour = poly_with_offset.contour(iContour).points;
        if (contour.size() < 2)
            continue;
        // For each segment
        for (size_t iSegment = 0; iSegment < contour.size(); ++ iSegment) {
            size_t iPrev = ((iSegment == 0) ? contour.size() : iSegment) - 1;
            const Point &p1 = contour[iPrev];
            const Point &p2 = contour[iSegment];
            // Which of the equally spaced vertical lines is intersected by this segment?
            coord_t l = p1(0);
            coord_t r = p2(0);
            if (l > r)
                std::swap(l, r);
            // il, ir are the left / right indices of vertical lines intersecting a segment
            int il = (l - x0) / line_spacing;
            while (il * line_spacing + x0 < l)
                ++ il;
            il = std::max(int(0), il);
            int ir = (r - x0 + line_spacing) / line_spacing;
            while (ir * line_spacing + x0 > r)
                -- ir;
            ir = std::min(int(segs.size()) - 1, ir);
            if (il > ir)
                // No vertical line intersects this segment.
                continue;
            assert(il >= 0 && size_t(il) < segs.size());
            assert(ir >= 0 && size_t(ir) < segs.size());
            for (int i = il; i <= ir; ++ i) {
                coord_t this_x = segs[i].pos;
				assert(this_x == i * line_spacing + x0);
                SegmentIntersection is;
                is.iContour = iContour;
                is.iSegment = iSegment;
                assert(l <= this_x);
                assert(r >= this_x);
                // Calculate the intersection position in y axis. x is known.
                if (p1.x() == this_x) {
                    if (p2.x() == this_x) {
                        // Ignore strictly vertical segments.
                        continue;
                    }
                    const Point &p0 = prev_value_modulo(iPrev, contour);
                    if (int64_t(p0.x() - p1.x()) * int64_t(p2.x() - p1.x()) > 0) {
                        // Ignore points of a contour touching the infill line from one side.
                        continue;
                    }
                    is.pos_p = p1.y();
                    is.pos_q = 1;
                } else if (p2.x() == this_x) {
                    const Point &p3 = next_value_modulo(iSegment, contour);
                    if (int64_t(p3.x() - p2.x()) * int64_t(p1.x() - p2.x()) > 0) {
                        // Ignore points of a contour touching the infill line from one side.
                        continue;
                    }
                    is.pos_p = p2.y();
                    is.pos_q = 1;
                } else {
                    // First calculate the intersection parameter 't' as a rational number with non negative denominator.
                    if (p2.x() > p1.x()) {
                        is.pos_p = this_x - p1.x();
                        is.pos_q = p2.x() - p1.x();
                    } else {
                        is.pos_p = p1.x() - this_x;
                        is.pos_q = p1.x() - p2.x();
                    }
                    assert(is.pos_q > 1);
                    assert(is.pos_p > 0 && is.pos_p < is.pos_q);
                    // Make an intersection point from the 't'.
                    is.pos_p *= int64_t(p2.y() - p1.y());
                    is.pos_p += p1.y() * int64_t(is.pos_q);
                }
                // +-1 to take rounding into account.
                assert(is.pos() + 1 >= std::min(p1.y(), p2.y()));
                assert(is.pos() <= std::max(p1.y(), p2.y()) + 1);
                segs[i].intersections.push_back(is);
            }
        }
    }

    // Sort the intersections along their segments, specify the intersection types.
    for (size_t i_seg = 0; i_seg < segs.size(); ++ i_seg) {
        SegmentedIntersectionLine &sil = segs[i_seg];
        // Sort the intersection points using exact rational arithmetic.
        std::sort(sil.intersections.begin(), sil.intersections.end());
        // Assign the intersection types, remove duplicate or overlapping intersection points.
        // When a loop vertex touches a vertical line, intersection point is generated for both segments.
        // If such two segments are oriented equally, then one of them is removed.
        // Otherwise the vertex is tangential to the vertical line and both segments are removed.
        // The same rule applies, if the loop is pinched into a single point and this point touches the vertical line:
        // The loop has a zero vertical size at the vertical line, therefore the intersection point is removed.
        size_t j = 0;
        for (size_t i = 0; i < sil.intersections.size(); ++ i) {
            // What is the orientation of the segment at the intersection point?
            SegmentIntersection       &is       = sil.intersections[i];
            const size_t               iContour = is.iContour;
            const Points              &contour  = poly_with_offset.contour(iContour).points;
            const size_t               iSegment = is.iSegment;
            const size_t               iPrev    = prev_idx_modulo(iSegment, contour);
            const coord_t              dir      = contour[iSegment].x() - contour[iPrev].x();
            const bool                 low      = dir > 0;
            is.type = poly_with_offset.is_contour_outer(iContour) ?
                (low ? SegmentIntersection::OUTER_LOW : SegmentIntersection::OUTER_HIGH) :
                (low ? SegmentIntersection::INNER_LOW : SegmentIntersection::INNER_HIGH);
            bool take_next = true;
            if (j > 0) {
                SegmentIntersection &is2 = sil.intersections[j - 1];
                if (iContour == is2.iContour && is.pos_q == 1 && is2.pos_q == 1) {
                    // Two successive intersection points on a vertical line with the same contour, both points are end points of their respective contour segments.
                    if (is.pos_p == is2.pos_p) {
                        // Two successive segments meet exactly at the vertical line.
                        // Verify that the segments of sil.intersections[i] and sil.intersections[j-1] are adjoint.
                        assert(iSegment == prev_idx_modulo(is2.iSegment, contour) || is2.iSegment == iPrev);
                        assert(is.type == is2.type);
                        // Two successive segments of the same direction (both to the right or both to the left)
                        // meet exactly at the vertical line.
                        // Remove the second intersection point.
                        take_next = false;
                    } else if (is.type == is2.type) {
                        // Two non successive segments of the same direction (both to the right or both to the left)
                        // meet exactly at the vertical line. That means there is a Z shaped path, where the center segment
                        // of the Z shaped path is aligned with this vertical line.
                        // Remove one of the intersection points while maximizing the vertical segment length.
                        if (low) {
                            // Remove the second intersection point, keep the first intersection point.
                        } else {
                            // Remove the first intersection point, keep the second intersection point.
                            sil.intersections[j-1] = sil.intersections[i];
                        }
                        take_next = false;
                    }
                }
            }
            if (take_next) {
                // Vertical line intersects a contour segment at a general position (not at one of its end points).
                if (j < i)
                    sil.intersections[j] = sil.intersections[i];
                ++ j;
            }
        }
        // Shrink the list of intersections, if any of the intersection was removed during the classification.
        if (j < sil.intersections.size())
            sil.intersections.erase(sil.intersections.begin() + j, sil.intersections.end());
    }

    // Verify the segments. If something is wrong, give up.
#ifdef INFILL_DEBUG_OUTPUT
    #define INFILL_DEBUG_ASSERT(CONDITION)
    try {
#else // INFILL_DEBUG_OUTPUT
    #define INFILL_DEBUG_ASSERT(CONDITION) assert(CONDITION)
#endif // INFILL_DEBUG_OUTPUT
#define ASSERT_THROW(CONDITION) do { INFILL_DEBUG_ASSERT(CONDITION); if (! (CONDITION)) throw InfillFailedException(); } while (0)
    for (size_t i_seg = 0; i_seg < segs.size(); ++ i_seg) {
        SegmentedIntersectionLine &sil = segs[i_seg];
        // The intersection points have to be even.
        ASSERT_THROW((sil.intersections.size() & 1) == 0);
        for (size_t i = 0; i < sil.intersections.size();) {
            // An intersection segment crossing the bigger contour may cross the inner offsetted contour even number of times.
            ASSERT_THROW(sil.intersections[i].type == SegmentIntersection::OUTER_LOW);
            size_t j = i + 1;
            ASSERT_THROW(j < sil.intersections.size());
            ASSERT_THROW(sil.intersections[j].type == SegmentIntersection::INNER_LOW || sil.intersections[j].type == SegmentIntersection::OUTER_HIGH);
            for (; j < sil.intersections.size() && sil.intersections[j].is_inner(); ++ j) ;
            ASSERT_THROW(j < sil.intersections.size());
            ASSERT_THROW((j & 1) == 1);
            ASSERT_THROW(sil.intersections[j].type == SegmentIntersection::OUTER_HIGH);
            ASSERT_THROW(i + 1 == j || sil.intersections[j - 1].type == SegmentIntersection::INNER_HIGH);
            i = j + 1;
        }
    }
#undef ASSERT_THROW
#undef INFILL_DEBUG_ASSERT
#ifdef INFILL_DEBUG_OUTPUT
    } catch (const InfillFailedException & /* ex */) {
        // Export the buggy result into an SVG file.
        static int iRun = 0;
        BoundingBox bbox = get_extents(poly_with_offset.polygons_src);
        bbox.offset(scale_(3.));
        ::Slic3r::SVG svg(debug_out_path("slice_region_by_vertical_lines-failed-%d.svg", iRun ++), bbox);
        svg.draw(poly_with_offset.polygons_src);
        svg.draw_outline(poly_with_offset.polygons_src, "green");
        svg.draw_outline(poly_with_offset.polygons_outer, "green");
        svg.draw_outline(poly_with_offset.polygons_inner, "green");
        for (size_t i_seg = 0; i_seg < segs.size(); ++i_seg) {
            SegmentedIntersectionLine &sil = segs[i_seg];
            for (size_t i = 0; i < sil.intersections.size();) {
                // An intersection segment crossing the bigger contour may cross the inner offsetted contour even number of times.
                if (sil.intersections[i].type != SegmentIntersection::OUTER_LOW) {
                    svg.draw(Point(sil.pos, sil.intersections[i].pos()), "red");
                    break;
                }
                size_t j = i + 1;
                if (j == sil.intersections.size()) {
                    svg.draw(Point(sil.pos, sil.intersections[i].pos()), "magenta");
                    break;
                }
                if (! (sil.intersections[j].type == SegmentIntersection::INNER_LOW || sil.intersections[j].type == SegmentIntersection::OUTER_HIGH)) {
                    svg.draw(Point(sil.pos, sil.intersections[j].pos()), "blue");
                    break;
                }
                for (; j < sil.intersections.size() && sil.intersections[j].is_inner(); ++j);
                if (j == sil.intersections.size()) {
                    svg.draw(Point(sil.pos, sil.intersections[j - 1].pos()), "magenta");
                    break;
                }
                if ((j & 1) != 1 || sil.intersections[j].type != SegmentIntersection::OUTER_HIGH) {
                    svg.draw(Point(sil.pos, sil.intersections[j].pos()), "red");
                    break;
                }
                if (! (i + 1 == j || sil.intersections[j - 1].type == SegmentIntersection::INNER_HIGH)) {
                    svg.draw(Point(sil.pos, sil.intersections[j].pos()), "red");
                    break;
                }
                svg.draw(Line(Point(sil.pos, sil.intersections[i].pos()), Point(sil.pos, sil.intersections[j].pos())), "black");
                i = j + 1;
            }
        }
        assert(false);
        throw;
    }
#endif //INFILL_DEBUG_OUTPUT

    return segs;
}

#ifndef NDEBUG
bool validate_segment_intersection_connectivity(const std::vector<SegmentedIntersectionLine> &segs)
{
    // Validate the connectivity.
    for (size_t i_vline = 0; i_vline + 1 < segs.size(); ++ i_vline) {
        const SegmentedIntersectionLine &il_left  = segs[i_vline];
        const SegmentedIntersectionLine &il_right = segs[i_vline + 1];
        for (const SegmentIntersection &it : il_left.intersections) {
            if (it.has_right_horizontal()) {
                const SegmentIntersection &it_right = il_right.intersections[it.right_horizontal()];
                // For a right link there is a symmetric left link.
                assert(it.iContour == it_right.iContour);
                assert(it.type == it_right.type);
                assert(it_right.has_left_horizontal());
                assert(it_right.left_horizontal() == int(&it - il_left.intersections.data()));
            }
        }
        for (const SegmentIntersection &it : il_right.intersections) {
            if (it.has_left_horizontal()) {
                const SegmentIntersection &it_left = il_left.intersections[it.left_horizontal()];
                // For a right link there is a symmetric left link.
                assert(it.iContour == it_left.iContour);
                assert(it.type == it_left.type);
                assert(it_left.has_right_horizontal());
                assert(it_left.right_horizontal() == int(&it - il_right.intersections.data()));
            }
        }
    }
    for (size_t i_vline = 0; i_vline < segs.size(); ++ i_vline) {
        const SegmentedIntersectionLine &il = segs[i_vline];
        for (const SegmentIntersection &it : il.intersections) {
            auto i_it = int(&it - il.intersections.data());
            if (it.has_left_vertical_up()) {
                assert(il.intersections[it.left_vertical_up()].left_vertical_down() == i_it);
                assert(il.intersections[it.left_vertical_up()].prev_on_contour_quality == it.prev_on_contour_quality);
            }
            if (it.has_left_vertical_down()) {
                assert(il.intersections[it.left_vertical_down()].left_vertical_up() == i_it);
                assert(il.intersections[it.left_vertical_down()].prev_on_contour_quality == it.prev_on_contour_quality);
            }
            if (it.has_right_vertical_up()) {
                assert(il.intersections[it.right_vertical_up()].right_vertical_down() == i_it);
                assert(il.intersections[it.right_vertical_up()].next_on_contour_quality == it.next_on_contour_quality);
            }
            if (it.has_right_vertical_down()) {
                assert(il.intersections[it.right_vertical_down()].right_vertical_up() == i_it);
                assert(il.intersections[it.right_vertical_down()].next_on_contour_quality == it.next_on_contour_quality);
            }
        }
    }
    return true;
}
#endif /* NDEBUG */

// Connect each contour / vertical line intersection point with another two contour / vertical line intersection points.
// (fill in SegmentIntersection::{prev_on_contour, prev_on_contour_vertical, next_on_contour, next_on_contour_vertical}.
// These contour points are either on the same vertical line, or on the vertical line left / right to the current one.
static void connect_segment_intersections_by_contours(
	const ExPolygonWithOffset &poly_with_offset, std::vector<SegmentedIntersectionLine> &segs,
	const FillParams &params, const coord_t link_max_length)
{
    for (size_t i_vline = 0; i_vline < segs.size(); ++ i_vline) {
	    SegmentedIntersectionLine       &il      = segs[i_vline];
	    const SegmentedIntersectionLine *il_prev = i_vline > 0 ? &segs[i_vline - 1] : nullptr;
	    const SegmentedIntersectionLine *il_next = i_vline + 1 < segs.size() ? &segs[i_vline + 1] : nullptr;

        for (int i_intersection = 0; i_intersection < int(il.intersections.size()); ++ i_intersection) {
		    SegmentIntersection &itsct   = il.intersections[i_intersection];
	        const Polygon 		&poly    = poly_with_offset.contour(itsct.iContour);
            const bool           forward = itsct.is_low(); // == poly_with_offset.is_contour_ccw(intrsctn->iContour);

	        // 1) Find possible connection points on the previous / next vertical line.
		    // Find an intersection point on il_prev, intersecting i_intersection
		    // at the same orientation as i_intersection, and being closest to i_intersection
		    // in the number of contour segments, when following the direction of the contour.
            //FIXME this has O(n) time complexity. Likely an O(log(n)) scheme is possible.
		    int iprev  = -1;
            int d_prev = std::numeric_limits<int>::max();
		    if (il_prev) {
                for (int i = 0; i < int(il_prev->intersections.size()); ++ i) {
			        const SegmentIntersection &itsct2 = il_prev->intersections[i];
			        if (itsct.iContour == itsct2.iContour && itsct.type == itsct2.type) {
			            // The intersection points lie on the same contour and have the same orientation.
			            // Find the intersection point with a shortest path in the direction of the contour.
			            int d = distance_of_segmens(poly, itsct2.iSegment, itsct.iSegment, forward);
			            if (d < d_prev) {
			                iprev = i;
                            d_prev = d;
			            }
			        }
			    }
			}

            // The same for il_next.
		    int inext  = -1;
            int d_next = std::numeric_limits<int>::max();
            if (il_next) {
                for (int i = 0; i < int(il_next->intersections.size()); ++ i) {
			        const SegmentIntersection &itsct2 = il_next->intersections[i];
			        if (itsct.iContour == itsct2.iContour && itsct.type == itsct2.type) {
			            // The intersection points lie on the same contour and have the same orientation.
			            // Find the intersection point with a shortest path in the direction of the contour.
			            int d = distance_of_segmens(poly, itsct.iSegment, itsct2.iSegment, forward);
			            if (d < d_next) {
			                inext = i;
                            d_next = d;
			            }
			        }
			    }
			}

	        // 2) Find possible connection points on the same vertical line.
            bool same_prev = false;
            bool same_next = false;
            // Does the perimeter intersect the current vertical line above intrsctn?
            for (int i = 0; i < int(il.intersections.size()); ++ i)
                if (const SegmentIntersection &it2 = il.intersections[i];
                    i != i_intersection && it2.iContour == itsct.iContour && it2.type != itsct.type) {
                    int d = distance_of_segmens(poly, it2.iSegment, itsct.iSegment, forward);
                    if (d < d_prev) {
                        iprev     = i;
                        d_prev    = d;
                        same_prev = true;
                    }
                    d = distance_of_segmens(poly, itsct.iSegment, it2.iSegment, forward);
                    if (d < d_next) {
                        inext     = i;
                        d_next    = d;
                        same_next = true;
                    }
                }
            assert(iprev >= 0);
            assert(inext >= 0);

            itsct.prev_on_contour 	    = iprev;
            itsct.prev_on_contour_type  = same_prev ? 
                (iprev < i_intersection ? SegmentIntersection::LinkType::Down : SegmentIntersection::LinkType::Up) :
                SegmentIntersection::LinkType::Horizontal;
            itsct.next_on_contour 	    = inext;
            itsct.next_on_contour_type  = same_next ?
                (inext < i_intersection ? SegmentIntersection::LinkType::Down : SegmentIntersection::LinkType::Up) :
                SegmentIntersection::LinkType::Horizontal;

        	if (same_prev) {
        		// Only follow a vertical perimeter segment if it skips just the outer intersections.
        		SegmentIntersection *it  = &itsct;
        		SegmentIntersection *end = il.intersections.data() + iprev;
        		assert(it != end);
        		if (it > end)
        			std::swap(it, end);
                for (++ it; it != end; ++ it)
                    if (it->is_inner()) {
        				itsct.prev_on_contour_quality = SegmentIntersection::LinkQuality::Invalid;
                        break;
                    }
            }

        	if (same_next) {
        		// Only follow a vertical perimeter segment if it skips just the outer intersections.
        		SegmentIntersection *it  = &itsct;
        		SegmentIntersection *end = il.intersections.data() + inext;
        		assert(it != end);
        		if (it > end)
        			std::swap(it, end);
                for (++ it; it != end; ++ it)
                    if (it->is_inner()) {
        				itsct.next_on_contour_quality = SegmentIntersection::LinkQuality::Invalid;
                        break;
                    }
            }

            // If both iprev and inext are on this vline, then there must not be any intersection with the previous or next contour and we will
            // not trace this contour when generating infill.
            if (same_prev && same_next) {
            	assert(iprev != i_intersection);
            	assert(inext != i_intersection);
            	if ((iprev > i_intersection) == (inext > i_intersection)) {
            		// Both closest intersections of this contour are on the same vertical line and at the same side of this point.
            		// Ignore them when tracing the infill.
	                itsct.prev_on_contour_quality = SegmentIntersection::LinkQuality::Invalid;
	                itsct.next_on_contour_quality = SegmentIntersection::LinkQuality::Invalid;
	            }
            }

			if (params.dont_connect()) {
				if (itsct.prev_on_contour_quality == SegmentIntersection::LinkQuality::Valid)
					itsct.prev_on_contour_quality = SegmentIntersection::LinkQuality::TooLong;
				if (itsct.next_on_contour_quality == SegmentIntersection::LinkQuality::Valid)
					itsct.next_on_contour_quality = SegmentIntersection::LinkQuality::TooLong;
			} else if (link_max_length > 0) {
            	// Measure length of the links.
				if (itsct.prev_on_contour_quality == SegmentIntersection::LinkQuality::Valid &&
            	    (same_prev ? 
            		 	measure_perimeter_segment_on_vertical_line_length(poly_with_offset, segs, i_vline, iprev, i_intersection, forward) :
            			measure_perimeter_horizontal_segment_length(poly_with_offset, segs, i_vline - 1, iprev, i_intersection)) > link_max_length)
	    			itsct.prev_on_contour_quality = SegmentIntersection::LinkQuality::TooLong;
				if (itsct.next_on_contour_quality == SegmentIntersection::LinkQuality::Valid &&
            		(same_next ?
            			measure_perimeter_segment_on_vertical_line_length(poly_with_offset, segs, i_vline, i_intersection, inext, forward) :
            			measure_perimeter_horizontal_segment_length(poly_with_offset, segs, i_vline, i_intersection, inext)) > link_max_length)
	    			itsct.next_on_contour_quality = SegmentIntersection::LinkQuality::TooLong;
            }
	    }

	    // Make the LinkQuality::Invalid symmetric on vertical connections.
        for (int i_intersection = 0; i_intersection < int(il.intersections.size()); ++ i_intersection) {
		    SegmentIntersection &it = il.intersections[i_intersection];
            if (it.has_left_vertical() && it.prev_on_contour_quality == SegmentIntersection::LinkQuality::Invalid) {
			    SegmentIntersection &it2 = il.intersections[it.left_vertical()];
			    assert(it2.left_vertical() == i_intersection);
			    it2.prev_on_contour_quality = SegmentIntersection::LinkQuality::Invalid;
            }
            if (it.has_right_vertical() && it.next_on_contour_quality == SegmentIntersection::LinkQuality::Invalid) {
			    SegmentIntersection &it2 = il.intersections[it.right_vertical()];
			    assert(it2.right_vertical() == i_intersection);
			    it2.next_on_contour_quality = SegmentIntersection::LinkQuality::Invalid;
            }
		}
    }

    assert(validate_segment_intersection_connectivity(segs));
}

static void pinch_contours_insert_phony_outer_intersections(std::vector<SegmentedIntersectionLine> &segs)
{
    // Keep the vector outside the loops, so they will not be reallocated.
    // Where to insert new outer points.
    std::vector<size_t>                 insert_after;
    // Mapping of indices of current intersection line after inserting new outer points.
    std::vector<int32_t>                map;
    std::vector<SegmentIntersection>    temp_intersections;

    for (size_t i_vline = 1; i_vline < segs.size(); ++ i_vline) {
        SegmentedIntersectionLine &il = segs[i_vline];
        assert(il.intersections.empty() || il.intersections.size() >= 2);
        if (! il.intersections.empty()) {
            assert(il.intersections.front().type == SegmentIntersection::OUTER_LOW);
            assert(il.intersections.back().type == SegmentIntersection::OUTER_HIGH);
            auto end = il.intersections.end() - 1;
            insert_after.clear();
            for (auto it = il.intersections.begin() + 1; it != end;) {
                if (it->type == SegmentIntersection::OUTER_HIGH) {
                    ++ it;
                    assert(it->type == SegmentIntersection::OUTER_LOW);
                    ++ it;
                } else {
                    assert(it->type == SegmentIntersection::INNER_LOW);
                    auto hi  = ++ it;
                    assert(hi->type == SegmentIntersection::INNER_HIGH);
                    auto lo2 = ++ it;
                    if (lo2->type == SegmentIntersection::INNER_LOW) {
                        // INNER_HIGH followed by INNER_LOW. The outer contour may have squeezed the inner contour into two separate loops.
                        // In that case one shall insert a phony OUTER_HIGH / OUTER_LOW pair.
                        int up = hi->vertical_up();
                        int dn = lo2->vertical_down();

                        assert(up == -1 || up > 0);
                        assert(dn == -1 || dn >= 0);
                        assert((up == -1 && dn == -1) || (dn + 1 == up));

                        bool pinched = dn + 1 != up;
                        if (pinched) {
                            // hi is not connected with its inner contour to lo2.
                            // Insert a phony OUTER_HIGH / OUTER_LOW pair.
#if 0
                            static int pinch_idx = 0;
                            printf("Pinched %d\n", pinch_idx++);
#endif
                            insert_after.emplace_back(hi - il.intersections.begin());
                        }
                    }
                }
            }

            if (! insert_after.empty()) {
                // Insert phony OUTER_HIGH / OUTER_LOW pairs, adjust indices pointing to intersection points on this contour.
                map.clear();
                {
                    size_t i = 0;
                    temp_intersections.clear();
                    for (size_t idx_inset_after : insert_after) {
                        for (; i <= idx_inset_after; ++ i) {
                            map.emplace_back(temp_intersections.size());
                            temp_intersections.emplace_back(il.intersections[i]);
                        }
                        coord_t pos = (temp_intersections.back().pos() + il.intersections[i].pos()) / 2;
                        temp_intersections.emplace_back(phony_outer_intersection(SegmentIntersection::OUTER_HIGH, pos));
                        temp_intersections.emplace_back(phony_outer_intersection(SegmentIntersection::OUTER_LOW, pos));
                    }
                    for (; i < il.intersections.size(); ++ i) {
                        map.emplace_back(temp_intersections.size());
                        temp_intersections.emplace_back(il.intersections[i]);
                    }
                    temp_intersections.swap(il.intersections);
                }
                // Reindex references on current intersection line.
                for (SegmentIntersection &ip : il.intersections) {
                    if (ip.has_left_vertical())
                        ip.prev_on_contour = map[ip.prev_on_contour];
                    if (ip.has_right_vertical())
                        ip.next_on_contour = map[ip.next_on_contour];
                }
                // Reindex references on previous intersection line.
                for (SegmentIntersection &ip : segs[i_vline - 1].intersections)
                    if (ip.has_right_horizontal())
                        ip.next_on_contour = map[ip.next_on_contour];
                if (i_vline + 1 < segs.size()) {
                    // Reindex references on next intersection line.
                    for (SegmentIntersection &ip : segs[i_vline + 1].intersections)
                        if (ip.has_left_horizontal())
                            ip.prev_on_contour = map[ip.prev_on_contour];
                }
            }
        }
    }

    assert(validate_segment_intersection_connectivity(segs));
}

// Find the last INNER_HIGH intersection starting with INNER_LOW, that is followed by OUTER_HIGH intersection.
// Such intersection shall always exist.
static const SegmentIntersection& end_of_vertical_run_raw(const SegmentIntersection &start)
{
	assert(start.type == SegmentIntersection::INNER_LOW);
    // Step back to the beginning of the vertical segment to mark it as consumed.
    auto *it = &start;
    do {
        ++ it;
    } while (it->type != SegmentIntersection::OUTER_HIGH);
    if ((it - 1)->is_inner()) {
        // Step back.
        -- it;
        assert(it->type == SegmentIntersection::INNER_HIGH);
    }
    return *it;
}

// Find the last INNER_HIGH intersection starting with INNER_LOW, that is followed by OUTER_HIGH intersection, traversing vertical up contours if enabled.
// Such intersection shall always exist.
static const SegmentIntersection& end_of_vertical_run(const SegmentedIntersectionLine &il, const SegmentIntersection &start)
{
	assert(start.type == SegmentIntersection::INNER_LOW);
	const SegmentIntersection *end = &end_of_vertical_run_raw(start);
	assert(end->type == SegmentIntersection::INNER_HIGH);
	for (;;) {
		int up = end->vertical_up();
		if (up == -1 || (end->has_left_vertical_up() ? end->prev_on_contour_quality : end->next_on_contour_quality) != SegmentIntersection::LinkQuality::Valid)
			break;
		const SegmentIntersection &new_start = il.intersections[up];
		assert(end->iContour == new_start.iContour);
		assert(new_start.type == SegmentIntersection::INNER_LOW);
		end = &end_of_vertical_run_raw(new_start);
	}
	assert(end->type == SegmentIntersection::INNER_HIGH);
	return *end;
}
static SegmentIntersection& end_of_vertical_run(SegmentedIntersectionLine &il, SegmentIntersection &start)
{
	return const_cast<SegmentIntersection&>(end_of_vertical_run(std::as_const(il), std::as_const(start)));
}

static void traverse_graph_generate_polylines(
	const ExPolygonWithOffset& poly_with_offset, const FillParams& params, const coord_t link_max_length, std::vector<SegmentedIntersectionLine>& segs, Polylines& polylines_out)
{
    // For each outer only chords, measure their maximum distance to the bow of the outer contour.
    // Mark an outer only chord as consumed, if the distance is low.
    for (int i_vline = 0; i_vline < int(segs.size()); ++ i_vline) {
        SegmentedIntersectionLine &vline = segs[i_vline];
        for (int i_intersection = 0; i_intersection + 1 < int(vline.intersections.size()); ++ i_intersection) {
            if (vline.intersections[i_intersection].type == SegmentIntersection::OUTER_LOW &&
                vline.intersections[i_intersection + 1].type == SegmentIntersection::OUTER_HIGH) {
                bool consumed = false;
                //                if (params.full_infill()) {
                //                        measure_outer_contour_slab(poly_with_offset, segs, i_vline, i_ntersection);
                //                } else
                consumed = true;
                vline.intersections[i_intersection].consumed_vertical_up = consumed;
            }
        }
    }

    // Now construct a graph.
    // Find the first point.
    // Naively one would expect to achieve best results by chaining the paths by the shortest distance,
    // but that procedure does not create the longest continuous paths.
    // A simple "sweep left to right" procedure achieves better results.
    int    	  i_vline = 0;
    int    	  i_intersection = -1;
    // Follow the line, connect the lines into a graph.
    // Until no new line could be added to the output path:
    Point     pointLast;
    Polyline* polyline_current = nullptr;
    if (! polylines_out.empty())
        pointLast = polylines_out.back().points.back();
    for (;;) {
        if (i_intersection == -1) {
            // The path has been interrupted. Find a next starting point, closest to the previous extruder position.
            coordf_t dist2min = std::numeric_limits<coordf_t>().max();
            for (int i_vline2 = 0; i_vline2 < int(segs.size()); ++ i_vline2) {
                const SegmentedIntersectionLine &vline = segs[i_vline2];
                if (! vline.intersections.empty()) {
                    assert(vline.intersections.size() > 1);
                    // Even number of intersections with the loops.
                    assert((vline.intersections.size() & 1) == 0);
                    assert(vline.intersections.front().type == SegmentIntersection::OUTER_LOW);
                    for (int i = 0; i < int(vline.intersections.size()); ++ i) {
                        const SegmentIntersection& intrsctn = vline.intersections[i];
                        if (intrsctn.is_outer()) {
                            assert(intrsctn.is_low() || i > 0);
                            bool consumed = intrsctn.is_low() ?
                                intrsctn.consumed_vertical_up :
                                vline.intersections[i - 1].consumed_vertical_up;
                            if (! consumed) {
                                coordf_t dist2 = sqr(coordf_t(pointLast(0) - vline.pos)) + sqr(coordf_t(pointLast(1) - intrsctn.pos()));
                                if (dist2 < dist2min) {
                                    dist2min = dist2;
                                    i_vline = i_vline2;
                                    i_intersection = i;
                                    //FIXME We are taking the first left point always. Verify, that the caller chains the paths
                                    // by a shortest distance, while reversing the paths if needed.
                                    //if (polylines_out.empty())
                                        // Initial state, take the first line, which is the first from the left.
                                    goto found;
                                }
                            }
                        }
                    }
                }
            }
            if (i_intersection == -1)
                // We are finished.
                break;
        found:
            // Start a new path.
            polylines_out.push_back(Polyline());
            polyline_current = &polylines_out.back();
            // Emit the first point of a path.
            pointLast = Point(segs[i_vline].pos, segs[i_vline].intersections[i_intersection].pos());
            polyline_current->points.push_back(pointLast);
        }

        // From the initial point (i_vline, i_intersection), follow a path.
        SegmentedIntersectionLine &vline 		= segs[i_vline];
        SegmentIntersection 	  *it 			= &vline.intersections[i_intersection];
        bool 					   going_up 	= it->is_low();
        bool 					   try_connect 	= false;
        if (going_up) {
            assert(! it->consumed_vertical_up);
            assert(size_t(i_intersection + 1) < vline.intersections.size());
            // Step back to the beginning of the vertical segment to mark it as consumed.
            if (it->is_inner()) {
                assert(i_intersection > 0);
                -- it;
                -- i_intersection;
            }
            // Consume the complete vertical segment up to the outer contour.
            do {
                it->consumed_vertical_up = true;
                ++ it;
                ++ i_intersection;
                assert(size_t(i_intersection) < vline.intersections.size());
            } while (it->type != SegmentIntersection::OUTER_HIGH);
            if ((it - 1)->is_inner()) {
                // Step back.
                -- it;
                -- i_intersection;
                assert(it->type == SegmentIntersection::INNER_HIGH);
                try_connect = true;
            }
        } else {
            // Going down.
            assert(it->is_high());
            assert(i_intersection > 0);
            assert(!(it - 1)->consumed_vertical_up);
            // Consume the complete vertical segment up to the outer contour.
            if (it->is_inner())
                it->consumed_vertical_up = true;
            do {
                assert(i_intersection > 0);
                -- it;
                -- i_intersection;
                it->consumed_vertical_up = true;
            } while (it->type != SegmentIntersection::OUTER_LOW);
            if ((it + 1)->is_inner()) {
                // Step back.
                ++ it;
                ++ i_intersection;
                assert(it->type == SegmentIntersection::INNER_LOW);
                try_connect = true;
            }
        }
        if (try_connect) {
            // Decide, whether to finish the segment, or whether to follow the perimeter.
            // 1) Find possible connection points on the previous / next vertical line.
        	int  i_prev = it->left_horizontal();
        	int  i_next = it->right_horizontal();
            bool intersection_prev_valid = intersection_on_prev_vertical_line_valid(segs, i_vline, i_intersection);
            bool intersection_next_valid = intersection_on_next_vertical_line_valid(segs, i_vline, i_intersection);
            bool intersection_horizontal_valid = intersection_prev_valid || intersection_next_valid;
            // Mark both the left and right connecting segment as consumed, because one cannot go to this intersection point as it has been consumed.
            if (i_prev != -1)
                segs[i_vline - 1].intersections[i_prev].consumed_perimeter_right = true;
            if (i_next != -1)
                it->consumed_perimeter_right = true;

            // Try to connect to a previous or next vertical line, making a zig-zag pattern.
            if (intersection_horizontal_valid) {
            	// A horizontal connection along the perimeter line exists.
	            assert(it->is_inner());
            	bool take_next = intersection_next_valid;
            	if (intersection_prev_valid && intersection_next_valid) {
            		// Take the shorter segment. This greedy heuristics may not be the best.
            		coordf_t dist_prev = measure_perimeter_horizontal_segment_length(poly_with_offset, segs, i_vline - 1, i_prev, i_intersection);
	                coordf_t dist_next = measure_perimeter_horizontal_segment_length(poly_with_offset, segs, i_vline, i_intersection, i_next);
	                take_next = dist_next < dist_prev;
	            }
                polyline_current->points.emplace_back(vline.pos, it->pos());
                emit_perimeter_prev_next_segment(poly_with_offset, segs, i_vline, it->iContour, i_intersection, take_next ? i_next : i_prev, *polyline_current, take_next);
                //FIXME consume the left / right connecting segments at the other end of this line? Currently it is not critical because a perimeter segment is not followed if the vertical segment at the other side has already been consumed.
                // Advance to the neighbor line.
                if (take_next) {
                    ++ i_vline;
                    i_intersection = i_next;
                }
                else {
                    -- i_vline;
                    i_intersection = i_prev;
                }
                continue;
            }

            // Try to connect to a previous or next point on the same vertical line.
            int i_vertical = it->vertical_outside();
            auto vertical_link_quality = (i_vertical == -1 || vline.intersections[i_vertical + (going_up ? 0 : -1)].consumed_vertical_up) ? 
            	SegmentIntersection::LinkQuality::Invalid : it->vertical_outside_quality();
#if 0            	
            if (vertical_link_quality == SegmentIntersection::LinkQuality::Valid ||
            	// Follow the link if there is no horizontal link available.
            	(! intersection_horizontal_valid && vertical_link_quality != SegmentIntersection::LinkQuality::Invalid)) {
#else
           	if (vertical_link_quality != SegmentIntersection::LinkQuality::Invalid) {
#endif
                assert(it->iContour == vline.intersections[i_vertical].iContour);
                polyline_current->points.emplace_back(vline.pos, it->pos());
                if (vertical_link_quality == SegmentIntersection::LinkQuality::Valid)
                    // Consume the connecting contour and the next segment.
                    emit_perimeter_segment_on_vertical_line(poly_with_offset, segs, i_vline, it->iContour, i_intersection, i_vertical,
                        *polyline_current, going_up ? it->has_left_vertical_up() : it->has_right_vertical_down());
                else {
                    // Just skip the connecting contour and start a new path.
                    polylines_out.emplace_back();
                    polyline_current = &polylines_out.back();
                    polyline_current->points.emplace_back(vline.pos, vline.intersections[i_vertical].pos());
                }
                // Mark both the left and right connecting segment as consumed, because one cannot go to this intersection point as it has been consumed.
                // If there are any outer intersection points skipped (bypassed) by the contour,
                // mark them as processed.
                if (going_up)
                    for (int i = i_intersection; i < i_vertical; ++i)
                        vline.intersections[i].consumed_vertical_up = true;
                else
                    for (int i = i_vertical; i < i_intersection; ++i)
                        vline.intersections[i].consumed_vertical_up = true;
                // seg.intersections[going_up ? i_intersection : i_intersection - 1].consumed_vertical_up = true;
                it->consumed_perimeter_right = true;
                (going_up ? ++it : --it)->consumed_perimeter_right = true;
                i_intersection = i_vertical;
                continue;
            }

            // No way to continue the current polyline. Take the rest of the line up to the outer contour.
            // This will finish the polyline, starting another polyline at a new point.
            going_up ? ++ it : -- it;
        }

        // Finish the current vertical line,
        // reset the current vertical line to pick a new starting point in the next round.
        assert(it->is_outer());
        assert(it->is_high() == going_up);
        pointLast = Point(vline.pos, it->pos());
        polyline_current->points.emplace_back(pointLast);
        // Handle duplicate points and zero length segments.
        polyline_current->remove_duplicate_points();
        assert(! polyline_current->has_duplicate_points());
        // Handle nearly zero length edges.
        if (polyline_current->points.size() <= 1 ||
            (polyline_current->points.size() == 2 &&
                std::abs(polyline_current->points.front()(0) - polyline_current->points.back()(0)) < SCALED_EPSILON &&
                std::abs(polyline_current->points.front()(1) - polyline_current->points.back()(1)) < SCALED_EPSILON))
            polylines_out.pop_back();
        it 				 = nullptr;
        i_intersection   = -1;
        polyline_current = nullptr;
    }
}

struct MonotonicRegion
{
    struct Boundary {
        int vline;
        int low;
        int high;
    };

    Boundary 	left;
    Boundary 	right;

    // Length when starting at left.low
    float 		len1 { 0.f };
    // Length when starting at left.high
    float 		len2 { 0.f };
    // If true, then when starting at left.low, then ending at right.high and vice versa.
    // If false, then ending at the same side as starting.
    bool 		flips { false };

    float       length(bool region_flipped) const { return region_flipped ? len2 : len1; }
    int 		left_intersection_point(bool region_flipped) const { return region_flipped ? left.high : left.low; }
    int 		right_intersection_point(bool region_flipped) const { return (region_flipped == flips) ? right.low : right.high; }

#if NDEBUG
    // Left regions are used to track whether all regions left to this one have already been printed.
    boost::container::small_vector<MonotonicRegion*, 4>	left_neighbors;
    // Right regions are held to pick a next region to be extruded using the "Ant colony" heuristics.
    boost::container::small_vector<MonotonicRegion*, 4>	right_neighbors;
#else
    // For debugging, use the normal vector as it is better supported by debug visualizers.
    std::vector<MonotonicRegion*> left_neighbors;
    std::vector<MonotonicRegion*> right_neighbors;
#endif
};

struct AntPath
{
	float length 	 { -1. }; 		// Length of the link to the next region.
	float visibility { -1. }; 		// 1 / length. Which length, just to the next region, or including the path accross the region?
	float pheromone  { 0 }; 		// <0, 1>
};

struct MonotonicRegionLink
{
    MonotonicRegion     *region;
    bool 				 flipped;
    // Distance of right side of this region to left side of the next region, if the "flipped" flag of this region and the next region 
    // is applied as defined.
    AntPath 			*next;
    // Distance of right side of this region to left side of the next region, if the "flipped" flag of this region and the next region
    // is applied in reverse order as if the zig-zags were flipped.
    AntPath 			*next_flipped;
};

// Matrix of paths (AntPath) connecting ends of MontonousRegions.
// AntPath lengths and their derived visibilities refer to the length of the perimeter line if such perimeter segment exists.
class AntPathMatrix
{
public:
	AntPathMatrix(
		const std::vector<MonotonicRegion> 			    &regions, 
		const ExPolygonWithOffset 						&poly_with_offset, 
		const std::vector<SegmentedIntersectionLine> 	&segs,
		const float 									 initial_pheromone) : 
		m_regions(regions),
		m_poly_with_offset(poly_with_offset),
		m_segs(segs),
		// From end of one region to the start of another region, both flipped or not flipped.
		m_matrix(regions.size() * regions.size() * 4, AntPath{ -1., -1., initial_pheromone}) {}

	void update_inital_pheromone(float initial_pheromone)
	{
		for (AntPath &ap : m_matrix)
			ap.pheromone = initial_pheromone;
	}

	AntPath& operator()(const MonotonicRegion &region_from, bool flipped_from, const MonotonicRegion &region_to, bool flipped_to)
	{
		int row = 2 * int(&region_from - m_regions.data()) + flipped_from;
		int col = 2 * int(&region_to   - m_regions.data()) + flipped_to;
		AntPath &path = m_matrix[row * m_regions.size() * 2 + col];
		if (path.length == -1.) {
			// This path is accessed for the first time. Update the length and cost.
			int i_from = region_from.right_intersection_point(flipped_from);
			int i_to   = region_to.left_intersection_point(flipped_to);
			const SegmentedIntersectionLine &vline_from = m_segs[region_from.right.vline];
			const SegmentedIntersectionLine &vline_to   = m_segs[region_to.left.vline];
			if (region_from.right.vline + 1 == region_from.left.vline) {
				int i_right = vline_from.intersections[i_from].right_horizontal();
				if (i_right == i_to && vline_from.intersections[i_from].next_on_contour_quality == SegmentIntersection::LinkQuality::Valid) {
					// Measure length along the contour.
	                path.length = unscale<float>(measure_perimeter_horizontal_segment_length(m_poly_with_offset, m_segs, region_from.right.vline, i_from, i_to));
				}
			}
			if (path.length == -1.) {
				// Just apply the Eucledian distance of the end points.
			    path.length = unscale<float>(Vec2f(vline_to.pos - vline_from.pos, vline_to.intersections[i_to].pos() - vline_from.intersections[i_from].pos()).norm());
			}
			path.visibility = 1.f / (path.length + float(EPSILON));
		}
		return path;
	}

	AntPath& operator()(const MonotonicRegionLink &region_from, const MonotonicRegion &region_to, bool flipped_to)
		{ return (*this)(*region_from.region, region_from.flipped, region_to, flipped_to); }
	AntPath& operator()(const MonotonicRegion &region_from, bool flipped_from, const MonotonicRegionLink &region_to)
		{ return (*this)(region_from, flipped_from, *region_to.region, region_to.flipped); }
    AntPath& operator()(const MonotonicRegionLink &region_from, const MonotonicRegionLink &region_to)
        { return (*this)(*region_from.region, region_from.flipped, *region_to.region, region_to.flipped); }

private:
	// Source regions, used for addressing and updating m_matrix.
	const std::vector<MonotonicRegion>    			&m_regions;
	// To calculate the intersection points and contour lengths.
	const ExPolygonWithOffset 						&m_poly_with_offset;
	const std::vector<SegmentedIntersectionLine> 	&m_segs;
	// From end of one region to the start of another region, both flipped or not flipped.
	//FIXME one may possibly use sparse representation of the matrix, likely using hashing.
	std::vector<AntPath>					         m_matrix;
};

static const SegmentIntersection& vertical_run_bottom(const SegmentedIntersectionLine &vline, const SegmentIntersection &start)
{
	assert(start.is_inner());
	const SegmentIntersection *it = &start;
	// Find the lowest SegmentIntersection::INNER_LOW starting with right.
	for (;;) {
		while (it->type != SegmentIntersection::INNER_LOW)
			-- it;
        if ((it - 1)->type == SegmentIntersection::INNER_HIGH)
            -- it;
        else {
            int down = it->vertical_down();
            if (down == -1 || it->vertical_down_quality() != SegmentIntersection::LinkQuality::Valid)
                break;
            it = &vline.intersections[down];
            assert(it->type == SegmentIntersection::INNER_HIGH);
        }
	}
	return *it;
}
static SegmentIntersection& vertical_run_bottom(SegmentedIntersectionLine& vline, SegmentIntersection& start)
{
    return const_cast<SegmentIntersection&>(vertical_run_bottom(std::as_const(vline), std::as_const(start)));
}

static const SegmentIntersection& vertical_run_top(const SegmentedIntersectionLine &vline, const SegmentIntersection &start)
{
	assert(start.is_inner());
	const SegmentIntersection *it = &start;
	// Find the lowest SegmentIntersection::INNER_LOW starting with right.
	for (;;) {
		while (it->type != SegmentIntersection::INNER_HIGH)
			++ it;
        if ((it + 1)->type == SegmentIntersection::INNER_LOW)
            ++ it;
        else {
            int up = it->vertical_up();
            if (up == -1 || it->vertical_up_quality() != SegmentIntersection::LinkQuality::Valid)
                break;
            it = &vline.intersections[up];
            assert(it->type == SegmentIntersection::INNER_LOW);
        }
	}
	return *it;
}
static SegmentIntersection& vertical_run_top(SegmentedIntersectionLine& vline, SegmentIntersection& start)
{
    return const_cast<SegmentIntersection&>(vertical_run_top(std::as_const(vline), std::as_const(start)));
}

static SegmentIntersection* overlap_bottom(SegmentIntersection &start, SegmentIntersection &end, SegmentedIntersectionLine &vline_this, SegmentedIntersectionLine &vline_other, SegmentIntersection::Side side)
{
	SegmentIntersection *other = nullptr;
    assert(start.is_inner());
    assert(end.is_inner());
    const SegmentIntersection *it = &start;
    for (;;) {
        if (it->is_inner()) {
            int i = it->horizontal(side);
            if (i != -1) {
                other = &vline_other.intersections[i];
                break;
            }
            if (it == &end)
                break;
        }
        if (it->type != SegmentIntersection::INNER_HIGH)
            ++ it;
        else if ((it + 1)->type == SegmentIntersection::INNER_LOW)
            ++ it;
        else {
            int up = it->vertical_up();
            if (up == -1 || it->vertical_up_quality() != SegmentIntersection::LinkQuality::Valid)
                break;
            it = &vline_this.intersections[up];
            assert(it->type == SegmentIntersection::INNER_LOW);
        }
    }
	return other == nullptr ? nullptr : &vertical_run_bottom(vline_other, *other);
}

static SegmentIntersection* overlap_top(SegmentIntersection &start, SegmentIntersection &end, SegmentedIntersectionLine &vline_this, SegmentedIntersectionLine &vline_other, SegmentIntersection::Side side)
{
    SegmentIntersection *other = nullptr;
    assert(start.is_inner());
    assert(end.is_inner());
    const SegmentIntersection *it = &end;
    for (;;) {
        if (it->is_inner()) {
            int i = it->horizontal(side);
            if (i != -1) {
                other = &vline_other.intersections[i];
                break;
            }
            if (it == &start)
                break;
        }
        if (it->type != SegmentIntersection::INNER_LOW)
            -- it;
        else if ((it - 1)->type == SegmentIntersection::INNER_HIGH)
            -- it;
        else {
            int down = it->vertical_down();
            if (down == -1 || it->vertical_down_quality() != SegmentIntersection::LinkQuality::Valid)
                break;
            it = &vline_this.intersections[down];
            assert(it->type == SegmentIntersection::INNER_HIGH);
        }
    }
	return other == nullptr ? nullptr : &vertical_run_top(vline_other, *other);
}

static std::pair<SegmentIntersection*, SegmentIntersection*> left_overlap(SegmentIntersection &start, SegmentIntersection &end, SegmentedIntersectionLine &vline_this, SegmentedIntersectionLine &vline_left)
{
	std::pair<SegmentIntersection*, SegmentIntersection*> out(nullptr, nullptr);
	out.first = overlap_bottom(start, end, vline_this, vline_left, SegmentIntersection::Side::Left);
	if (out.first != nullptr)
		out.second = overlap_top(start, end, vline_this, vline_left, SegmentIntersection::Side::Left);
    assert((out.first == nullptr && out.second == nullptr) || out.first < out.second);
	return out;
}

static std::pair<SegmentIntersection*, SegmentIntersection*> left_overlap(std::pair<SegmentIntersection*, SegmentIntersection*> &start_end, SegmentedIntersectionLine &vline_this, SegmentedIntersectionLine &vline_left)
{
	assert((start_end.first == nullptr) == (start_end.second == nullptr));
	return start_end.first == nullptr ? start_end : left_overlap(*start_end.first, *start_end.second, vline_this, vline_left);
}

static std::pair<SegmentIntersection*, SegmentIntersection*> right_overlap(SegmentIntersection &start, SegmentIntersection &end, SegmentedIntersectionLine &vline_this, SegmentedIntersectionLine &vline_right)
{
	std::pair<SegmentIntersection*, SegmentIntersection*> out(nullptr, nullptr);
	out.first = overlap_bottom(start, end, vline_this, vline_right, SegmentIntersection::Side::Right);
	if (out.first != nullptr)
		out.second = overlap_top(start, end, vline_this, vline_right, SegmentIntersection::Side::Right);
    assert((out.first == nullptr && out.second == nullptr) || out.first < out.second);
    return out;
}

static std::pair<SegmentIntersection*, SegmentIntersection*> right_overlap(std::pair<SegmentIntersection*, SegmentIntersection*> &start_end, SegmentedIntersectionLine &vline_this, SegmentedIntersectionLine &vline_right)
{
	assert((start_end.first == nullptr) == (start_end.second == nullptr));
	return start_end.first == nullptr ? start_end : right_overlap(*start_end.first, *start_end.second, vline_this, vline_right);
}

static std::vector<MonotonicRegion> generate_montonous_regions(std::vector<SegmentedIntersectionLine> &segs)
{
	std::vector<MonotonicRegion> monotonic_regions;

#ifndef NDEBUG
	#define SLIC3R_DEBUG_MONOTONOUS_REGIONS
#endif

#ifdef SLIC3R_DEBUG_MONOTONOUS_REGIONS
    std::vector<std::vector<std::pair<int, int>>> consumed(segs.size());
    auto test_overlap = [&consumed](int segment, int low, int high) {
        for (const std::pair<int, int>& interval : consumed[segment])
            if ((low >= interval.first && low <= interval.second) ||
                (interval.first >= low && interval.first <= high))
                return true;
        consumed[segment].emplace_back(low, high);
        return false;
    };
#else
    [[maybe_unused]] auto test_overlap = [](int, int, int) { return false; };
#endif

    for (int i_vline_seed = 0; i_vline_seed < int(segs.size()); ++ i_vline_seed) {
        SegmentedIntersectionLine  &vline_seed = segs[i_vline_seed];
        for (int i_intersection_seed = 1; i_intersection_seed + 1 < int(vline_seed.intersections.size()); ) {
            while (i_intersection_seed < int(vline_seed.intersections.size()) &&
	        	   vline_seed.intersections[i_intersection_seed].type != SegmentIntersection::INNER_LOW)
	        	++ i_intersection_seed;
            if (i_intersection_seed == int(vline_seed.intersections.size()))
                break;
			SegmentIntersection *start = &vline_seed.intersections[i_intersection_seed];
            SegmentIntersection *end   = &end_of_vertical_run(vline_seed, *start);
			if (! start->consumed_vertical_up) {
				// Draw a new monotonic region starting with this segment.
				// while there is only a single right neighbor
		        int i_vline = i_vline_seed;
                std::pair<SegmentIntersection*, SegmentIntersection*> left(start, end);
				MonotonicRegion region;
				region.left.vline = i_vline;
				region.left.low   = int(left.first  - vline_seed.intersections.data());
				region.left.high  = int(left.second - vline_seed.intersections.data());
				region.right      = region.left;
                assert(! test_overlap(region.left.vline, region.left.low, region.left.high));
				start->consumed_vertical_up = true;
				int num_lines = 1;
                while (++ i_vline < int(segs.size())) {
			        SegmentedIntersectionLine  &vline_left	= segs[i_vline - 1];
			        SegmentedIntersectionLine  &vline_right = segs[i_vline];
					std::pair<SegmentIntersection*, SegmentIntersection*> right 	      = right_overlap(left, vline_left, vline_right);
                    if (right.first == nullptr)
                        // No neighbor at the right side of the current segment.
                        break;
                    SegmentIntersection*                                  right_top_first = &vertical_run_top(vline_right, *right.first);
                    if (right_top_first != right.second)
                        // This segment overlaps with multiple segments at its right side.
                        break;
                    std::pair<SegmentIntersection*, SegmentIntersection*> right_left      = left_overlap(right, vline_right, vline_left);
					if (left != right_left)
						// Left & right draws don't overlap exclusively, right neighbor segment overlaps with multiple segments at its left.
						break;
					region.right.vline = i_vline;
					region.right.low   = int(right.first  - vline_right.intersections.data());
					region.right.high  = int(right.second - vline_right.intersections.data());
					right.first->consumed_vertical_up = true;
                    assert(! test_overlap(region.right.vline, region.right.low, region.right.high));
                    ++ num_lines;
					left = right;
				}
				// Even number of lines makes the infill zig-zag to exit on the other side of the region than where it starts.
				region.flips = (num_lines & 1) != 0;
                monotonic_regions.emplace_back(region);
			}
			i_intersection_seed = int(end - vline_seed.intersections.data()) + 1;
		}
    }

    return monotonic_regions;
}

#ifdef INFILL_DEBUG_OUTPUT
static void export_monotonous_regions_to_svg(
    const ExPolygonWithOffset                       &poly_with_offset,
    const std::vector<SegmentedIntersectionLine>    &segs,
    const std::vector<MonotonicRegion>              &monotonic_regions,
    const std::string                               &path)
{
    BoundingBox bbox = get_extents(poly_with_offset.polygons_src);
    bbox.offset(scale_(3.));

    ::Slic3r::SVG svg(path, bbox);
    svg.draw(poly_with_offset.polygons_src);
    svg.draw_outline(poly_with_offset.polygons_src, "green");
    svg.draw_outline(poly_with_offset.polygons_outer, "green");
    svg.draw_outline(poly_with_offset.polygons_inner, "green");

    // Draw the infill line candidates in red.
    for (const SegmentedIntersectionLine &sil : segs) {
        for (size_t i = 0; i + 1 < sil.intersections.size(); ++ i)
            if (sil.intersections[i].type == SegmentIntersection::INNER_LOW && sil.intersections[i + 1].type == SegmentIntersection::INNER_HIGH) {
                Line l(Point(sil.pos, sil.intersections[i].pos()), Point(sil.pos, sil.intersections[i + 1].pos()));
                svg.draw(l, "blue");
            } else if (sil.intersections[i].type == SegmentIntersection::INNER_HIGH && sil.intersections[i].has_vertical_up()) {
                std::string color;
                const SegmentIntersection *it = &sil.intersections[i];
                switch (it->vertical_up_quality()) {
                case SegmentIntersection::LinkQuality::Invalid:     color = "red"; break;
                case SegmentIntersection::LinkQuality::Valid:       color = "blue"; break;
                case SegmentIntersection::LinkQuality::TooLong:
                default:                                            color = "yellow"; break;
                }
                Polyline polyline;
                polyline.points.push_back({ sil.pos, it->pos() });
                emit_perimeter_segment_on_vertical_line(poly_with_offset, segs, &sil - segs.data() , it->iContour, it - sil.intersections.data(), it->vertical_up(), polyline, it->has_left_vertical_up());
                svg.draw(polyline, color, scale_(0.05));
            }
    }

    // Draw the monotonic regions.
    for (const MonotonicRegion &region : monotonic_regions) {
        auto draw_boundary_line = [&poly_with_offset, &segs, &svg](const MonotonicRegion::Boundary &boundary) {
            const SegmentedIntersectionLine &sil = segs[boundary.vline];
            for (size_t i = boundary.low; i < boundary.high; ++ i)
                if (sil.intersections[i].type == SegmentIntersection::INNER_LOW && sil.intersections[i + 1].type == SegmentIntersection::INNER_HIGH) {
                    Line l(Point(sil.pos, sil.intersections[i].pos()), Point(sil.pos, sil.intersections[i + 1].pos()));
                    svg.draw(l, "red", scale_(0.05));
                }
        };
        draw_boundary_line(region.left);
        draw_boundary_line(region.right);
    }
}
#endif // INFILL_DEBUG_OUTPUT

// Traverse path, calculate length of the draw for the purpose of optimization.
// This function is very similar to polylines_from_paths() in the way how it traverses the path, but
// polylines_from_paths() emits a path, while this function just calculates the path length.
static float montonous_region_path_length(const MonotonicRegion &region, bool dir, const ExPolygonWithOffset &poly_with_offset, const std::vector<SegmentedIntersectionLine> &segs)
{
    // From the initial point (i_vline, i_intersection), follow a path.
	int   i_intersection = region.left_intersection_point(dir);
	int   i_vline 		 = region.left.vline;
	float total_length   = 0.;
	bool  no_perimeter   = false;
	Vec2f last_point;

	for (;;) {
        const SegmentedIntersectionLine &vline 		= segs[i_vline];
        const SegmentIntersection       *it    		= &vline.intersections[i_intersection];
        const bool                       going_up   = it->is_low();

        if (no_perimeter)
        	total_length += (last_point - Vec2f(vline.pos, (it + (going_up ? - 1 : 1))->pos())).norm();

        int iright = it->right_horizontal();
        if (going_up) {
            // Traverse the complete vertical segment up to the inner contour.
            for (;;) {
	            do {
	                ++ it;
					iright = std::max(iright, it->right_horizontal());
                    assert(it->is_inner());
                } while (it->type != SegmentIntersection::INNER_HIGH || (it + 1)->type != SegmentIntersection::OUTER_HIGH);
	            int inext = it->vertical_up();
                if (inext == -1 || it->vertical_up_quality() != SegmentIntersection::LinkQuality::Valid)
	            	break;
                assert(it->iContour == vline.intersections[inext].iContour);
                it = vline.intersections.data() + inext;
            } 
        } else {
            // Going down.
            assert(it->is_high());
            assert(i_intersection > 0);
            for (;;) {
	            do {
	                -- it;
	                if (int iright_new = it->right_horizontal(); iright_new != -1)
	                	iright = iright_new;
                    assert(it->is_inner());
	            } while (it->type != SegmentIntersection::INNER_LOW || (it - 1)->type != SegmentIntersection::OUTER_LOW);
	            int inext = it->vertical_down();
	            if (inext == -1 || it->vertical_down_quality() != SegmentIntersection::LinkQuality::Valid)
	            	break;
                assert(it->iContour == vline.intersections[inext].iContour);
                it = vline.intersections.data() + inext;
            } 
        }

        if (i_vline == region.right.vline)
        	break;

        int inext = it->right_horizontal();
        assert(iright != -1);
        assert(inext == -1 || inext == iright);

        // Find the end of the next overlapping vertical segment.
        const SegmentedIntersectionLine &vline_right = segs[i_vline + 1];
        const SegmentIntersection       *right       = going_up ? 
            &vertical_run_top(vline_right, vline_right.intersections[iright]) : &vertical_run_bottom(vline_right, vline_right.intersections[iright]);
        i_intersection = int(right - vline_right.intersections.data());

        if (inext == i_intersection && it->next_on_contour_quality == SegmentIntersection::LinkQuality::Valid) {
        	// Summarize length of the connection line along the perimeter.
        	//FIXME should it be weighted with a lower weight than non-extruding connection line? What weight?
        	// Taking half of the length.
    		total_length += 0.5f * float(measure_perimeter_horizontal_segment_length(poly_with_offset, segs, i_vline, it - vline.intersections.data(), inext));
			// Don't add distance to the next vertical line start to the total length.
			no_perimeter = false;
        } else {
	        // Finish the current vertical line,
        	going_up ? ++ it : -- it;
	        assert(it->is_outer());
	        assert(it->is_high() == going_up);
	        // Mark the end of this vertical line.
			last_point = Vec2f(vline.pos, it->pos());
			// Remember to add distance to the last point.
			no_perimeter = true;
        }

        ++ i_vline;
    }

    return unscale<float>(total_length);
}

static void connect_monotonic_regions(std::vector<MonotonicRegion> &regions, const ExPolygonWithOffset &poly_with_offset, std::vector<SegmentedIntersectionLine> &segs)
{
	// Map from low intersection to left / right side of a monotonic region.
	using MapType = std::pair<SegmentIntersection*, MonotonicRegion*>;
	std::vector<MapType> map_intersection_to_region_start;
	std::vector<MapType> map_intersection_to_region_end;
	map_intersection_to_region_start.reserve(regions.size());
	map_intersection_to_region_end.reserve(regions.size());
	for (MonotonicRegion &region : regions) {
		map_intersection_to_region_start.emplace_back(&segs[region.left.vline].intersections[region.left.low], &region);
		map_intersection_to_region_end.emplace_back(&segs[region.right.vline].intersections[region.right.low], &region);
	}
	auto intersections_lower = [](const MapType &l, const MapType &r){ return l.first < r.first ; };
    std::sort(map_intersection_to_region_start.begin(), map_intersection_to_region_start.end(), intersections_lower);
	std::sort(map_intersection_to_region_end.begin(), map_intersection_to_region_end.end(), intersections_lower);

	// Scatter links to neighboring regions.
	for (MonotonicRegion &region : regions) {
		if (region.left.vline > 0) {
			auto &vline = segs[region.left.vline];
            auto &vline_left = segs[region.left.vline - 1];
            auto[lbegin, lend] = left_overlap(vline.intersections[region.left.low], vline.intersections[region.left.high], vline, vline_left);
            if (lbegin != nullptr) {
                for (;;) {
                    MapType key(lbegin, nullptr);
                    auto it = std::lower_bound(map_intersection_to_region_end.begin(), map_intersection_to_region_end.end(), key);
                    assert(it != map_intersection_to_region_end.end() && it->first == key.first);
				    it->second->right_neighbors.emplace_back(&region);
				    SegmentIntersection *lnext = &vertical_run_top(vline_left, *lbegin);
				    if (lnext == lend)
					    break;
				    while (lnext->type != SegmentIntersection::INNER_LOW)
					    ++ lnext;
				    lbegin = lnext;
			    }
            }
		}
        if (region.right.vline + 1 < int(segs.size())) {
			auto &vline = segs[region.right.vline];
            auto &vline_right = segs[region.right.vline + 1];
            auto [rbegin, rend] = right_overlap(vline.intersections[region.right.low], vline.intersections[region.right.high], vline, vline_right);
            if (rbegin != nullptr) {
			    for (;;) {
				    MapType key(rbegin, nullptr);
				    auto it = std::lower_bound(map_intersection_to_region_start.begin(), map_intersection_to_region_start.end(), key);
				    assert(it != map_intersection_to_region_start.end() && it->first == key.first);
				    it->second->left_neighbors.emplace_back(&region);
				    SegmentIntersection *rnext = &vertical_run_top(vline_right, *rbegin);
				    if (rnext == rend)
					    break;
				    while (rnext->type != SegmentIntersection::INNER_LOW)
					    ++ rnext;
				    rbegin = rnext;
			    }
            }
		}
	}

	// Sometimes a segment may indicate that it connects to a segment on the other side while the other does not.
    // This may be a valid case if one side contains runs of OUTER_LOW, INNER_LOW, {INNER_HIGH, INNER_LOW}*, INNER_HIGH, OUTER_HIGH,
    // where the part in the middle does not connect to the other side, but it will be extruded through.
    for (MonotonicRegion &region : regions) {
        std::sort(region.left_neighbors.begin(),  region.left_neighbors.end());
        std::sort(region.right_neighbors.begin(), region.right_neighbors.end());
    }
    for (MonotonicRegion &region : regions) {
        for (MonotonicRegion *neighbor : region.left_neighbors) {
            auto it = std::lower_bound(neighbor->right_neighbors.begin(), neighbor->right_neighbors.end(), &region);
            if (it == neighbor->right_neighbors.end() || *it != &region)
                neighbor->right_neighbors.insert(it, &region);
        }
        for (MonotonicRegion *neighbor : region.right_neighbors) {
            auto it = std::lower_bound(neighbor->left_neighbors.begin(), neighbor->left_neighbors.end(), &region);
            if (it == neighbor->left_neighbors.end() || *it != &region)
                neighbor->left_neighbors.insert(it, &region);
        }
    }

#ifndef NDEBUG
    // Verify symmetry of the left_neighbors / right_neighbors.
    for (MonotonicRegion &region : regions) {
        for (MonotonicRegion *neighbor : region.left_neighbors) {
            assert(std::count(region.left_neighbors.begin(), region.left_neighbors.end(), neighbor) == 1);
            assert(std::find(neighbor->right_neighbors.begin(), neighbor->right_neighbors.end(), &region) != neighbor->right_neighbors.end());
        }
        for (MonotonicRegion *neighbor : region.right_neighbors) {
            assert(std::count(region.right_neighbors.begin(), region.right_neighbors.end(), neighbor) == 1);
            assert(std::find(neighbor->left_neighbors.begin(), neighbor->left_neighbors.end(), &region) != neighbor->left_neighbors.end());
        }
    }
#endif /* NDEBUG */

    // Fill in sum length of connecting lines of a region. This length is used for optimizing the infill path for minimum length.
    for (MonotonicRegion &region : regions) {
    	region.len1 = montonous_region_path_length(region, false, poly_with_offset, segs);
    	region.len2 = montonous_region_path_length(region, true,  poly_with_offset, segs);
    	// Subtract the smaller length from the longer one, so we will optimize just with the positive difference of the two.
    	if (region.len1 > region.len2) {
    		region.len1 -= region.len2;
    		region.len2 = 0;
    	} else {
    		region.len2 -= region.len1;
    		region.len1 = 0;
    	}
    }
}

// Raad Salman: Algorithms for the Precedence Constrained Generalized Travelling Salesperson Problem
// https://www.chalmers.se/en/departments/math/research/research-groups/optimization/OptimizationMasterTheses/MScThesis-RaadSalman-final.pdf
// Algorithm 6.1 Lexicographic Path Preserving 3-opt
// Optimize path while maintaining the ordering constraints.
void monotonic_3_opt(std::vector<MonotonicRegionLink> &path, const std::vector<SegmentedIntersectionLine> &segs)
{
	// When doing the 3-opt path preserving flips, one has to fulfill two constraints:
	//
	// 1) The new path should be shorter than the old path.
	// 2) The precedence constraints shall be satisified on the new path.
	//
	// Branch & bound with KD-tree may be used with the shorter path constraint, but the precedence constraint will have to be recalculated for each
	// shorter path candidate found, which has a quadratic cost for a dense precedence graph. For a sparse precedence graph the precedence
	// constraint verification will be cheaper.
	//
	// On the other side, if the full search space is traversed as in the diploma thesis by Raad Salman (page 24, Algorithm 6.1 Lexicographic Path Preserving 3-opt),
	// then the precedence constraint verification is amortized inside the O(n^3) loop. Now which is better for our task?
	//
	// It is beneficial to also try flipping of the infill zig-zags, for which a prefix sum of both flipped and non-flipped paths over
	// MonotonicRegionLinks may be utilized, however updating the prefix sum has a linear complexity, the same complexity as doing the 3-opt
	// exchange by copying the pieces.
}

// #define SLIC3R_DEBUG_ANTS

template<typename... TArgs>
inline void print_ant(const std::string& fmt, TArgs&&... args) {
#ifdef SLIC3R_DEBUG_ANTS
    std::cout << Slic3r::format(fmt, std::forward<TArgs>(args)...) << std::endl;
#endif
}

// Find a run through monotonic infill blocks using an 'Ant colony" optimization method.
// http://www.scholarpedia.org/article/Ant_colony_optimization
static std::vector<MonotonicRegionLink> chain_monotonic_regions(
	std::vector<MonotonicRegion> &regions, const ExPolygonWithOffset &poly_with_offset, const std::vector<SegmentedIntersectionLine> &segs, std::mt19937_64 &rng)
{
	// Number of left neighbors (regions that this region depends on, this region cannot be printed before the regions left of it are printed) + self.
	std::vector<int32_t>			left_neighbors_unprocessed(regions.size(), 1);
	// Queue of regions, which have their left neighbors already printed.
	std::vector<MonotonicRegion*> 	queue;
	queue.reserve(regions.size());
	for (MonotonicRegion &region : regions)
		if (region.left_neighbors.empty())
			queue.emplace_back(&region);
		else
			left_neighbors_unprocessed[&region - regions.data()] += int(region.left_neighbors.size());
	// Make copy of structures that need to be initialized at each ant iteration.
	auto left_neighbors_unprocessed_initial = left_neighbors_unprocessed;
	auto queue_initial 						= queue;

	std::vector<MonotonicRegionLink> path, best_path;
	path.reserve(regions.size());
	best_path.reserve(regions.size());
	float best_path_length = std::numeric_limits<float>::max();

	struct NextCandidate {
        MonotonicRegion    *region = nullptr;
        AntPath  	        *link;
        AntPath  	        *link_flipped;
        float                probability;
        bool 		         dir = false;
	};
	std::vector<NextCandidate> next_candidates;

    [[maybe_unused]]auto validate_unprocessed =
#ifdef NDEBUG
        []() { return true; };
#else
        [&regions, &left_neighbors_unprocessed, &path, &queue]() {
            std::vector<unsigned char> regions_processed(regions.size(), false);
            std::vector<unsigned char> regions_in_queue(regions.size(), false);
            for (const MonotonicRegion *region : queue) {
            	// This region is not processed yet, his predecessors are processed.
                assert(left_neighbors_unprocessed[region - regions.data()] == 1);
                regions_in_queue[region - regions.data()] = true;
            }
            for (const MonotonicRegionLink &link : path) {
                assert(left_neighbors_unprocessed[link.region - regions.data()] == 0);
                regions_processed[link.region - regions.data()] = true;
            }
            for (size_t i = 0; i < regions_processed.size(); ++ i) {
                assert(! regions_processed[i] || ! regions_in_queue[i]);
                const MonotonicRegion &region = regions[i];
                if (regions_processed[i] || regions_in_queue[i]) {
                    assert(left_neighbors_unprocessed[i] == (regions_in_queue[i] ? 1 : 0));
                    // All left neighbors should be processed already.
                    for (const MonotonicRegion *left : region.left_neighbors) {
                        assert(regions_processed[left - regions.data()]);
                        assert(left_neighbors_unprocessed[left - regions.data()] == 0);
                    }
                } else {
                    // Some left neihgbor should not be processed yet.
                    assert(left_neighbors_unprocessed[i] > 1);
                    int32_t num_predecessors_unprocessed = 0;
                    bool   has_left_last_on_path       = false;
                    for (const MonotonicRegion* left : region.left_neighbors) {
                        size_t iprev = left - regions.data();
                        if (regions_processed[iprev]) {
                        	assert(left_neighbors_unprocessed[iprev] == 0);
                            if (left == path.back().region) {
                                // This region should actually be on queue, but to optimize the queue management
                                // this item will be processed in the next round by traversing path.back().region->right_neighbors before processing the queue.
                                assert(! has_left_last_on_path);
                                has_left_last_on_path = true;
                                ++ num_predecessors_unprocessed;
                            }
                        } else {
                        	if (regions_in_queue[iprev])
	                    		assert(left_neighbors_unprocessed[iprev] == 1);
	                    	else 
	                    		assert(left_neighbors_unprocessed[iprev] > 1);
	                    	++ num_predecessors_unprocessed;
                        }
                    }
                    assert(num_predecessors_unprocessed > 0);
                    assert(left_neighbors_unprocessed[i] == num_predecessors_unprocessed + 1);
                }
            }
            return true;
        };
#endif /* NDEBUG */

	// How many times to repeat the ant simulation (number of ant generations).
	constexpr int const   num_rounds = 25;
	// After how many rounds without an improvement to exit?
	constexpr int const   num_rounds_no_change_exit = 8;
	// With how many ants each of the run will be performed?
	const int             num_ants = std::min(int(regions.size()), 10);
	// Base (initial) pheromone level. This value will be adjusted based on the length of the first greedy path found.
	float                 pheromone_initial_deposit = 0.5f;
	// Evaporation rate of pheromones.
	constexpr float const pheromone_evaporation = 0.1f;
    // Evaporation rate to diversify paths taken by individual ants.
    constexpr float const pheromone_diversification = 0.1f;
	// Probability at which to take the next best path. Otherwise take the the path based on the cost distribution.
	constexpr float const probability_take_best = 0.9f;
	// Exponents of the cost function.
	constexpr float const pheromone_alpha = 1.f; // pheromone exponent
	constexpr float const pheromone_beta  = 2.f; // attractiveness weighted towards edge length

    AntPathMatrix path_matrix(regions, poly_with_offset, segs, pheromone_initial_deposit);

    // Find an initial path in a greedy way, set the initial pheromone value to 10% of the cost of the greedy path.
    {
    	// Construct the first path in a greedy way to calculate an initial value of the pheromone value.
		queue = queue_initial;
		left_neighbors_unprocessed = left_neighbors_unprocessed_initial;
        assert(validate_unprocessed());
        // Pick the last of the queue.
        MonotonicRegionLink path_end { queue.back(), false };
        queue.pop_back();
        -- left_neighbors_unprocessed[path_end.region - regions.data()];

        float total_length = path_end.region->length(false);
		while (! queue.empty() || ! path_end.region->right_neighbors.empty()) {
            // Chain.
			MonotonicRegion 		    &region = *path_end.region;
			bool 			  			 dir    = path_end.flipped;
			NextCandidate 				 next_candidate;
			next_candidate.probability = 0;
			for (MonotonicRegion *next : region.right_neighbors) {
                assert(left_neighbors_unprocessed[next - regions.data()] > 1);
				if (left_neighbors_unprocessed[next - regions.data()] == 2) {
					// Dependencies of the successive blocks are satisfied.
                    AntPath &path1 = path_matrix(region, dir, *next, false);
                    AntPath &path2 = path_matrix(region, dir, *next, true);
                    if (path1.visibility > next_candidate.probability)
                        next_candidate = { next, &path1, &path1, path1.visibility, false };
                    if (path2.visibility > next_candidate.probability)
                        next_candidate = { next, &path2, &path2, path2.visibility, true  };
				}
			}
			bool from_queue = next_candidate.probability == 0;
            if (from_queue) {
                for (MonotonicRegion *next : queue) {
                    AntPath &path1 = path_matrix(region, dir, *next, false);
                    AntPath &path2 = path_matrix(region, dir, *next, true);
                    if (path1.visibility > next_candidate.probability)
                        next_candidate = { next, &path1, &path1, path1.visibility, false };
                    if (path2.visibility > next_candidate.probability)
                        next_candidate = { next, &path2, &path2, path2.visibility, true  };
                }
            }
            // Move the other right neighbors with satisified constraints to the queue.
			for (MonotonicRegion *next : region.right_neighbors)
				if (-- left_neighbors_unprocessed[next - regions.data()] == 1 && next_candidate.region != next)
	                queue.emplace_back(next);
            if (from_queue) {
                // Remove the selected path from the queue.
                auto it = std::find(queue.begin(), queue.end(), next_candidate.region);
                assert(it != queue.end());
                *it = queue.back();
                queue.pop_back();
            }
			// Extend the path.
            assert(next_candidate.region);
			MonotonicRegion *next_region = next_candidate.region;
			bool              next_dir    = next_candidate.dir;
            total_length += next_region->length(next_dir) + path_matrix(*path_end.region, path_end.flipped, *next_region, next_dir).length;
            path_end = { next_region, next_dir };
            assert(left_neighbors_unprocessed[next_region - regions.data()] == 1);
            left_neighbors_unprocessed[next_region - regions.data()] = 0;          
        }

        // Set an initial pheromone value to 10% of the greedy path's value.
        pheromone_initial_deposit = 0.1f / total_length;
        path_matrix.update_inital_pheromone(pheromone_initial_deposit);
    }

    // Probability (unnormalized) of traversing a link between two monotonic regions.
	auto path_probability = [
#if !defined(__APPLE__) && !defined(__clang__)
        // clang complains when capturing constexpr constants.
        pheromone_alpha, pheromone_beta
#endif // __APPLE__
        ](AntPath &path) {
		return pow(path.pheromone, pheromone_alpha) * pow(path.visibility, pheromone_beta);
	};

#ifdef SLIC3R_DEBUG_ANTS
    static int irun = 0;
    ++ irun;
#endif /* SLIC3R_DEBUG_ANTS */

    int num_rounds_no_change = 0;
    for (int round = 0; round < num_rounds && num_rounds_no_change < num_rounds_no_change_exit; ++ round)
	{
		bool improved = false;
		for (int ant = 0; ant < num_ants; ++ ant) 
		{
			// Find a new path following the pheromones deposited by the previous ants.
			print_ant("Round %1% ant %2%", round, ant);
			path.clear();
			queue = queue_initial;
			left_neighbors_unprocessed = left_neighbors_unprocessed_initial;
            assert(validate_unprocessed());
            // Pick randomly the first from the queue at random orientation.
            //FIXME picking the 1st monotonic region should likely be done based on accumulated pheromone level as well,
            // but the inefficiency caused by the random pick of the 1st monotonic region is likely insignificant.
            int first_idx = std::uniform_int_distribution<>(0, int(queue.size()) - 1)(rng);
            path.emplace_back(MonotonicRegionLink{ queue[first_idx], rng() > rng.max() / 2 });
            *(queue.begin() + first_idx) = std::move(queue.back());
            queue.pop_back();
            -- left_neighbors_unprocessed[path.back().region - regions.data()];
            assert(left_neighbors_unprocessed[path.back().region - regions.data()] == 0);
            assert(validate_unprocessed());
            print_ant("\tRegion (%1%:%2%,%3%) (%4%:%5%,%6%)",
				path.back().region->left.vline, 
                path.back().flipped ? path.back().region->left.high : path.back().region->left.low,
                path.back().flipped ? path.back().region->left.low  : path.back().region->left.high,
                path.back().region->right.vline, 
                path.back().flipped == path.back().region->flips ? path.back().region->right.high : path.back().region->right.low,
                path.back().flipped == path.back().region->flips ? path.back().region->right.low : path.back().region->right.high);

			while (! queue.empty() || ! path.back().region->right_neighbors.empty()) {
                // Chain.
				MonotonicRegion 		    &region = *path.back().region;
				bool 			  			 dir    = path.back().flipped;
				// Sort by distance to pt.
                next_candidates.clear();
				next_candidates.reserve(region.right_neighbors.size() * 2);
				for (MonotonicRegion *next : region.right_neighbors) {
					int &unprocessed = left_neighbors_unprocessed[next - regions.data()];
					assert(unprocessed > 1);
					if (-- unprocessed == 1) {
						// Dependencies of the successive blocks are satisfied.
                        AntPath &path1  	   = path_matrix(region,   dir, *next, false);
                        AntPath &path1_flipped = path_matrix(region, ! dir, *next, true);
                        AntPath &path2 	       = path_matrix(region,   dir, *next, true);
                        AntPath &path2_flipped = path_matrix(region, ! dir, *next, false);
                        next_candidates.emplace_back(NextCandidate{ next, &path1, &path1_flipped, path_probability(path1), false });
                        next_candidates.emplace_back(NextCandidate{ next, &path2, &path2_flipped, path_probability(path2), true  });
					}
				}
                size_t num_direct_neighbors = next_candidates.size();
                //FIXME add the queue items to the candidates? These are valid moves as well.
                if (num_direct_neighbors == 0) {
                    // Add the queue candidates.
                    for (MonotonicRegion *next : queue) {
                    	assert(left_neighbors_unprocessed[next - regions.data()] == 1);
                        AntPath &path1  	   = path_matrix(region,   dir, *next, false);
                        AntPath &path1_flipped = path_matrix(region, ! dir, *next, true);
                        AntPath &path2 	       = path_matrix(region,   dir, *next, true);
                        AntPath &path2_flipped = path_matrix(region, ! dir, *next, false);
                        next_candidates.emplace_back(NextCandidate{ next, &path1, &path1_flipped, path_probability(path1), false });
                        next_candidates.emplace_back(NextCandidate{ next, &path2, &path2_flipped, path_probability(path2), true  });
                    }
                }
				float dice = float(rng()) / float(rng.max());
                std::vector<NextCandidate>::iterator take_path;
				if (dice < probability_take_best) {
					// Take the highest probability path.
					take_path = std::max_element(next_candidates.begin(), next_candidates.end(), [](auto &l, auto &r){ return l.probability < r.probability; });
					print_ant("\tTaking best path at probability %1% below %2%", dice,  probability_take_best);
				} else {
					// Take the path based on the probability.
                    // Calculate the total probability.
                    float total_probability = std::accumulate(next_candidates.begin(), next_candidates.end(), 0.f, [](const float l, const NextCandidate& r) { return l + r.probability; });
					// Take a random path based on the probability.
                    float probability_threshold = float(rng()) * total_probability / float(rng.max());
                    take_path = next_candidates.end();
                    -- take_path;
                    for (auto it = next_candidates.begin(); it < next_candidates.end(); ++ it)
                        if ((probability_threshold -= it->probability) <= 0.) {
                            take_path = it;
                            break;
                        }
					print_ant("\tTaking path at probability threshold %1% of %2%", probability_threshold, total_probability);
				}
                // Move the other right neighbors with satisified constraints to the queue.
                for (std::vector<NextCandidate>::iterator it_next_candidate = next_candidates.begin(); it_next_candidate != next_candidates.begin() + num_direct_neighbors; ++ it_next_candidate)
                    if ((queue.empty() || it_next_candidate->region != queue.back()) && it_next_candidate->region != take_path->region)
                        queue.emplace_back(it_next_candidate->region);
                if (size_t(take_path - next_candidates.begin()) >= num_direct_neighbors) {
                    // Remove the selected path from the queue.
                    auto it = std::find(queue.begin(), queue.end(), take_path->region);
                    assert(it != queue.end());
                    *it = queue.back();
                    queue.pop_back();
                }
				// Extend the path.
				MonotonicRegion  *next_region = take_path->region;
				bool              next_dir    = take_path->dir;
                path.back().next         = take_path->link;
                path.back().next_flipped = take_path->link_flipped;
                path.emplace_back(MonotonicRegionLink{ next_region, next_dir });
                assert(left_neighbors_unprocessed[next_region - regions.data()] == 1);
                left_neighbors_unprocessed[next_region - regions.data()] = 0;
				print_ant("\tRegion (%1%:%2%,%3%) (%4%:%5%,%6%) length to prev %7%", 
                    next_region->left.vline, 
                    next_dir ? next_region->left.high : next_region->left.low,
                    next_dir ? next_region->left.low  : next_region->left.high,
					next_region->right.vline, 
                    next_dir == next_region->flips ? next_region->right.high : next_region->right.low,
                    next_dir == next_region->flips ? next_region->right.low  : next_region->right.high,
					take_path->link->length);

                print_ant("\tRegion (%1%:%2%,%3%) (%4%:%5%,%6%)",
                    path.back().region->left.vline,
                    path.back().flipped ? path.back().region->left.high : path.back().region->left.low,
                    path.back().flipped ? path.back().region->left.low : path.back().region->left.high,
                    path.back().region->right.vline,
                    path.back().flipped == path.back().region->flips ? path.back().region->right.high : path.back().region->right.low,
                    path.back().flipped == path.back().region->flips ? path.back().region->right.low : path.back().region->right.high);

				// Update pheromones along this link, see Ant Colony System (ACS) update rule.
				// http://www.scholarpedia.org/article/Ant_colony_optimization
				// The goal here is to lower the pheromone trace for paths taken to diversify the next path picked in the same batch of ants.
				take_path->link->pheromone = (1.f - pheromone_diversification) * take_path->link->pheromone + pheromone_diversification * pheromone_initial_deposit;
                assert(validate_unprocessed());
            }

			// Perform 3-opt local optimization of the path.
			monotonic_3_opt(path, segs);

			// Measure path length.
            assert(! path.empty());
            float path_length = std::accumulate(path.begin(), path.end() - 1,
                path.back().region->length(path.back().flipped),
                [&path_matrix](const float l, const MonotonicRegionLink &r) { 
                    const MonotonicRegionLink &next = *(&r + 1);
                    return l + r.region->length(r.flipped) + path_matrix(*r.region, r.flipped, *next.region, next.flipped).length;
                });
			// Save the shortest path.
			print_ant("\tThis length: %1%, shortest length: %2%", path_length, best_path_length);
			if (path_length < best_path_length) {
				best_path_length = path_length;
				std::swap(best_path, path);
#if 0 // #if ! defined(SLIC3R_DEBUG_ANTS) && ! defined(ndebug)
				if (round == 0 && ant == 0)
					std::cout << std::endl;
			    std::cout << Slic3r::format("round %1% ant %2% path length %3%", round, ant, path_length) << std::endl;
#endif
                if (path_length == 0)
                    // Perfect path found.
                    goto end;
                improved = true;
			}
		}

		// Reinforce the path pheromones with the best path.
        float total_cost = best_path_length + float(EPSILON);
        for (size_t i = 0; i + 1 < path.size(); ++ i) {
            MonotonicRegionLink &link = path[i];
            link.next->pheromone = (1.f - pheromone_evaporation) * link.next->pheromone + pheromone_evaporation / total_cost;
        }

        if (improved)
            num_rounds_no_change = 0;
        else
			++ num_rounds_no_change;
	}

end:
    return best_path;
}

// Traverse path, produce polylines.
static void polylines_from_paths(const std::vector<MonotonicRegionLink> &path, const ExPolygonWithOffset &poly_with_offset, const std::vector<SegmentedIntersectionLine> &segs, Polylines &polylines_out)
{
	Polyline *polyline = nullptr;
	auto finish_polyline = [&polyline, &polylines_out]() {
        polyline->remove_duplicate_points();
        // Handle duplicate points and zero length segments.
        assert(!polyline->has_duplicate_points());
        // Handle nearly zero length edges.
        if (polyline->points.size() <= 1 ||
            (polyline->points.size() == 2 &&
                std::abs(polyline->points.front().x() - polyline->points.back().x()) < SCALED_EPSILON &&
                std::abs(polyline->points.front().y() - polyline->points.back().y()) < SCALED_EPSILON))
            polylines_out.pop_back();
        else if (polylines_out.size() >= 2) {
            assert(polyline->points.size() >= 2);
            // Merge the two last polylines. An extrusion may have been split by an introduction of phony outer points on intersection lines
            // to cope with pinching of inner offset contours.
            Polyline &pl_prev = polylines_out[polylines_out.size() - 2];
            if (std::abs(polyline->points.front().x() - pl_prev.points.back().x()) < SCALED_EPSILON &&
                std::abs(polyline->points.front().y() - pl_prev.points.back().y()) < SCALED_EPSILON) {
                pl_prev.points.back() = (pl_prev.points.back() + polyline->points.front()) / 2;
                pl_prev.points.insert(pl_prev.points.end(), polyline->points.begin() + 1, polyline->points.end());
                polylines_out.pop_back();
            }
        }
    	polyline = nullptr;
    };

	for (const MonotonicRegionLink &path_segment : path) {
		MonotonicRegion &region = *path_segment.region;
		bool 		     dir    = path_segment.flipped;

        // From the initial point (i_vline, i_intersection), follow a path.
		int  i_intersection = region.left_intersection_point(dir);
		int  i_vline 		= region.left.vline;

        if (polyline != nullptr && &path_segment != path.data()) {
        	// Connect previous path segment with the new one.
        	const MonotonicRegionLink 	      &path_segment_prev  = *(&path_segment - 1);
			const MonotonicRegion 		      &region_prev		  = *path_segment_prev.region;
			bool 			  			       dir_prev 		  = path_segment_prev.flipped;
			int                                i_vline_prev       = region_prev.right.vline;
			const SegmentedIntersectionLine   &vline_prev         = segs[i_vline_prev];
			int 		       				   i_intersection_prev = region_prev.right_intersection_point(dir_prev);
			const SegmentIntersection         *ip_prev 			  = &vline_prev.intersections[i_intersection_prev];
			bool 						       extended           = false;
			if (i_vline_prev + 1 == i_vline) {
				if (ip_prev->right_horizontal() == i_intersection && ip_prev->next_on_contour_quality == SegmentIntersection::LinkQuality::Valid) {
		        	// Emit a horizontal connection contour.
		            emit_perimeter_prev_next_segment(poly_with_offset, segs, i_vline_prev, ip_prev->iContour, i_intersection_prev, i_intersection, *polyline, true);
		            extended = true;
				}
	        }
	        if (! extended) {
		        // Finish the current vertical line,
                assert(ip_prev->is_inner());
                ip_prev->is_low() ? -- ip_prev : ++ ip_prev;
		        assert(ip_prev->is_outer());
	        	polyline->points.back() = Point(vline_prev.pos, ip_prev->pos());
				finish_polyline();
			}
        }

		for (;;) {
	        const SegmentedIntersectionLine &vline = segs[i_vline];
            const SegmentIntersection       *it    = &vline.intersections[i_intersection];
            const bool                       going_up = it->is_low();
            if (polyline == nullptr) {
				polylines_out.emplace_back();
	            polyline = &polylines_out.back();
	            // Extend the infill line up to the outer contour.
	        	polyline->points.emplace_back(vline.pos, (it + (going_up ? - 1 : 1))->pos());
			} else
				polyline->points.emplace_back(vline.pos, it->pos());

			int iright = it->right_horizontal();
	        if (going_up) {
	            // Consume the complete vertical segment up to the inner contour.
	            for (;;) {
		            do {
		                ++ it;
						iright = std::max(iright, it->right_horizontal());
                        assert(it->is_inner());
                    } while (it->type != SegmentIntersection::INNER_HIGH || (it + 1)->type != SegmentIntersection::OUTER_HIGH);
	                polyline->points.emplace_back(vline.pos, it->pos());
		            int inext = it->vertical_up();
                    if (inext == -1 || it->vertical_up_quality() != SegmentIntersection::LinkQuality::Valid)
		            	break;
	                assert(it->iContour == vline.intersections[inext].iContour);
	                emit_perimeter_segment_on_vertical_line(poly_with_offset, segs, i_vline, it->iContour, it - vline.intersections.data(), inext, *polyline, it->has_left_vertical_up());
	                it = vline.intersections.data() + inext;
	            } 
	        } else {
	            // Going down.
                assert(it->is_high());
                assert(i_intersection > 0);
	            for (;;) {
		            do {
		                -- it;
		                if (int iright_new = it->right_horizontal(); iright_new != -1)
		                	iright = iright_new;
                        assert(it->is_inner());
		            } while (it->type != SegmentIntersection::INNER_LOW || (it - 1)->type != SegmentIntersection::OUTER_LOW);
	                polyline->points.emplace_back(vline.pos, it->pos());
		            int inext = it->vertical_down();
		            if (inext == -1 || it->vertical_down_quality() != SegmentIntersection::LinkQuality::Valid)
		            	break;
	                assert(it->iContour == vline.intersections[inext].iContour);
	                emit_perimeter_segment_on_vertical_line(poly_with_offset, segs, i_vline, it->iContour, it - vline.intersections.data(), inext, *polyline, it->has_right_vertical_down());
	                it = vline.intersections.data() + inext;
	            } 
	        }

	        if (i_vline == region.right.vline)
	        	break;

            int inext = it->right_horizontal();
            assert(iright != -1);
            assert(inext == -1 || inext == iright);

            // Find the end of the next overlapping vertical segment.
            const SegmentedIntersectionLine &vline_right = segs[i_vline + 1];
            const SegmentIntersection       *right       = going_up ? 
                &vertical_run_top(vline_right, vline_right.intersections[iright]) : &vertical_run_bottom(vline_right, vline_right.intersections[iright]);
            i_intersection = int(right - vline_right.intersections.data());

	        if (inext == i_intersection && it->next_on_contour_quality == SegmentIntersection::LinkQuality::Valid) {
	        	// Emit a horizontal connection contour.
	            emit_perimeter_prev_next_segment(poly_with_offset, segs, i_vline, it->iContour, it - vline.intersections.data(), inext, *polyline, true);
	        } else {
		        // Finish the current vertical line,
	        	going_up ? ++ it : -- it;
		        assert(it->is_outer());
		        assert(it->is_high() == going_up);
	        	polyline->points.back() = Point(vline.pos, it->pos());
				finish_polyline();
	        }

	        ++ i_vline;
	    }
    }

    if (polyline != nullptr) {
        // Finish the current vertical line,
        const MonotonicRegion            &region = *path.back().region;
        const SegmentedIntersectionLine  &vline  = segs[region.right.vline];
        const SegmentIntersection        *ip     = &vline.intersections[region.right_intersection_point(path.back().flipped)];
        assert(ip->is_inner());
        ip->is_low() ? -- ip : ++ ip;
        assert(ip->is_outer());
        polyline->points.back() = Point(vline.pos, ip->pos());
        finish_polyline();
    }
}

bool FillRectilinear::fill_surface_by_lines(const Surface *surface, const FillParams &params, float angleBase, float pattern_shift, Polylines &polylines_out)
{
    // At the end, only the new polylines will be rotated back.
    size_t n_polylines_out_initial = polylines_out.size();

    // Shrink the input polygon a bit first to not push the infill lines out of the perimeters.
//    const float INFILL_OVERLAP_OVER_SPACING = 0.3f;
    const float INFILL_OVERLAP_OVER_SPACING = 0.45f;
    assert(INFILL_OVERLAP_OVER_SPACING > 0 && INFILL_OVERLAP_OVER_SPACING < 0.5f);

    // Rotate polygons so that we can work with vertical lines here
    std::pair<float, Point> rotate_vector = this->_infill_direction(surface);
    rotate_vector.first += angleBase;

    assert(params.density > 0.0001f && params.density <= 1.f);
    coord_t line_spacing = coord_t(scale_(this->spacing) / params.density);

    // On the polygons of poly_with_offset, the infill lines will be connected.
    ExPolygonWithOffset poly_with_offset(
        surface->expolygon, 
        - rotate_vector.first, 
        float(scale_(this->overlap - (0.5 - INFILL_OVERLAP_OVER_SPACING) * this->spacing)),
        float(scale_(this->overlap - 0.5f * this->spacing)));
    if (poly_with_offset.n_contours_inner == 0) {
        // Not a single infill line fits.
        //FIXME maybe one shall trigger the gap fill here?
        return true;
    }

    BoundingBox bounding_box = poly_with_offset.bounding_box_src();

    // define flow spacing according to requested density
    if (params.full_infill() && !params.dont_adjust) {
        line_spacing = this->_adjust_solid_spacing(bounding_box.size()(0), line_spacing);
        this->spacing = unscale<double>(line_spacing);
    } else {
        // extend bounding box so that our pattern will be aligned with other layers
        // Transform the reference point to the rotated coordinate system.
        Point refpt = rotate_vector.second.rotated(- rotate_vector.first);
        // align_to_grid will not work correctly with positive pattern_shift.
        coord_t pattern_shift_scaled = coord_t(scale_(pattern_shift)) % line_spacing;
        refpt.x() -= (pattern_shift_scaled >= 0) ? pattern_shift_scaled : (line_spacing + pattern_shift_scaled);
        bounding_box.merge(align_to_grid(
            bounding_box.min, 
            Point(line_spacing, line_spacing), 
            refpt));
    }

    // Intersect a set of euqally spaced vertical lines wiht expolygon.
    // n_vlines = ceil(bbox_width / line_spacing)
    size_t  n_vlines = (bounding_box.max(0) - bounding_box.min(0) + line_spacing - 1) / line_spacing;
	coord_t x0 = bounding_box.min(0);
	if (params.full_infill())
		x0 += (line_spacing + coord_t(SCALED_EPSILON)) / 2;

#ifdef SLIC3R_DEBUG
    static int iRun = 0;
    BoundingBox bbox_svg = poly_with_offset.bounding_box_outer();
    ::Slic3r::SVG svg(debug_out_path("FillRectilinear-%d.svg", iRun), bbox_svg); // , scale_(1.));
    poly_with_offset.export_to_svg(svg);
    {
        ::Slic3r::SVG svg(debug_out_path("FillRectilinear-initial-%d.svg", iRun), bbox_svg); // , scale_(1.));
        poly_with_offset.export_to_svg(svg);
    }
    iRun ++;
#endif /* SLIC3R_DEBUG */

    std::vector<SegmentedIntersectionLine> segs = slice_region_by_vertical_lines(poly_with_offset, n_vlines, x0, line_spacing);
    // Connect by horizontal / vertical links, classify the links based on link_max_length as too long.
	connect_segment_intersections_by_contours(poly_with_offset, segs, params, link_max_length);

#ifdef SLIC3R_DEBUG
    // Paint the segments and finalize the SVG file.
    for (size_t i_seg = 0; i_seg < segs.size(); ++ i_seg) {
        SegmentedIntersectionLine &sil = segs[i_seg];
        for (size_t i = 0; i < sil.intersections.size();) {
            size_t j = i + 1;
            for (; j < sil.intersections.size() && sil.intersections[j].is_inner(); ++ j) ;
            if (i + 1 == j) {
                svg.draw(Line(Point(sil.pos, sil.intersections[i].pos()), Point(sil.pos, sil.intersections[j].pos())), "blue");
            } else {
                svg.draw(Line(Point(sil.pos, sil.intersections[i].pos()), Point(sil.pos, sil.intersections[i+1].pos())), "green");
                svg.draw(Line(Point(sil.pos, sil.intersections[i+1].pos()), Point(sil.pos, sil.intersections[j-1].pos())), (j - i + 1 > 4) ? "yellow" : "magenta");
                svg.draw(Line(Point(sil.pos, sil.intersections[j-1].pos()), Point(sil.pos, sil.intersections[j].pos())), "green");
            }
            i = j + 1;
        }
    }
    svg.Close();
#endif /* SLIC3R_DEBUG */

    //FIXME this is a hack to get the monotonic infill rolling. We likely want a smarter switch, likely based on user decison.
    bool monotonic_infill = params.monotonic; // || params.density > 0.99;
    if (monotonic_infill) {
        // Sometimes the outer contour pinches the inner contour from both sides along a single vertical line.
        // This situation is not handled correctly by generate_montonous_regions().
        // Insert phony OUTER_HIGH / OUTER_LOW pairs at the position where the contour is pinched.
        pinch_contours_insert_phony_outer_intersections(segs);
		std::vector<MonotonicRegion> regions = generate_montonous_regions(segs);
#ifdef INFILL_DEBUG_OUTPUT
        {
            static int iRun;
            export_monotonous_regions_to_svg(poly_with_offset, segs, regions, debug_out_path("%s-%03d.svg", "MontonousRegions-initial", iRun ++));
        }
#endif // INFILL_DEBUG_OUTPUT
		connect_monotonic_regions(regions, poly_with_offset, segs);
        if (! regions.empty()) {
		    std::mt19937_64 rng;
		    std::vector<MonotonicRegionLink> path = chain_monotonic_regions(regions, poly_with_offset, segs, rng);
		    polylines_from_paths(path, poly_with_offset, segs, polylines_out);
        }
	} else
		traverse_graph_generate_polylines(poly_with_offset, params, this->link_max_length, segs, polylines_out);

#ifdef SLIC3R_DEBUG
    {
        {
            ::Slic3r::SVG svg(debug_out_path("FillRectilinear-final-%03d.svg", iRun), bbox_svg); // , scale_(1.));
            poly_with_offset.export_to_svg(svg);
            for (size_t i = n_polylines_out_initial; i < polylines_out.size(); ++ i)
                svg.draw(polylines_out[i].lines(), "black");
        }
        // Paint a picture per polyline. This makes it easier to discover the order of the polylines and their overlap.
        for (size_t i_polyline = n_polylines_out_initial; i_polyline < polylines_out.size(); ++ i_polyline) {
            ::Slic3r::SVG svg(debug_out_path("FillRectilinear-final-%03d-%03d.svg", iRun, i_polyline), bbox_svg); // , scale_(1.));
            svg.draw(polylines_out[i_polyline].lines(), "black");
        }
    }
#endif /* SLIC3R_DEBUG */

    // paths must be rotated back
    for (Polylines::iterator it = polylines_out.begin() + n_polylines_out_initial; it != polylines_out.end(); ++ it) {
        // No need to translate, the absolute position is irrelevant.
        // it->translate(- rotate_vector.second(0), - rotate_vector.second(1));
        assert(! it->has_duplicate_points());
        it->rotate(rotate_vector.first);
        //FIXME rather simplify the paths to avoid very short edges?
        //assert(! it->has_duplicate_points());
        it->remove_duplicate_points();
    }

#ifdef SLIC3R_DEBUG
    // Verify, that there are no duplicate points in the sequence.
    for (Polyline &polyline : polylines_out)
        assert(! polyline.has_duplicate_points());
#endif /* SLIC3R_DEBUG */

    return true;
}

void make_fill_lines(const ExPolygonWithOffset &poly_with_offset, Point refpt, double angle, coord_t x_margin, coord_t line_spacing, coord_t pattern_shift, Polylines &fill_lines)
{
    BoundingBox bounding_box = poly_with_offset.bounding_box_src();
    // Don't produce infill lines, which fully overlap with the infill perimeter.
    coord_t     x_min = bounding_box.min.x() + x_margin;
    coord_t     x_max = bounding_box.max.x() - x_margin;
    // extend bounding box so that our pattern will be aligned with other layers
    // align_to_grid will not work correctly with positive pattern_shift.
    coord_t pattern_shift_scaled = pattern_shift % line_spacing;
    refpt.x() -= (pattern_shift_scaled >= 0) ? pattern_shift_scaled : (line_spacing + pattern_shift_scaled);
    bounding_box.merge(Slic3r::align_to_grid(bounding_box.min, Point(line_spacing, line_spacing), refpt));

    // Intersect a set of euqally spaced vertical lines wiht expolygon.
    // n_vlines = ceil(bbox_width / line_spacing)
    const size_t n_vlines = (bounding_box.max.x() - bounding_box.min.x() + line_spacing - 1) / line_spacing;
    const double cos_a    = cos(angle);
    const double sin_a    = sin(angle);
    for (const SegmentedIntersectionLine &vline : slice_region_by_vertical_lines(poly_with_offset, n_vlines, bounding_box.min.x(), line_spacing))
        if (vline.pos >= x_min) {
            if (vline.pos > x_max)
                break;
            for (auto it = vline.intersections.begin(); it != vline.intersections.end();) {
                auto it_low  = it ++;
                assert(it_low->type == SegmentIntersection::OUTER_LOW);
                if (it_low->type != SegmentIntersection::OUTER_LOW)
                    continue;
                auto it_high = it;
                assert(it_high->type == SegmentIntersection::OUTER_HIGH);
                if (it_high->type == SegmentIntersection::OUTER_HIGH) {
                    if (angle == 0.)
                        fill_lines.emplace_back(Point(vline.pos, it_low->pos()), Point(vline.pos, it_high->pos()));
                    else
                        fill_lines.emplace_back(Point(vline.pos, it_low->pos()).rotated(cos_a, sin_a), Point(vline.pos, it_high->pos()).rotated(cos_a, sin_a));
                    ++ it;
                }
            }
        }
}

bool FillRectilinear::fill_surface_by_multilines(const Surface *surface, FillParams params, const std::initializer_list<SweepParams> &sweep_params, Polylines &polylines_out)
{
    assert(sweep_params.size() > 1);
    assert(! params.full_infill());
    params.density /= double(sweep_params.size());
    assert(params.density > 0.0001f && params.density <= 1.f);

    ExPolygonWithOffset poly_with_offset_base(surface->expolygon, 0, float(scale_(this->overlap - 0.5 * this->spacing)));
    if (poly_with_offset_base.n_contours == 0)
        // Not a single infill line fits.
        return true;

    Polylines fill_lines;
    coord_t line_width   = coord_t(scale_(this->spacing));
    coord_t line_spacing = coord_t(scale_(this->spacing) / params.density);
    std::pair<float, Point> rotate_vector = this->_infill_direction(surface);
    for (const SweepParams &sweep : sweep_params) {
        // Rotate polygons so that we can work with vertical lines here
        float angle = rotate_vector.first + sweep.angle_base;
        make_fill_lines(ExPolygonWithOffset(poly_with_offset_base, - angle), rotate_vector.second.rotated(-angle), angle, line_width + coord_t(SCALED_EPSILON), line_spacing, coord_t(scale_(sweep.pattern_shift)), fill_lines);
    }

    if (params.dont_connect() || fill_lines.size() <= 1) {
        if (fill_lines.size() > 1)
            fill_lines = chain_polylines(std::move(fill_lines));
        append(polylines_out, std::move(fill_lines));
    } else
        connect_infill(std::move(fill_lines), poly_with_offset_base.polygons_outer, get_extents(surface->expolygon.contour), polylines_out, this->spacing, params);

    return true;
}

Polylines FillRectilinear::fill_surface(const Surface *surface, const FillParams &params)
{
    Polylines polylines_out;
    if (! fill_surface_by_lines(surface, params, 0.f, 0.f, polylines_out))
        BOOST_LOG_TRIVIAL(error) << "FillRectilinear::fill_surface() failed to fill a region.";
    return polylines_out;
}

Polylines FillMonotonic::fill_surface(const Surface *surface, const FillParams &params)
{
    FillParams params2 = params;
    params2.monotonic = true;
    Polylines polylines_out;
    if (! fill_surface_by_lines(surface, params2, 0.f, 0.f, polylines_out))
        BOOST_LOG_TRIVIAL(error) << "FillMonotonous::fill_surface() failed to fill a region.";
    return polylines_out;
}

Polylines FillGrid::fill_surface(const Surface *surface, const FillParams &params)
{
    Polylines polylines_out;
    if (! this->fill_surface_by_multilines(
            surface, params,
            { { 0.f, 0.f }, { float(M_PI / 2.), 0.f } },
            polylines_out))
        BOOST_LOG_TRIVIAL(error) << "FillGrid::fill_surface() failed to fill a region.";
    return polylines_out;
}

Polylines FillTriangles::fill_surface(const Surface *surface, const FillParams &params)
{
    Polylines polylines_out;
    if (! this->fill_surface_by_multilines(
            surface, params,
            { { 0.f, 0.f }, { float(M_PI / 3.), 0.f }, { float(2. * M_PI / 3.), 0. } },
            polylines_out))
        BOOST_LOG_TRIVIAL(error) << "FillTriangles::fill_surface() failed to fill a region.";
    return polylines_out;
}

Polylines FillStars::fill_surface(const Surface *surface, const FillParams &params)
{
    Polylines polylines_out;
    if (! this->fill_surface_by_multilines(
            surface, params,
            { { 0.f, 0.f }, { float(M_PI / 3.), 0.f }, { float(2. * M_PI / 3.), float((3./2.) * this->spacing / params.density) } },
            polylines_out))
        BOOST_LOG_TRIVIAL(error) << "FillStars::fill_surface() failed to fill a region.";
    return polylines_out;
}

Polylines FillCubic::fill_surface(const Surface *surface, const FillParams &params)
{
    Polylines polylines_out;
    coordf_t dx = sqrt(0.5) * z;
    if (! this->fill_surface_by_multilines(
            surface, params, 
            { { 0.f, float(dx) }, { float(M_PI / 3.), - float(dx) }, { float(M_PI * 2. / 3.), float(dx) } },
            polylines_out))
        BOOST_LOG_TRIVIAL(error) << "FillCubic::fill_surface() failed to fill a region.";
    return polylines_out; 
}

Polylines FillSupportBase::fill_surface(const Surface *surface, const FillParams &params)
{
    assert(! params.full_infill());

    Polylines polylines_out;
    std::pair<float, Point> rotate_vector = this->_infill_direction(surface);
    ExPolygonWithOffset poly_with_offset(surface->expolygon, - rotate_vector.first, float(scale_(this->overlap - 0.5 * this->spacing)));
    if (poly_with_offset.n_contours > 0) {
        Polylines fill_lines;
        coord_t line_spacing = coord_t(scale_(this->spacing) / params.density);
        // Create infill lines, keep them vertical.
        make_fill_lines(poly_with_offset, rotate_vector.second.rotated(- rotate_vector.first), 0, 0, line_spacing, 0, fill_lines);
        // Both the poly_with_offset and polylines_out are rotated, so the infill lines are strictly vertical.
        connect_base_support(std::move(fill_lines), poly_with_offset.polygons_outer, poly_with_offset.bounding_box_outer(), polylines_out, this->spacing, params);
        // Rotate back by rotate_vector.first
        const double cos_a = cos(rotate_vector.first);
        const double sin_a = sin(rotate_vector.first);
        for (Polyline &pl : polylines_out)
            for (Point &pt : pl.points)
                pt.rotate(cos_a, sin_a);
    }
    return polylines_out;
}

// Lightning infill assumes that the distance between any two sampled points is always
// at least equal to the value of spacing. To meet this assumption, we need to use
// BoundingBox for whole layers instead of bounding box just around processing ExPolygon.
// Using just BoundingBox around processing ExPolygon could produce two points closer
// than spacing (in cases where two ExPolygon are closer than spacing).
Points sample_grid_pattern(const ExPolygon &expolygon, coord_t spacing, const BoundingBox &global_bounding_box)
{
    ExPolygonWithOffset poly_with_offset(expolygon, 0, 0, 0);
    std::vector<SegmentedIntersectionLine> segs = slice_region_by_vertical_lines(
        poly_with_offset, 
        (global_bounding_box.max.x() - global_bounding_box.min.x() + spacing - 1) / spacing,
        global_bounding_box.min.x(),
        spacing);

    Points out;
    for (const SegmentedIntersectionLine &sil : segs) {
        for (size_t i = 0; i < sil.intersections.size(); i += 2) {
            coord_t a = sil.intersections[i].pos();
            coord_t b = sil.intersections[i + 1].pos();
            for (coord_t y = a - (a % spacing) - spacing; y < b; y += spacing)
                if (y > a)
                    out.emplace_back(sil.pos, y);
        }
    }
    return out;
}

Points sample_grid_pattern(const ExPolygons &expolygons, coord_t spacing, const BoundingBox &global_bounding_box)
{
    Points out;
    for (const ExPolygon &expoly : expolygons)
        append(out, sample_grid_pattern(expoly, spacing, global_bounding_box));
    return out;
}

Points sample_grid_pattern(const Polygons &polygons, coord_t spacing, const BoundingBox &global_bounding_box)
{
    return sample_grid_pattern(union_ex(polygons), spacing, global_bounding_box);
}

} // namespace Slic3r