Welcome to mirror list, hosted at ThFree Co, Russian Federation.

PRUS.cpp « Format « libslic3r « src - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 45eb56c631b8b0ad0679e942b6b37a3de1633940 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
#ifdef SLIC3R_PRUS

#include <string.h>

#include <boost/nowide/convert.hpp>

#include <wx/string.h>
#include <wx/wfstream.h>
#include <wx/zipstrm.h>

#include <Eigen/Geometry>

#include "../libslic3r.h"
#include "../Model.hpp"

#include "PRUS.hpp"

#if 0
// Enable debugging and assert in this file.
#define DEBUG
#define _DEBUG
#undef NDEBUG
#endif

#include <assert.h>

namespace Slic3r
{

struct StlHeader
{
    char        comment[80];
    uint32_t    nTriangles;
};

static_assert(sizeof(StlHeader) == 84, "StlHeader size not correct");

// Buffered line reader for the wxInputStream.
class LineReader
{
public:
    LineReader(wxInputStream &input_stream, const char *initial_data, int initial_len) : 
        m_input_stream(input_stream),
        m_pos(0),
        m_len(initial_len)
    {
        assert(initial_len >= 0 && initial_len < m_bufsize);
        memcpy(m_buffer, initial_data, initial_len);
    }

    const char* next_line() {
        for (;;) {
            // Skip empty lines.
            while (m_pos < m_len && (m_buffer[m_pos] == '\r' || m_buffer[m_pos] == '\n'))
                ++ m_pos;
            if (m_pos == m_len) {
                // Empty buffer, fill it from the input stream.
                m_pos = 0;
                m_input_stream.Read(m_buffer, m_bufsize - 1);
                m_len = m_input_stream.LastRead();
				assert(m_len >= 0 && m_len < m_bufsize);
                if (m_len == 0)
                    // End of file.
                    return nullptr;
                // Skip empty lines etc.
                continue;
            }
            // The buffer is nonempty and it does not start with end of lines. Find the first end of line.
            int end = m_pos + 1;
            while (end < m_len && m_buffer[end] != '\r' && m_buffer[end] != '\n')
                ++ end;
            if (end == m_len && ! m_input_stream.Eof() && m_len < m_bufsize) {
                // Move the buffer content to the buffer start and fill the rest of the buffer.
                assert(m_pos > 0);
                memmove(m_buffer, m_buffer + m_pos, m_len - m_pos);
				m_len -= m_pos;
				assert(m_len >= 0 && m_len < m_bufsize);
				m_pos = 0;
                m_input_stream.Read(m_buffer + m_len, m_bufsize - 1 - m_len);
                int new_data = m_input_stream.LastRead();
                if (new_data > 0) {
                    m_len += new_data;
					assert(m_len >= 0 && m_len < m_bufsize);
					continue;
                }
            }
            char *ptr_out = m_buffer + m_pos;
            m_pos = end + 1;
            m_buffer[end] = 0;
            if (m_pos >= m_len) {
                m_pos = 0;
                m_len = 0;
            }
            return ptr_out;
        }
    }

    int next_line_scanf(const char *format, ...)
    {
        const char *line = next_line();
        if (line == nullptr)
            return -1;
        int result;
        va_list arglist;
        va_start(arglist, format);
        result = vsscanf(line, format, arglist);
        va_end(arglist);
        return result;
    }

private:
    wxInputStream &m_input_stream;
    static const int m_bufsize = 4096;
    char m_buffer[m_bufsize];
    int  m_pos = 0;
    int  m_len = 0;
};

// Load a PrusaControl project file into a provided model.
bool load_prus(const char *path, Model *model)
{
    // To receive the content of the zipped 'scene.xml' file.
    std::vector<char>           scene_xml_data;
    wxFFileInputStream          in(
#ifdef WIN32
        // On Windows, convert to a 16bit unicode string.
        boost::nowide::widen(path).c_str()
#else
        path
#endif
        );
    wxZipInputStream            zip(in);
    std::unique_ptr<wxZipEntry> entry;
    size_t                      num_models = 0;
    std::map<int, ModelObject*> group_to_model_object;
    while (entry.reset(zip.GetNextEntry()), entry.get() != NULL) {
        wxString name = entry->GetName();
        if (name == "scene.xml") {
            if (! scene_xml_data.empty()) {
                // scene.xml has been found more than once in the archive.
                return false;
            }
            size_t size_last = 0;
            size_t size_incr = 4096;
            scene_xml_data.resize(size_incr);
            while (! zip.Read(scene_xml_data.data() + size_last, size_incr).Eof()) {
                size_last += zip.LastRead();
                if (scene_xml_data.size() < size_last + size_incr)
                    scene_xml_data.resize(size_last + size_incr);
            }
            size_last += zip.LastRead();
            if (scene_xml_data.size() == size_last)
                scene_xml_data.resize(size_last + 1);
            else if (scene_xml_data.size() > size_last + 1)
                scene_xml_data.erase(scene_xml_data.begin() + size_last + 1, scene_xml_data.end());
            scene_xml_data[size_last] = 0;
        }
        else if (name.EndsWith(".stl") || name.EndsWith(".STL")) {
            // Find the model entry in the XML data.
            const wxScopedCharBuffer name_utf8 = name.ToUTF8();
            char model_name_tag[1024];
            sprintf(model_name_tag, "<model name=\"%s\">", name_utf8.data());
            const char *model_xml = strstr(scene_xml_data.data(), model_name_tag);
            const char *zero_tag  = "<zero>";
			const char *zero_xml  = strstr(scene_xml_data.data(), zero_tag);
            float  trafo[3][4] = { 0 };
            double instance_rotation = 0.;
            double instance_scaling_factor = 1.f;
#if ENABLE_MODELINSTANCE_3D_OFFSET
            Vec3d instance_offset = Vec3d::Zero();
#else
            Vec2d instance_offset(0., 0.);
#endif // ENABLE_MODELINSTANCE_3D_OFFSET
            bool   trafo_set = false;
            unsigned int group_id     = (unsigned int)-1;
            unsigned int extruder_id  = (unsigned int)-1;
            ModelObject *model_object = nullptr;
            if (model_xml != nullptr) {
                model_xml += strlen(model_name_tag);
                const char *position_tag = "<position>";
                const char *position_xml = strstr(model_xml, position_tag);
                const char *rotation_tag = "<rotation>";
                const char *rotation_xml = strstr(model_xml, rotation_tag);
                const char *scale_tag    = "<scale>";
                const char *scale_xml    = strstr(model_xml, scale_tag);
                float position[3], rotation[3], scale[3], zero[3];
                if (position_xml != nullptr && rotation_xml != nullptr && scale_xml != nullptr && zero_xml != nullptr &&
                    sscanf(position_xml+strlen(position_tag), 
                        "[%f, %f, %f]", position, position+1, position+2) == 3 &&
                    sscanf(rotation_xml+strlen(rotation_tag), 
                        "[%f, %f, %f]", rotation, rotation+1, rotation+2) == 3 &&
                    sscanf(scale_xml+strlen(scale_tag),
                        "[%f, %f, %f]", scale, scale+1, scale+2) == 3 &&
                    sscanf(zero_xml+strlen(zero_tag), 
                        "[%f, %f, %f]", zero, zero+1, zero+2) == 3) {
                    if (scale[0] == scale[1] && scale[1] == scale[2]) {
                        instance_scaling_factor = scale[0];
                        scale[0] = scale[1] = scale[2] = 1.;
                    }
                    if (rotation[0] == 0. && rotation[1] == 0.) {
                        instance_rotation = - rotation[2];
                        rotation[2] = 0.;
                    }
                    Eigen::Matrix3f mat_rot, mat_scale, mat_trafo;
                    mat_rot = Eigen::AngleAxisf(-rotation[2], Eigen::Vector3f::UnitZ()) * 
                              Eigen::AngleAxisf(-rotation[1], Eigen::Vector3f::UnitY()) *
                              Eigen::AngleAxisf(-rotation[0], Eigen::Vector3f::UnitX());
                    mat_scale = Eigen::Scaling(scale[0], scale[1], scale[2]);
                    mat_trafo = mat_rot * mat_scale;
                    for (size_t r = 0; r < 3; ++ r) {
                        for (size_t c = 0; c < 3; ++ c)
                            trafo[r][c] += mat_trafo(r, c);
                    }
#if ENABLE_MODELINSTANCE_3D_OFFSET
                    instance_offset = Vec3d((double)(position[0] - zero[0]), (double)(position[1] - zero[1]), (double)(position[2] - zero[2]));
#else
                    instance_offset(0) = position[0] - zero[0];
                    instance_offset(1) = position[1] - zero[1];
#endif // ENABLE_MODELINSTANCE_3D_OFFSET
                    trafo[2][3] = position[2] / instance_scaling_factor;
                    trafo_set = true;
                }
                const char *group_tag    = "<group>";
                const char *group_xml    = strstr(model_xml, group_tag);
                const char *extruder_tag = "<extruder>";
                const char *extruder_xml = strstr(model_xml, extruder_tag);
                if (group_xml != nullptr) {
                    int group = atoi(group_xml + strlen(group_tag));
                    if (group > 0) {
                        group_id = group;
                        auto it = group_to_model_object.find(group_id);
                        if (it != group_to_model_object.end())
                            model_object = it->second;
                    }
                }
                if (extruder_xml != nullptr) {
                    int e = atoi(extruder_xml + strlen(extruder_tag));
                    if (e > 0)
                    extruder_id = e;
                }
            }
            if (trafo_set) {
				// Extract the STL.
				StlHeader header;
                TriangleMesh mesh;
                bool mesh_valid = false;
				bool stl_ascii = false;
				if (!zip.Read((void*)&header, sizeof(StlHeader)).Eof()) {
					if (strncmp(header.comment, "solid ", 6) == 0)
						stl_ascii = true;
					else {
						// Header has been extracted. Now read the faces.
						stl_file &stl = mesh.stl;
						stl.error = 0;
						stl.stats.type = inmemory;
						stl.stats.number_of_facets = header.nTriangles;
						stl.stats.original_num_facets = header.nTriangles;
						stl_allocate(&stl);
						if (header.nTriangles > 0 && zip.ReadAll((void*)stl.facet_start, 50 * header.nTriangles)) {
							if (sizeof(stl_facet) > SIZEOF_STL_FACET) {
                                // The stl.facet_start is not packed tightly. Unpack the array of stl_facets.
                                unsigned char *data = (unsigned char*)stl.facet_start;
                                for (size_t i = header.nTriangles - 1; i > 0; -- i)
                                    memmove(data + i * sizeof(stl_facet), data + i * SIZEOF_STL_FACET, SIZEOF_STL_FACET);
                            }
							// All the faces have been read.
							stl_get_size(&stl);
							mesh.repair();
							// Transform the model.
							stl_transform(&stl, &trafo[0][0]);
							if (std::abs(stl.stats.min(2)) < EPSILON)
								stl.stats.min(2) = 0.;
							// Add a mesh to a model.
							if (mesh.facets_count() > 0)
                                mesh_valid = true;
						}
					}
				} else
					stl_ascii = true;
				if (stl_ascii) {
					// Try to parse ASCII STL.
                    char                    normal_buf[3][32];
                    stl_facet               facet;
                    std::vector<stl_facet>  facets;
                    LineReader              line_reader(zip, (char*)&header, zip.LastRead());
                    std::string             solid_name;
                    facet.extra[0] = facet.extra[1] = 0;
                    for (;;) {
                        const char *line = line_reader.next_line();
                        if (line == nullptr)
                            // End of file.
                            break;
                        if (strncmp(line, "solid", 5) == 0) {
                            // Opening the "solid" block.
                            if (! solid_name.empty()) {
                                // Error, solid block is already open.
                                facets.clear();
                                break;
                            }
                            solid_name = line + 5;
                            if (solid_name.empty())
                                solid_name = "unknown";
                            continue;
                        }
                        if (strncmp(line, "endsolid", 8) == 0) {
                            // Closing the "solid" block.
                            if (solid_name.empty()) {
                                // Error, no solid block is open.
                                facets.clear();
                                break;
                            }
							solid_name.clear();
                            continue;
                        }
                        // Line has to start with the word solid.
						int res_normal		= sscanf(line, " facet normal %31s %31s %31s", normal_buf[0], normal_buf[1], normal_buf[2]);
						assert(res_normal == 3);
                        int res_outer_loop	= line_reader.next_line_scanf(" outer loop");
						assert(res_outer_loop == 0);
						int res_vertex1 = line_reader.next_line_scanf(" vertex %f %f %f", &facet.vertex[0](0), &facet.vertex[0](1), &facet.vertex[0](2));
						assert(res_vertex1 == 3);
						int res_vertex2 = line_reader.next_line_scanf(" vertex %f %f %f", &facet.vertex[1](0), &facet.vertex[1](1), &facet.vertex[1](2));
						assert(res_vertex2 == 3);
						int res_vertex3 = line_reader.next_line_scanf(" vertex %f %f %f", &facet.vertex[2](0), &facet.vertex[2](1), &facet.vertex[2](2));
						assert(res_vertex3 == 3);
						int res_endloop = line_reader.next_line_scanf(" endloop");
						assert(res_endloop == 0);
						int res_endfacet = line_reader.next_line_scanf(" endfacet");
						if (res_normal != 3 || res_outer_loop != 0 || res_vertex1 != 3 || res_vertex2 != 3 || res_vertex3 != 3 || res_endloop != 0 || res_endfacet != 0) {
                            // perror("Something is syntactically very wrong with this ASCII STL!");
                            facets.clear();
                            break;
                        }
                        // The facet normal has been parsed as a single string as to workaround for not a numbers in the normal definition.
                        if (sscanf(normal_buf[0], "%f", &facet.normal(0)) != 1 ||
                            sscanf(normal_buf[1], "%f", &facet.normal(1)) != 1 ||
                            sscanf(normal_buf[2], "%f", &facet.normal(2)) != 1) {
                            // Normal was mangled. Maybe denormals or "not a number" were stored?
                            // Just reset the normal and silently ignore it.
                            memset(&facet.normal, 0, sizeof(facet.normal));
                        }
                        facets.emplace_back(facet);
                    }
                    if (! facets.empty() && solid_name.empty()) {
                        stl_file &stl = mesh.stl;
                        stl.stats.type = inmemory;
                        stl.stats.number_of_facets = facets.size();
                        stl.stats.original_num_facets = facets.size();
                        stl_allocate(&stl);
                        memcpy((void*)stl.facet_start, facets.data(), facets.size() * 50);
                        stl_get_size(&stl);
                        mesh.repair();
                        // Transform the model.
                        stl_transform(&stl, &trafo[0][0]);
                        // Add a mesh to a model.
                        if (mesh.facets_count() > 0)
                            mesh_valid = true;
                    }
				}

                if (mesh_valid) {
                    // Add this mesh to the model.
                    ModelVolume *volume = nullptr;
                    if (model_object == nullptr) {
                        // This is a first mesh of a group. Create a new object & volume.
                        model_object = model->add_object(name_utf8.data(), path, std::move(mesh));
                        volume = model_object->volumes.front();
                        ModelInstance *instance     = model_object->add_instance();
                        instance->rotation          = instance_rotation;
                        instance->scaling_factor    = instance_scaling_factor;
#if ENABLE_MODELINSTANCE_3D_OFFSET
                        instance->set_offset(instance_offset);
#else
                        instance->offset = instance_offset;
#endif // ENABLE_MODELINSTANCE_3D_OFFSET
                        ++num_models;
                        if (group_id != (size_t)-1)
                            group_to_model_object[group_id] = model_object;
                    } else {
                        // This is not the 1st mesh of a group. Add it to the ModelObject.
                        volume = model_object->add_volume(std::move(mesh));
                        volume->name = name_utf8.data();
                    }
                    // Set the extruder to the volume.
                    if (extruder_id != (unsigned int)-1) {
                        char str_extruder[64];
                        sprintf(str_extruder, "%ud", extruder_id);
                        volume->config.set_deserialize("extruder", str_extruder);
                    }
                }
            }
        }
    }
    return num_models > 0;
}

}; // namespace Slic3r

#endif /* SLIC3R_PRUS */