Welcome to mirror list, hosted at ThFree Co, Russian Federation.

CoolingBuffer.cpp « GCode « libslic3r « src - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 40ccc7b09f256ec4bc23300e2ef675ec7b9c95e3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
#include "../GCode.hpp"
#include "CoolingBuffer.hpp"
#include <boost/algorithm/string/predicate.hpp>
#include <boost/algorithm/string/replace.hpp>
#include <iostream>
#include <float.h>

#if 0
    #define DEBUG
    #define _DEBUG
    #undef NDEBUG
#endif

#include <assert.h>

namespace Slic3r {

CoolingBuffer::CoolingBuffer(GCode &gcodegen) : m_gcodegen(gcodegen), m_current_extruder(0)
{
    this->reset();
}

void CoolingBuffer::reset()
{
    m_current_pos.assign(5, 0.f);
    Vec3d pos = m_gcodegen.writer().get_position();
    m_current_pos[0] = float(pos(0));
    m_current_pos[1] = float(pos(1));
    m_current_pos[2] = float(pos(2));
    m_current_pos[4] = float(m_gcodegen.config().travel_speed.value);
}

struct CoolingLine
{
    enum Type {
        TYPE_SET_TOOL           = 1 << 0,
        TYPE_EXTRUDE_END        = 1 << 1,
        TYPE_BRIDGE_FAN_START   = 1 << 2,
        TYPE_BRIDGE_FAN_END     = 1 << 3,
        TYPE_G0                 = 1 << 4,
        TYPE_G1                 = 1 << 5,
        TYPE_ADJUSTABLE         = 1 << 6,
        TYPE_EXTERNAL_PERIMETER = 1 << 7,
        // The line sets a feedrate.
        TYPE_HAS_F              = 1 << 8,
        TYPE_WIPE               = 1 << 9,
        TYPE_G4                 = 1 << 10,
        TYPE_G92                = 1 << 11,
    };

    CoolingLine(unsigned int type, size_t  line_start, size_t  line_end) :
        type(type), line_start(line_start), line_end(line_end),
        length(0.f), feedrate(0.f), time(0.f), time_max(0.f), slowdown(false) {}

    bool adjustable(bool slowdown_external_perimeters) const {
        return (this->type & TYPE_ADJUSTABLE) && 
               (! (this->type & TYPE_EXTERNAL_PERIMETER) || slowdown_external_perimeters) &&
               this->time < this->time_max;
    }

    bool adjustable() const {
        return (this->type & TYPE_ADJUSTABLE) && this->time < this->time_max;
    }

    size_t  type;
    // Start of this line at the G-code snippet.
    size_t  line_start;
    // End of this line at the G-code snippet.
    size_t  line_end;
    // XY Euclidian length of this segment.
    float   length;
    // Current feedrate, possibly adjusted.
    float   feedrate;
    // Current duration of this segment.
    float   time;
    // Maximum duration of this segment.
    float   time_max;
    // If marked with the "slowdown" flag, the line has been slowed down.
    bool    slowdown;
};

// Calculate the required per extruder time stretches.
struct PerExtruderAdjustments 
{
    // Calculate the total elapsed time per this extruder, adjusted for the slowdown.
    float elapsed_time_total() {
        float time_total = 0.f;
        for (const CoolingLine &line : lines)
            time_total += line.time;
        return time_total;
    }
    // Calculate the total elapsed time when slowing down 
    // to the minimum extrusion feed rate defined for the current material.
    float maximum_time_after_slowdown(bool slowdown_external_perimeters) {
        float time_total = 0.f;
        for (const CoolingLine &line : lines)
            if (line.adjustable(slowdown_external_perimeters)) {
                if (line.time_max == FLT_MAX)
                    return FLT_MAX;
                else
                    time_total += line.time_max;
            } else
                time_total += line.time;
        return time_total;
    }
    // Calculate the adjustable part of the total time.
    float adjustable_time(bool slowdown_external_perimeters) {
        float time_total = 0.f;
        for (const CoolingLine &line : lines)
            if (line.adjustable(slowdown_external_perimeters))
                time_total += line.time;
        return time_total;
    }
    // Calculate the non-adjustable part of the total time.
    float non_adjustable_time(bool slowdown_external_perimeters) {
        float time_total = 0.f;
        for (const CoolingLine &line : lines)
            if (! line.adjustable(slowdown_external_perimeters))
                time_total += line.time;
        return time_total;
    }
    // Slow down the adjustable extrusions to the minimum feedrate allowed for the current extruder material.
    // Used by both proportional and non-proportional slow down.
    float slowdown_to_minimum_feedrate(bool slowdown_external_perimeters) {
        float time_total = 0.f;
        for (CoolingLine &line : lines) {
            if (line.adjustable(slowdown_external_perimeters)) {
                assert(line.time_max >= 0.f && line.time_max < FLT_MAX);
                line.slowdown = true;
                line.time     = line.time_max;
                line.feedrate = line.length / line.time;
            }
            time_total += line.time;
        }
        return time_total;
    }
    // Slow down each adjustable G-code line proportionally by a factor.
    // Used by the proportional slow down.
    float slow_down_proportional(float factor, bool slowdown_external_perimeters) {
        assert(factor >= 1.f);
        float time_total = 0.f;
        for (CoolingLine &line : lines) {
            if (line.adjustable(slowdown_external_perimeters)) {
                line.slowdown = true;
                line.time     = std::min(line.time_max, line.time * factor);
                line.feedrate = line.length / line.time;
            }
            time_total += line.time;
        }
        return time_total;
    }

    // Sort the lines, adjustable first, higher feedrate first.
    // Used by non-proportional slow down.
    void sort_lines_by_decreasing_feedrate() {
        std::sort(lines.begin(), lines.end(), [](const CoolingLine &l1, const CoolingLine &l2) {
            bool adj1 = l1.adjustable();
            bool adj2 = l2.adjustable();
            return (adj1 == adj2) ? l1.feedrate > l2.feedrate : adj1;
        });
        for (n_lines_adjustable = 0; 
            n_lines_adjustable < lines.size() && this->lines[n_lines_adjustable].adjustable();
            ++ n_lines_adjustable);
        time_non_adjustable = 0.f;
        for (size_t i = n_lines_adjustable; i < lines.size(); ++ i)
            time_non_adjustable += lines[i].time;
    }

    // Calculate the maximum time stretch when slowing down to min_feedrate.
    // Slowdown to min_feedrate shall be allowed for this extruder's material.
    // Used by non-proportional slow down.
    float time_stretch_when_slowing_down_to_feedrate(float min_feedrate) {
        float time_stretch = 0.f;
        assert(this->min_print_speed < min_feedrate + EPSILON);
        for (size_t i = 0; i < n_lines_adjustable; ++ i) {
            const CoolingLine &line = lines[i];
            if (line.feedrate > min_feedrate)
                time_stretch += line.time * (line.feedrate / min_feedrate - 1.f);
        }
        return time_stretch;
    }

    // Slow down all adjustable lines down to min_feedrate.
    // Slowdown to min_feedrate shall be allowed for this extruder's material.
    // Used by non-proportional slow down.
    void slow_down_to_feedrate(float min_feedrate) {
        assert(this->min_print_speed < min_feedrate + EPSILON);
        for (size_t i = 0; i < n_lines_adjustable; ++ i) {
            CoolingLine &line = lines[i];
            if (line.feedrate > min_feedrate) {
                line.time *= std::max(1.f, line.feedrate / min_feedrate);
                line.feedrate = min_feedrate;
                line.slowdown = true;
            }
        }
    }

    // Extruder, for which the G-code will be adjusted.
    unsigned int                extruder_id         = 0;
    // Is the cooling slow down logic enabled for this extruder's material?
    bool                        cooling_slow_down_enabled = false;
    // Slow down the print down to min_print_speed if the total layer time is below slowdown_below_layer_time.
    float                       slowdown_below_layer_time = 0.f;
    // Minimum print speed allowed for this extruder.
    float                       min_print_speed     = 0.f;

    // Parsed lines.
    std::vector<CoolingLine>    lines;
    // The following two values are set by sort_lines_by_decreasing_feedrate():
    // Number of adjustable lines, at the start of lines.
    size_t                      n_lines_adjustable  = 0;
    // Non-adjustable time of lines starting with n_lines_adjustable. 
    float                       time_non_adjustable = 0;
    // Current total time for this extruder.
    float                       time_total          = 0;
    // Maximum time for this extruder, when the maximum slow down is applied.
    float                       time_maximum        = 0;

    // Temporaries for processing the slow down. Both thresholds go from 0 to n_lines_adjustable.
    size_t                      idx_line_begin      = 0;
    size_t                      idx_line_end        = 0;
};

std::string CoolingBuffer::process_layer(const std::string &gcode, size_t layer_id)
{
    std::vector<PerExtruderAdjustments> per_extruder_adjustments = this->parse_layer_gcode(gcode, m_current_pos);
    float layer_time_stretched = this->calculate_layer_slowdown(per_extruder_adjustments);
    return this->apply_layer_cooldown(gcode, layer_id, layer_time_stretched, per_extruder_adjustments);
}

// Parse the layer G-code for the moves, which could be adjusted.
// Return the list of parsed lines, bucketed by an extruder.
std::vector<PerExtruderAdjustments> CoolingBuffer::parse_layer_gcode(const std::string &gcode, std::vector<float> &current_pos) const
{
    const FullPrintConfig       &config        = m_gcodegen.config();
    const std::vector<Extruder> &extruders     = m_gcodegen.writer().extruders();
    unsigned int                 num_extruders = 0;
    for (const Extruder &ex : extruders)
        num_extruders = std::max(ex.id() + 1, num_extruders);
    
    std::vector<PerExtruderAdjustments> per_extruder_adjustments(extruders.size());
    std::vector<size_t>                 map_extruder_to_per_extruder_adjustment(num_extruders, 0);
    for (size_t i = 0; i < extruders.size(); ++ i) {
		PerExtruderAdjustments &adj			= per_extruder_adjustments[i];
		unsigned int			extruder_id = extruders[i].id();
		adj.extruder_id				  = extruder_id;
		adj.cooling_slow_down_enabled = config.cooling.get_at(extruder_id);
		adj.slowdown_below_layer_time = config.slowdown_below_layer_time.get_at(extruder_id);
		adj.min_print_speed			  = config.min_print_speed.get_at(extruder_id);
        map_extruder_to_per_extruder_adjustment[extruder_id] = i;
    }

    const std::string toolchange_prefix = m_gcodegen.writer().toolchange_prefix();
    unsigned int      current_extruder  = m_current_extruder;
    PerExtruderAdjustments *adjustment  = &per_extruder_adjustments[map_extruder_to_per_extruder_adjustment[current_extruder]];
    const char       *line_start = gcode.c_str();
    const char       *line_end   = line_start;
    const char        extrusion_axis = config.get_extrusion_axis()[0];
    // Index of an existing CoolingLine of the current adjustment, which holds the feedrate setting command
    // for a sequence of extrusion moves.
    size_t            active_speed_modifier = size_t(-1);

    for (; *line_start != 0; line_start = line_end) 
    {
        while (*line_end != '\n' && *line_end != 0)
            ++ line_end;
        // sline will not contain the trailing '\n'.
        std::string sline(line_start, line_end);
        // CoolingLine will contain the trailing '\n'.
        if (*line_end == '\n')
            ++ line_end;
        CoolingLine line(0, line_start - gcode.c_str(), line_end - gcode.c_str());
        if (boost::starts_with(sline, "G0 "))
            line.type = CoolingLine::TYPE_G0;
        else if (boost::starts_with(sline, "G1 "))
            line.type = CoolingLine::TYPE_G1;
        else if (boost::starts_with(sline, "G92 "))
            line.type = CoolingLine::TYPE_G92;
        if (line.type) {
            // G0, G1 or G92
            // Parse the G-code line.
            std::vector<float> new_pos(current_pos);
            const char *c = sline.data() + 3;
            for (;;) {
                // Skip whitespaces.
                for (; *c == ' ' || *c == '\t'; ++ c);
                if (*c == 0 || *c == ';')
                    break;
                // Parse the axis.
                size_t axis = (*c >= 'X' && *c <= 'Z') ? (*c - 'X') :
                              (*c == extrusion_axis) ? 3 : (*c == 'F') ? 4 : size_t(-1);
                if (axis != size_t(-1)) {
                    new_pos[axis] = float(atof(++c));
                    if (axis == 4) {
                        // Convert mm/min to mm/sec.
                        new_pos[4] /= 60.f;
                        if ((line.type & CoolingLine::TYPE_G92) == 0)
                            // This is G0 or G1 line and it sets the feedrate. This mark is used for reducing the duplicate F calls.
                            line.type |= CoolingLine::TYPE_HAS_F;
                    }
                }
                // Skip this word.
                for (; *c != ' ' && *c != '\t' && *c != 0; ++ c);
            }
            bool external_perimeter = boost::contains(sline, ";_EXTERNAL_PERIMETER");
            bool wipe               = boost::contains(sline, ";_WIPE");
            if (external_perimeter)
                line.type |= CoolingLine::TYPE_EXTERNAL_PERIMETER;
            if (wipe)
                line.type |= CoolingLine::TYPE_WIPE;
            if (boost::contains(sline, ";_EXTRUDE_SET_SPEED") && ! wipe) {
                line.type |= CoolingLine::TYPE_ADJUSTABLE;
                active_speed_modifier = adjustment->lines.size();
            }
            if ((line.type & CoolingLine::TYPE_G92) == 0) {
                // G0 or G1. Calculate the duration.
                if (config.use_relative_e_distances.value)
                    // Reset extruder accumulator.
                    current_pos[3] = 0.f;
                float dif[4];
                for (size_t i = 0; i < 4; ++ i)
                    dif[i] = new_pos[i] - current_pos[i];
                float dxy2 = dif[0] * dif[0] + dif[1] * dif[1];
                float dxyz2 = dxy2 + dif[2] * dif[2];
                if (dxyz2 > 0.f) {
                    // Movement in xyz, calculate time from the xyz Euclidian distance.
                    line.length = sqrt(dxyz2);
                } else if (std::abs(dif[3]) > 0.f) {
                    // Movement in the extruder axis.
                    line.length = std::abs(dif[3]);
                }
                line.feedrate = new_pos[4];
                assert((line.type & CoolingLine::TYPE_ADJUSTABLE) == 0 || line.feedrate > 0.f);
                if (line.length > 0)
                    line.time = line.length / line.feedrate;
                line.time_max = line.time;
                if ((line.type & CoolingLine::TYPE_ADJUSTABLE) || active_speed_modifier != size_t(-1))
                    line.time_max = (adjustment->min_print_speed == 0.f) ? FLT_MAX : std::max(line.time, line.length / adjustment->min_print_speed);
                if (active_speed_modifier < adjustment->lines.size() && (line.type & CoolingLine::TYPE_G1)) {
                    // Inside the ";_EXTRUDE_SET_SPEED" blocks, there must not be a G1 Fxx entry.
                    assert((line.type & CoolingLine::TYPE_HAS_F) == 0);
                    CoolingLine &sm = adjustment->lines[active_speed_modifier];
                    assert(sm.feedrate > 0.f);
                    sm.length   += line.length;
                    sm.time     += line.time;
                    if (sm.time_max != FLT_MAX) {
                        if (line.time_max == FLT_MAX)
                            sm.time_max = FLT_MAX;
                        else
                            sm.time_max += line.time_max;
                    }
                    // Don't store this line.
                    line.type = 0;
                }
            }
            current_pos = std::move(new_pos);
        } else if (boost::starts_with(sline, ";_EXTRUDE_END")) {
            line.type = CoolingLine::TYPE_EXTRUDE_END;
            active_speed_modifier = size_t(-1);
        } else if (boost::starts_with(sline, toolchange_prefix)) {
            // Switch the tool.
            line.type = CoolingLine::TYPE_SET_TOOL;
            unsigned int new_extruder = (unsigned int)atoi(sline.c_str() + toolchange_prefix.size());
            if (new_extruder != current_extruder) {
                current_extruder = new_extruder;
                adjustment         = &per_extruder_adjustments[map_extruder_to_per_extruder_adjustment[current_extruder]];
            }
        } else if (boost::starts_with(sline, ";_BRIDGE_FAN_START")) {
            line.type = CoolingLine::TYPE_BRIDGE_FAN_START;
        } else if (boost::starts_with(sline, ";_BRIDGE_FAN_END")) {
            line.type = CoolingLine::TYPE_BRIDGE_FAN_END;
        } else if (boost::starts_with(sline, "G4 ")) {
            // Parse the wait time.
            line.type = CoolingLine::TYPE_G4;
            size_t pos_S = sline.find('S', 3);
            size_t pos_P = sline.find('P', 3);
            line.time = line.time_max = float(
                (pos_S > 0) ? atof(sline.c_str() + pos_S + 1) :
                (pos_P > 0) ? atof(sline.c_str() + pos_P + 1) * 0.001 : 0.);
        }
        if (line.type != 0)
            adjustment->lines.emplace_back(std::move(line));
    }

    return per_extruder_adjustments;
}

// Slow down an extruder range proportionally down to slowdown_below_layer_time.
// Return the total time for the complete layer.
static inline float extruder_range_slow_down_proportional(
    std::vector<PerExtruderAdjustments*>::iterator it_begin,
    std::vector<PerExtruderAdjustments*>::iterator it_end,
    // Elapsed time for the extruders already processed.
    float elapsed_time_total0,
    // Initial total elapsed time before slow down.
    float elapsed_time_before_slowdown,
    // Target time for the complete layer (all extruders applied).
    float slowdown_below_layer_time)
{
    // Total layer time after the slow down has been applied.
    float total_after_slowdown = elapsed_time_before_slowdown;
    // Now decide, whether the external perimeters shall be slowed down as well.
    float max_time_nep = elapsed_time_total0;
    for (auto it = it_begin; it != it_end; ++ it)
        max_time_nep += (*it)->maximum_time_after_slowdown(false);
    if (max_time_nep > slowdown_below_layer_time) {
        // It is sufficient to slow down the non-external perimeter moves to reach the target layer time.
        // Slow down the non-external perimeters proportionally.
        float non_adjustable_time = elapsed_time_total0;
        for (auto it = it_begin; it != it_end; ++ it)
            non_adjustable_time += (*it)->non_adjustable_time(false);
        // The following step is a linear programming task due to the minimum movement speeds of the print moves.
        // Run maximum 5 iterations until a good enough approximation is reached.
        for (size_t iter = 0; iter < 5; ++ iter) {
            float factor = (slowdown_below_layer_time - non_adjustable_time) / (total_after_slowdown - non_adjustable_time);
            assert(factor > 1.f);
            total_after_slowdown = elapsed_time_total0;
            for (auto it = it_begin; it != it_end; ++ it)
                total_after_slowdown += (*it)->slow_down_proportional(factor, false);
            if (total_after_slowdown > 0.95f * slowdown_below_layer_time)
                break;
        }
    } else {
        // Slow down everything. First slow down the non-external perimeters to maximum.
        for (auto it = it_begin; it != it_end; ++ it)
            (*it)->slowdown_to_minimum_feedrate(false);
        // Slow down the external perimeters proportionally.
        float non_adjustable_time = elapsed_time_total0;
        for (auto it = it_begin; it != it_end; ++ it)
            non_adjustable_time += (*it)->non_adjustable_time(true);
        for (size_t iter = 0; iter < 5; ++ iter) {
            float factor = (slowdown_below_layer_time - non_adjustable_time) / (total_after_slowdown - non_adjustable_time);
            assert(factor > 1.f);
            total_after_slowdown = elapsed_time_total0;
            for (auto it = it_begin; it != it_end; ++ it)
                total_after_slowdown += (*it)->slow_down_proportional(factor, true);
            if (total_after_slowdown > 0.95f * slowdown_below_layer_time)
                break;
        }
    }
    return total_after_slowdown;
}

// Slow down an extruder range to slowdown_below_layer_time.
// Return the total time for the complete layer.
static inline void extruder_range_slow_down_non_proportional(
    std::vector<PerExtruderAdjustments*>::iterator it_begin,
    std::vector<PerExtruderAdjustments*>::iterator it_end,
    float time_stretch)
{
    // Slow down. Try to equalize the feedrates.
    std::vector<PerExtruderAdjustments*> by_min_print_speed(it_begin, it_end);
    // Find the next highest adjustable feedrate among the extruders.
    float feedrate = 0;
	for (PerExtruderAdjustments *adj : by_min_print_speed) {
		adj->idx_line_begin = 0;
		adj->idx_line_end   = 0;
		assert(adj->idx_line_begin < adj->n_lines_adjustable);
		if (adj->lines[adj->idx_line_begin].feedrate > feedrate)
			feedrate = adj->lines[adj->idx_line_begin].feedrate;
	}
	assert(feedrate > 0.f);
    // Sort by min_print_speed, maximum speed first.
    std::sort(by_min_print_speed.begin(), by_min_print_speed.end(), 
        [](const PerExtruderAdjustments *p1, const PerExtruderAdjustments *p2){ return p1->min_print_speed > p2->min_print_speed; });
    // Slow down, fast moves first.
    for (;;) {
        // For each extruder, find the span of lines with a feedrate close to feedrate.
        for (PerExtruderAdjustments *adj : by_min_print_speed) {
            for (adj->idx_line_end = adj->idx_line_begin;
                adj->idx_line_end < adj->n_lines_adjustable && adj->lines[adj->idx_line_end].feedrate > feedrate - EPSILON;
                 ++ adj->idx_line_end) ;
        }
        // Find the next highest adjustable feedrate among the extruders.
        float feedrate_next = 0.f;
        for (PerExtruderAdjustments *adj : by_min_print_speed)
            if (adj->idx_line_end < adj->n_lines_adjustable && adj->lines[adj->idx_line_end].feedrate > feedrate_next)
                feedrate_next = adj->lines[adj->idx_line_end].feedrate;
        // Slow down, limited by max(feedrate_next, min_print_speed).
        for (auto adj = by_min_print_speed.begin(); adj != by_min_print_speed.end();) {
            // Slow down at most by time_stretch.
            if ((*adj)->min_print_speed == 0.f) {
                // All the adjustable speeds are now lowered to the same speed,
                // and the minimum speed is set to zero.
                float time_adjustable = 0.f;
                for (auto it = adj; it != by_min_print_speed.end(); ++ it)
                    time_adjustable += (*it)->adjustable_time(true);
                float rate = (time_adjustable + time_stretch) / time_adjustable;
                for (auto it = adj; it != by_min_print_speed.end(); ++ it)
                    (*it)->slow_down_proportional(rate, true);
                return;
            } else {
                float feedrate_limit = std::max(feedrate_next, (*adj)->min_print_speed);
                bool  done           = false;
                float time_stretch_max = 0.f;
                for (auto it = adj; it != by_min_print_speed.end(); ++ it)
                    time_stretch_max += (*it)->time_stretch_when_slowing_down_to_feedrate(feedrate_limit);
                if (time_stretch_max >= time_stretch) {
                    feedrate_limit = feedrate - (feedrate - feedrate_limit) * time_stretch / time_stretch_max;
                    done = true;
                } else
                    time_stretch -= time_stretch_max;
                for (auto it = adj; it != by_min_print_speed.end(); ++ it)
                    (*it)->slow_down_to_feedrate(feedrate_limit);
                if (done)
                    return;
            }
            // Skip the other extruders with nearly the same min_print_speed, as they have been processed already.
            auto next = adj;
            for (++ next; next != by_min_print_speed.end() && (*next)->min_print_speed > (*adj)->min_print_speed - EPSILON; ++ next);
            adj = next;
        }
        if (feedrate_next == 0.f)
            // There are no other extrusions available for slow down.
            break;
        for (PerExtruderAdjustments *adj : by_min_print_speed) {
            adj->idx_line_begin = adj->idx_line_end;
            feedrate = feedrate_next;
        }
    }
}

// Calculate slow down for all the extruders.
float CoolingBuffer::calculate_layer_slowdown(std::vector<PerExtruderAdjustments> &per_extruder_adjustments)
{
    // Sort the extruders by an increasing slowdown_below_layer_time.
    // The layers with a lower slowdown_below_layer_time are slowed down
    // together with all the other layers with slowdown_below_layer_time above.
    std::vector<PerExtruderAdjustments*> by_slowdown_time;
    by_slowdown_time.reserve(per_extruder_adjustments.size());
    // Only insert entries, which are adjustable (have cooling enabled and non-zero stretchable time).
    // Collect total print time of non-adjustable extruders.
    float elapsed_time_total0 = 0.f;
    for (PerExtruderAdjustments &adj : per_extruder_adjustments) {
        // Curren total time for this extruder.
        adj.time_total  = adj.elapsed_time_total();
        // Maximum time for this extruder, when all extrusion moves are slowed down to min_extrusion_speed.
        adj.time_maximum = adj.maximum_time_after_slowdown(true);
        if (adj.cooling_slow_down_enabled && adj.lines.size() > 0) {
            by_slowdown_time.emplace_back(&adj);
            if (! m_cooling_logic_proportional)
                // sorts the lines, also sets adj.time_non_adjustable
                adj.sort_lines_by_decreasing_feedrate();
        } else
            elapsed_time_total0 += adj.elapsed_time_total();
    }
    std::sort(by_slowdown_time.begin(), by_slowdown_time.end(),
        [](const PerExtruderAdjustments *adj1, const PerExtruderAdjustments *adj2)
            { return adj1->slowdown_below_layer_time < adj2->slowdown_below_layer_time; });

    for (auto cur_begin = by_slowdown_time.begin(); cur_begin != by_slowdown_time.end(); ++ cur_begin) {
        PerExtruderAdjustments &adj = *(*cur_begin);
        // Calculate the current adjusted elapsed_time_total over the non-finalized extruders.
        float total = elapsed_time_total0;
        for (auto it = cur_begin; it != by_slowdown_time.end(); ++ it)
            total += (*it)->time_total;
        float slowdown_below_layer_time = adj.slowdown_below_layer_time * 1.001f;
        if (total > slowdown_below_layer_time) {
            // The current total time is above the minimum threshold of the rest of the extruders, don't adjust anything.
        } else {
            // Adjust this and all the following (higher config.slowdown_below_layer_time) extruders.
            // Sum maximum slow down time as if everything was slowed down including the external perimeters.
            float max_time = elapsed_time_total0;
            for (auto it = cur_begin; it != by_slowdown_time.end(); ++ it)
                max_time += (*it)->time_maximum;
            if (max_time > slowdown_below_layer_time) {
                if (m_cooling_logic_proportional)
                    extruder_range_slow_down_proportional(cur_begin, by_slowdown_time.end(), elapsed_time_total0, total, slowdown_below_layer_time);
                else
                    extruder_range_slow_down_non_proportional(cur_begin, by_slowdown_time.end(), slowdown_below_layer_time - total);
            } else {
                // Slow down to maximum possible.
                for (auto it = cur_begin; it != by_slowdown_time.end(); ++ it)
                    (*it)->slowdown_to_minimum_feedrate(true);
            }
        }
        elapsed_time_total0 += adj.elapsed_time_total();
    }

    return elapsed_time_total0;
}

// Apply slow down over G-code lines stored in per_extruder_adjustments, enable fan if needed.
// Returns the adjusted G-code.
std::string CoolingBuffer::apply_layer_cooldown(
    // Source G-code for the current layer.
    const std::string                      &gcode,
    // ID of the current layer, used to disable fan for the first n layers.
    size_t                                  layer_id, 
    // Total time of this layer after slow down, used to control the fan.
    float                                   layer_time,
    // Per extruder list of G-code lines and their cool down attributes.
    std::vector<PerExtruderAdjustments>    &per_extruder_adjustments)
{
    // First sort the adjustment lines by of multiple extruders by their position in the source G-code.
    std::vector<const CoolingLine*> lines;
    {
        size_t n_lines = 0;
        for (const PerExtruderAdjustments &adj : per_extruder_adjustments)
            n_lines += adj.lines.size();
        lines.reserve(n_lines);
        for (const PerExtruderAdjustments &adj : per_extruder_adjustments)
            for (const CoolingLine &line : adj.lines)
                lines.emplace_back(&line);
        std::sort(lines.begin(), lines.end(), [](const CoolingLine *ln1, const CoolingLine *ln2) { return ln1->line_start < ln2->line_start; } );
    }
    // Second generate the adjusted G-code.
    std::string new_gcode;
    new_gcode.reserve(gcode.size() * 2);
    int  fan_speed          = -1;
    bool bridge_fan_control = false;
    int  bridge_fan_speed   = 0;
    auto change_extruder_set_fan = [ this, layer_id, layer_time, &new_gcode, &fan_speed, &bridge_fan_control, &bridge_fan_speed ]() {
        const FullPrintConfig &config = m_gcodegen.config();
#define EXTRUDER_CONFIG(OPT) config.OPT.get_at(m_current_extruder)
        int min_fan_speed = EXTRUDER_CONFIG(min_fan_speed);
        int fan_speed_new = EXTRUDER_CONFIG(fan_always_on) ? min_fan_speed : 0;
        if (layer_id >= EXTRUDER_CONFIG(disable_fan_first_layers)) {
            int   max_fan_speed             = EXTRUDER_CONFIG(max_fan_speed);
            float slowdown_below_layer_time = float(EXTRUDER_CONFIG(slowdown_below_layer_time));
            float fan_below_layer_time      = float(EXTRUDER_CONFIG(fan_below_layer_time));
            if (EXTRUDER_CONFIG(cooling)) {
                if (layer_time < slowdown_below_layer_time) {
                    // Layer time very short. Enable the fan to a full throttle.
                    fan_speed_new = max_fan_speed;
                } else if (layer_time < fan_below_layer_time) {
                    // Layer time quite short. Enable the fan proportionally according to the current layer time.
                    assert(layer_time >= slowdown_below_layer_time);
                    double t = (layer_time - slowdown_below_layer_time) / (fan_below_layer_time - slowdown_below_layer_time);
                    fan_speed_new = int(floor(t * min_fan_speed + (1. - t) * max_fan_speed) + 0.5);
                }
            }
            bridge_fan_speed   = EXTRUDER_CONFIG(bridge_fan_speed);
#undef EXTRUDER_CONFIG
            bridge_fan_control = bridge_fan_speed > fan_speed_new;
        } else {
            bridge_fan_control = false;
            bridge_fan_speed   = 0;
            fan_speed_new      = 0;
        }
        if (fan_speed_new != fan_speed) {
            fan_speed = fan_speed_new;
            new_gcode += m_gcodegen.writer().set_fan(fan_speed);
        }
    };

    const char         *pos               = gcode.c_str();
    int                 current_feedrate  = 0;
    const std::string   toolchange_prefix = m_gcodegen.writer().toolchange_prefix();
    change_extruder_set_fan();
    for (const CoolingLine *line : lines) {
        const char *line_start  = gcode.c_str() + line->line_start;
        const char *line_end    = gcode.c_str() + line->line_end;
        if (line_start > pos)
            new_gcode.append(pos, line_start - pos);
        if (line->type & CoolingLine::TYPE_SET_TOOL) {
            unsigned int new_extruder = (unsigned int)atoi(line_start + toolchange_prefix.size());
            if (new_extruder != m_current_extruder) {
                m_current_extruder = new_extruder;
                change_extruder_set_fan();
            }
            new_gcode.append(line_start, line_end - line_start);
        } else if (line->type & CoolingLine::TYPE_BRIDGE_FAN_START) {
            if (bridge_fan_control)
                new_gcode += m_gcodegen.writer().set_fan(bridge_fan_speed, true);
        } else if (line->type & CoolingLine::TYPE_BRIDGE_FAN_END) {
            if (bridge_fan_control)
                new_gcode += m_gcodegen.writer().set_fan(fan_speed, true);
        } else if (line->type & CoolingLine::TYPE_EXTRUDE_END) {
            // Just remove this comment.
        } else if (line->type & (CoolingLine::TYPE_ADJUSTABLE | CoolingLine::TYPE_EXTERNAL_PERIMETER | CoolingLine::TYPE_WIPE | CoolingLine::TYPE_HAS_F)) {
            // Find the start of a comment, or roll to the end of line.
            const char *end = line_start;
            for (; end < line_end && *end != ';'; ++ end);
            // Find the 'F' word.
            const char *fpos            = strstr(line_start + 2, " F") + 2;
            int         new_feedrate    = current_feedrate;
            bool        modify          = false;
            assert(fpos != nullptr);
            if (line->slowdown) {
                modify       = true;
                new_feedrate = int(floor(60. * line->feedrate + 0.5));
            } else {
                new_feedrate = atoi(fpos);
                if (new_feedrate != current_feedrate) {
                    // Append the line without the comment.
                    new_gcode.append(line_start, end - line_start);
                    current_feedrate = new_feedrate;
                } else if ((line->type & (CoolingLine::TYPE_ADJUSTABLE | CoolingLine::TYPE_EXTERNAL_PERIMETER | CoolingLine::TYPE_WIPE)) || line->length == 0.) {
                    // Feedrate does not change and this line does not move the print head. Skip the complete G-code line including the G-code comment.
                    end = line_end;
                } else {
                    // Remove the feedrate from the G0/G1 line.
                    modify = true;
                }
            }
            if (modify) {
                if (new_feedrate != current_feedrate) {
                    // Replace the feedrate.
                    new_gcode.append(line_start, fpos - line_start);
                    current_feedrate = new_feedrate;
                    char buf[64];
                    sprintf(buf, "%d", int(current_feedrate));
                    new_gcode += buf;
                } else {
                    // Remove the feedrate word.
                    const char *f = fpos;
                    // Roll the pointer before the 'F' word.
                    for (f -= 2; f > line_start && (*f == ' ' || *f == '\t'); -- f);
                    // Append up to the F word, without the trailing whitespace.
                    new_gcode.append(line_start, f - line_start + 1);
                }
                // Skip the non-whitespaces of the F parameter up the comment or end of line.
                for (; fpos != end && *fpos != ' ' && *fpos != ';' && *fpos != '\n'; ++fpos);
                // Append the rest of the line without the comment.
                if (fpos < end)
                    new_gcode.append(fpos, end - fpos);
                // There should never be an empty G1 statement emited by the filter. Such lines should be removed completely.
                assert(new_gcode.size() < 4 || new_gcode.substr(new_gcode.size() - 4) != "G1 \n");
            }
            // Process the rest of the line.
            if (end < line_end) {
                if (line->type & (CoolingLine::TYPE_ADJUSTABLE | CoolingLine::TYPE_EXTERNAL_PERIMETER | CoolingLine::TYPE_WIPE)) {
                    // Process comments, remove ";_EXTRUDE_SET_SPEED", ";_EXTERNAL_PERIMETER", ";_WIPE"
                    std::string comment(end, line_end);
                    boost::replace_all(comment, ";_EXTRUDE_SET_SPEED", "");
                    if (line->type & CoolingLine::TYPE_EXTERNAL_PERIMETER)
                        boost::replace_all(comment, ";_EXTERNAL_PERIMETER", "");
                    if (line->type & CoolingLine::TYPE_WIPE)
                        boost::replace_all(comment, ";_WIPE", "");
                    new_gcode += comment;
                } else {
                    // Just attach the rest of the source line.
                    new_gcode.append(end, line_end - end);
                }
            }
        } else {
            new_gcode.append(line_start, line_end - line_start);
        }
        pos = line_end;
    }
    const char *gcode_end = gcode.c_str() + gcode.size();
    if (pos < gcode_end)
        new_gcode.append(pos, gcode_end - pos);

    return new_gcode;
}

} // namespace Slic3r