Welcome to mirror list, hosted at ThFree Co, Russian Federation.

MultiMaterialSegmentation.cpp « libslic3r « src - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: f9a53b51d187877e6542b9784b582e51eba49d28 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
#include "BoundingBox.hpp"
#include "ClipperUtils.hpp"
#include "EdgeGrid.hpp"
#include "Layer.hpp"
#include "Print.hpp"
#include "Geometry/VoronoiVisualUtils.hpp"
#include "MutablePolygon.hpp"
#include "format.hpp"

#include <utility>
#include <cfloat>
#include <unordered_set>

#include <boost/log/trivial.hpp>
#include <tbb/parallel_for.h>
#include <mutex>
#include <boost/thread/lock_guard.hpp>

namespace Slic3r {
struct ColoredLine {
    Line line;
    int color;
    int poly_idx = -1;
    int local_line_idx = -1;
};
}

#include <boost/polygon/polygon.hpp>
namespace boost::polygon {
template <>
struct geometry_concept<Slic3r::ColoredLine> { typedef segment_concept type; };

template <>
struct segment_traits<Slic3r::ColoredLine> {
    typedef coord_t coordinate_type;
    typedef Slic3r::Point point_type;

    static inline point_type get(const Slic3r::ColoredLine& line, const direction_1d& dir) {
        return dir.to_int() ? line.line.b : line.line.a;
    }
};
}

//#define MMU_SEGMENTATION_DEBUG_GRAPH
//#define MMU_SEGMENTATION_DEBUG_REGIONS
//#define MMU_SEGMENTATION_DEBUG_INPUT
//#define MMU_SEGMENTATION_DEBUG_PAINTED_LINES
//#define MMU_SEGMENTATION_DEBUG_COLORIZED_POLYGONS

namespace Slic3r {

// Assumes that is at most same projected_l length or below than projection_l
static bool project_line_on_line(const Line &projection_l, const Line &projected_l, Line *new_projected)
{
    const Vec2d  v1 = (projection_l.b - projection_l.a).cast<double>();
    const Vec2d  va = (projected_l.a - projection_l.a).cast<double>();
    const Vec2d  vb = (projected_l.b - projection_l.a).cast<double>();
    const double l2 = v1.squaredNorm(); // avoid a sqrt
    if (l2 == 0.0)
        return false;
    double t1 = va.dot(v1) / l2;
    double t2 = vb.dot(v1) / l2;
    t1        = std::clamp(t1, 0., 1.);
    t2        = std::clamp(t2, 0., 1.);
    assert(t1 >= 0.);
    assert(t2 >= 0.);
    assert(t1 <= 1.);
    assert(t2 <= 1.);

    Point p1       = projection_l.a + (t1 * v1).cast<coord_t>();
    Point p2       = projection_l.a + (t2 * v1).cast<coord_t>();
    *new_projected = Line(p1, p2);
    return true;
}

struct PaintedLine
{
    size_t contour_idx;
    size_t line_idx;
    Line   projected_line;
    int    color;
};

struct PaintedLineVisitor
{
    PaintedLineVisitor(const EdgeGrid::Grid &grid, std::vector<PaintedLine> &painted_lines, std::mutex &painted_lines_mutex, size_t reserve) : grid(grid), painted_lines(painted_lines), painted_lines_mutex(painted_lines_mutex)
    {
        painted_lines_set.reserve(reserve);
    }

    void reset() { painted_lines_set.clear(); }

    bool operator()(coord_t iy, coord_t ix)
    {
        // Called with a row and column of the grid cell, which is intersected by a line.
        auto         cell_data_range        = grid.cell_data_range(iy, ix);
        const Vec2d  v1                     = line_to_test.vector().cast<double>();
        const double v1_sqr_norm            = v1.squaredNorm();
        const double heuristic_thr_part     = line_to_test.length() + append_threshold;
        for (auto it_contour_and_segment = cell_data_range.first; it_contour_and_segment != cell_data_range.second; ++it_contour_and_segment) {
            Line        grid_line         = grid.line(*it_contour_and_segment);
            const Vec2d v2                = grid_line.vector().cast<double>();
            double      heuristic_thr_sqr = Slic3r::sqr(heuristic_thr_part + grid_line.length());

            // An inexpensive heuristic to test whether line_to_test and grid_line can be somewhere close enough to each other.
            // This helps filter out cases when the following expensive calculations are useless.
            if ((grid_line.a - line_to_test.a).cast<double>().squaredNorm() > heuristic_thr_sqr ||
                (grid_line.b - line_to_test.a).cast<double>().squaredNorm() > heuristic_thr_sqr ||
                (grid_line.a - line_to_test.b).cast<double>().squaredNorm() > heuristic_thr_sqr ||
                (grid_line.b - line_to_test.b).cast<double>().squaredNorm() > heuristic_thr_sqr)
                continue;

            // When lines have too different length, it is necessary to normalize them
            if (Slic3r::sqr(v1.dot(v2)) > cos_threshold2 * v1_sqr_norm * v2.squaredNorm()) {
                // The two vectors are nearly collinear (their mutual angle is lower than 30 degrees)
                if (painted_lines_set.find(*it_contour_and_segment) == painted_lines_set.end()) {
                    if (grid_line.distance_to_squared(line_to_test.a) < append_threshold2 ||
                        grid_line.distance_to_squared(line_to_test.b) < append_threshold2 ||
                        line_to_test.distance_to_squared(grid_line.a) < append_threshold2 ||
                        line_to_test.distance_to_squared(grid_line.b) < append_threshold2) {
                        Line line_to_test_projected;
                        project_line_on_line(grid_line, line_to_test, &line_to_test_projected);

                        if ((line_to_test_projected.a - grid_line.a).cast<double>().squaredNorm() > (line_to_test_projected.b - grid_line.a).cast<double>().squaredNorm())
                            line_to_test_projected.reverse();

                        painted_lines_set.insert(*it_contour_and_segment);
                        {
                            boost::lock_guard<std::mutex> lock(painted_lines_mutex);
                            painted_lines.push_back({it_contour_and_segment->first, it_contour_and_segment->second, line_to_test_projected, this->color});
                        }
                    }
                }
            }
        }
        // Continue traversing the grid along the edge.
        return true;
    }

    const EdgeGrid::Grid                                                                 &grid;
    std::vector<PaintedLine>                                                             &painted_lines;
    std::mutex                                                                           &painted_lines_mutex;
    Line                                                                                  line_to_test;
    std::unordered_set<std::pair<size_t, size_t>, boost::hash<std::pair<size_t, size_t>>> painted_lines_set;
    int                                                                                   color             = -1;

    static inline const double                                                            cos_threshold2    = Slic3r::sqr(cos(M_PI * 30. / 180.));
    static inline const double                                                            append_threshold  = 50 * SCALED_EPSILON;
    static inline const double                                                            append_threshold2 = Slic3r::sqr(append_threshold);
};

static Polygon colored_points_to_polygon(const std::vector<ColoredLine> &lines)
{
    Polygon out;
    out.points.reserve(lines.size());
    for (const ColoredLine &l : lines)
        out.points.emplace_back(l.line.a);
    return out;
}

static Polygons colored_points_to_polygon(const std::vector<std::vector<ColoredLine>> &lines)
{
    Polygons out;
    out.reserve(lines.size());
    for (const std::vector<ColoredLine> &l : lines)
        out.emplace_back(colored_points_to_polygon(l));
    return out;
}

// Flatten the vector of vectors into a vector.
static inline std::vector<ColoredLine> to_lines(const std::vector<std::vector<ColoredLine>> &c_lines)
{
    size_t n_lines = 0;
    for (const auto &c_line : c_lines)
        n_lines += c_line.size();
    std::vector<ColoredLine> lines;
    lines.reserve(n_lines);
    for (const auto &c_line : c_lines)
        lines.insert(lines.end(), c_line.begin(), c_line.end());
    return lines;
}

static bool vertex_equal_to_point(const Voronoi::VD::vertex_type &vertex, const Vec2d &ipt)
{
    // Convert ipt to doubles, force the 80bit FPU temporary to 64bit and then compare.
    // This should work with any settings of math compiler switches and the C++ compiler
    // shall understand the memcpies as type punning and it shall optimize them out.
    using ulp_cmp_type = boost::polygon::detail::ulp_comparison<double>;
    ulp_cmp_type ulp_cmp;
    static constexpr int ULPS = boost::polygon::voronoi_diagram_traits<double>::vertex_equality_predicate_type::ULPS;
    return ulp_cmp(vertex.x(), ipt.x(), ULPS) == ulp_cmp_type::EQUAL &&
           ulp_cmp(vertex.y(), ipt.y(), ULPS) == ulp_cmp_type::EQUAL;
}

static inline bool vertex_equal_to_point(const Voronoi::VD::vertex_type *vertex, const Vec2d &ipt)
{
    return vertex_equal_to_point(*vertex, ipt);
}

static std::vector<std::pair<size_t, size_t>> get_segments(const std::vector<ColoredLine> &polygon)
{
    std::vector<std::pair<size_t, size_t>> segments;

    size_t segment_end = 0;
    while (segment_end + 1 < polygon.size() && polygon[segment_end].color == polygon[segment_end + 1].color)
        segment_end++;

    if (segment_end == polygon.size() - 1)
        return {std::make_pair(0, polygon.size() - 1)};

    size_t first_different_color = (segment_end + 1) % polygon.size();
    for (size_t line_offset_idx = 0; line_offset_idx < polygon.size(); ++line_offset_idx) {
        size_t start_s = (first_different_color + line_offset_idx) % polygon.size();
        size_t end_s   = start_s;

        while (line_offset_idx + 1 < polygon.size() && polygon[start_s].color == polygon[(first_different_color + line_offset_idx + 1) % polygon.size()].color) {
            end_s = (first_different_color + line_offset_idx + 1) % polygon.size();
            line_offset_idx++;
        }
        segments.emplace_back(start_s, end_s);
    }
    return segments;
}

static std::vector<std::vector<std::pair<size_t, size_t>>> get_all_segments(const std::vector<std::vector<ColoredLine>> &color_poly)
{
    std::vector<std::vector<std::pair<size_t, size_t>>> all_segments(color_poly.size());
    for (size_t poly_idx = 0; poly_idx < color_poly.size(); ++poly_idx) {
        const std::vector<ColoredLine> &c_polygon = color_poly[poly_idx];
        all_segments[poly_idx]                    = get_segments(c_polygon);
    }
    return all_segments;
}

static std::vector<PaintedLine> filter_painted_lines(const Line &line_to_process, const size_t start_idx, const size_t end_idx, const std::vector<PaintedLine> &painted_lines)
{
    const int                filter_eps_value = scale_(0.1f);
    std::vector<PaintedLine> filtered_lines;
    filtered_lines.emplace_back(painted_lines[start_idx]);
    for (size_t line_idx = start_idx + 1; line_idx <= end_idx; ++line_idx) {
        // line_to_process is already all colored. Skip another possible duplicate coloring.
        if(filtered_lines.back().projected_line.b == line_to_process.b)
            break;

        PaintedLine &prev = filtered_lines.back();
        const PaintedLine &curr = painted_lines[line_idx];

        double prev_length        = prev.projected_line.length();
        double curr_dist_start    = (curr.projected_line.a - prev.projected_line.a).cast<double>().norm();
        double dist_between_lines = curr_dist_start - prev_length;

        if (dist_between_lines >= 0) {
            if (prev.color == curr.color) {
                if (dist_between_lines <= filter_eps_value) {
                    prev.projected_line.b = curr.projected_line.b;
                } else {
                    filtered_lines.emplace_back(curr);
                }
            } else {
                filtered_lines.emplace_back(curr);
            }
        } else {
            double curr_dist_end = (curr.projected_line.b - prev.projected_line.a).cast<double>().norm();
            if (curr_dist_end > prev_length) {
                if (prev.color == curr.color)
                    prev.projected_line.b = curr.projected_line.b;
                else
                    filtered_lines.push_back({curr.contour_idx, curr.line_idx, Line{prev.projected_line.b, curr.projected_line.b}, curr.color});
            }
        }
    }

    if (double dist_to_start = (filtered_lines.front().projected_line.a - line_to_process.a).cast<double>().norm(); dist_to_start <= filter_eps_value)
        filtered_lines.front().projected_line.a = line_to_process.a;

    if (double dist_to_end = (filtered_lines.back().projected_line.b - line_to_process.b).cast<double>().norm(); dist_to_end <= filter_eps_value)
        filtered_lines.back().projected_line.b = line_to_process.b;

    return filtered_lines;
}

static std::vector<std::vector<PaintedLine>> post_process_painted_lines(const std::vector<EdgeGrid::Contour> &contours, std::vector<PaintedLine> &&painted_lines)
{
    if (painted_lines.empty())
        return {};

    auto comp = [&contours](const PaintedLine &first, const PaintedLine &second) {
        Point first_start_p = contours[first.contour_idx].segment_start(first.line_idx);
        return first.contour_idx < second.contour_idx ||
               (first.contour_idx == second.contour_idx &&
                (first.line_idx < second.line_idx ||
                 (first.line_idx == second.line_idx &&
                  ((first.projected_line.a - first_start_p).cast<double>().squaredNorm() < (second.projected_line.a - first_start_p).cast<double>().squaredNorm() ||
                   ((first.projected_line.a - first_start_p).cast<double>().squaredNorm() == (second.projected_line.a - first_start_p).cast<double>().squaredNorm() &&
                    (first.projected_line.b - first.projected_line.a).cast<double>().squaredNorm() < (second.projected_line.b - second.projected_line.a).cast<double>().squaredNorm())))));
    };
    std::sort(painted_lines.begin(), painted_lines.end(), comp);

    std::vector<std::vector<PaintedLine>> filtered_painted_lines(contours.size());
    size_t prev_painted_line_idx = 0;
    for (size_t curr_painted_line_idx = 0; curr_painted_line_idx < painted_lines.size(); ++curr_painted_line_idx) {
        size_t next_painted_line_idx = curr_painted_line_idx + 1;
        if (next_painted_line_idx >= painted_lines.size() || painted_lines[curr_painted_line_idx].contour_idx != painted_lines[next_painted_line_idx].contour_idx || painted_lines[curr_painted_line_idx].line_idx != painted_lines[next_painted_line_idx].line_idx) {
            const PaintedLine &start_line      = painted_lines[prev_painted_line_idx];
            const Line        &line_to_process = contours[start_line.contour_idx].get_segment(start_line.line_idx);
            Slic3r::append(filtered_painted_lines[painted_lines[curr_painted_line_idx].contour_idx], filter_painted_lines(line_to_process, prev_painted_line_idx, curr_painted_line_idx, painted_lines));
            prev_painted_line_idx = next_painted_line_idx;
        }
    }

    return filtered_painted_lines;
}

#ifndef NDEBUG
static bool are_lines_connected(const std::vector<ColoredLine> &colored_lines)
{
    for (size_t line_idx = 1; line_idx < colored_lines.size(); ++line_idx)
        if (colored_lines[line_idx - 1].line.b != colored_lines[line_idx].line.a)
            return false;
    return true;
}
#endif

static std::vector<ColoredLine> colorize_line(const Line &line_to_process,
                                              const size_t              start_idx,
                                              const size_t              end_idx,
                                              const std::vector<PaintedLine> &painted_contour)
{
    assert(start_idx < painted_contour.size() && end_idx < painted_contour.size() && start_idx <= end_idx);
    assert(std::all_of(painted_contour.begin() + start_idx, painted_contour.begin() + end_idx + 1, [&painted_contour, &start_idx](const auto &p_line) { return painted_contour[start_idx].line_idx == p_line.line_idx; }));

    const int                filter_eps_value = scale_(0.1f);
    std::vector<ColoredLine> final_lines;
    const PaintedLine       &first_line = painted_contour[start_idx];
    if (double dist_to_start = (first_line.projected_line.a - line_to_process.a).cast<double>().norm(); dist_to_start > filter_eps_value)
        final_lines.push_back({Line(line_to_process.a, first_line.projected_line.a), 0});
    final_lines.push_back({first_line.projected_line, first_line.color});

    for (size_t line_idx = start_idx + 1; line_idx <= end_idx; ++line_idx) {
        ColoredLine       &prev = final_lines.back();
        const PaintedLine &curr = painted_contour[line_idx];

        double line_dist = (curr.projected_line.a - prev.line.b).cast<double>().norm();
        if (line_dist <= filter_eps_value) {
            if (prev.color == curr.color) {
                prev.line.b = curr.projected_line.b;
            } else {
                prev.line.b = curr.projected_line.a;
                final_lines.push_back({curr.projected_line, curr.color});
            }
        } else {
            final_lines.push_back({Line(prev.line.b, curr.projected_line.a), 0});
            final_lines.push_back({curr.projected_line, curr.color});
        }
    }

    // If there is non-painted space, then inserts line painted by a default color.
    if (double dist_to_end = (final_lines.back().line.b - line_to_process.b).cast<double>().norm(); dist_to_end > filter_eps_value)
        final_lines.push_back({Line(final_lines.back().line.b, line_to_process.b), 0});

    // Make sure all the lines are connected.
    assert(are_lines_connected(final_lines));

    for (size_t line_idx = 2; line_idx < final_lines.size(); ++line_idx) {
        const ColoredLine &line_0 = final_lines[line_idx - 2];
        ColoredLine       &line_1 = final_lines[line_idx - 1];
        const ColoredLine &line_2 = final_lines[line_idx - 0];

        if (line_0.color == line_2.color && line_0.color != line_1.color)
            if (line_1.line.length() <= scale_(0.2)) line_1.color = line_0.color;
    }

    std::vector<ColoredLine> colored_lines_simple;
    colored_lines_simple.emplace_back(final_lines.front());
    for (size_t line_idx = 1; line_idx < final_lines.size(); ++line_idx) {
        const ColoredLine &line_0 = final_lines[line_idx];

        if (colored_lines_simple.back().color == line_0.color)
            colored_lines_simple.back().line.b = line_0.line.b;
        else
            colored_lines_simple.emplace_back(line_0);
    }

    final_lines = colored_lines_simple;

    if (final_lines.size() > 1)
        if (final_lines.front().color != final_lines[1].color && final_lines.front().line.length() <= scale_(0.2)) {
            final_lines[1].line.a = final_lines.front().line.a;
            final_lines.erase(final_lines.begin());
        }

    if (final_lines.size() > 1)
        if (final_lines.back().color != final_lines[final_lines.size() - 2].color && final_lines.back().line.length() <= scale_(0.2)) {
            final_lines[final_lines.size() - 2].line.b = final_lines.back().line.b;
            final_lines.pop_back();
        }

    return final_lines;
}

static std::vector<ColoredLine> filter_colorized_polygon(std::vector<ColoredLine> &&new_lines) {
    for (size_t line_idx = 2; line_idx < new_lines.size(); ++line_idx) {
        const ColoredLine &line_0 = new_lines[line_idx - 2];
        ColoredLine       &line_1 = new_lines[line_idx - 1];
        const ColoredLine &line_2 = new_lines[line_idx - 0];

        if (line_0.color == line_2.color && line_0.color != line_1.color && line_0.color >= 1) {
            if (line_1.line.length() <= scale_(0.5)) line_1.color = line_0.color;
        }
    }

    for (size_t line_idx = 3; line_idx < new_lines.size(); ++line_idx) {
        const ColoredLine &line_0 = new_lines[line_idx - 3];
        ColoredLine       &line_1 = new_lines[line_idx - 2];
        ColoredLine       &line_2 = new_lines[line_idx - 1];
        const ColoredLine &line_3 = new_lines[line_idx - 0];

        if (line_0.color == line_3.color && (line_0.color != line_1.color || line_0.color != line_2.color) && line_0.color >= 1 && line_3.color >= 1) {
            if ((line_1.line.length() + line_2.line.length()) <= scale_(0.5)) {
                line_1.color = line_0.color;
                line_2.color = line_0.color;
            }
        }
    }

    std::vector<std::pair<size_t, size_t>> segments       = get_segments(new_lines);
    auto                                   segment_length = [&new_lines](const std::pair<size_t, size_t> &segment) {
        double total_length = 0;
        for (size_t seg_start_idx = segment.first; seg_start_idx != segment.second; seg_start_idx = (seg_start_idx + 1 < new_lines.size()) ? seg_start_idx + 1 : 0)
            total_length += new_lines[seg_start_idx].line.length();
        total_length += new_lines[segment.second].line.length();
        return total_length;
    };

    if (segments.size() >= 2)
        for (size_t curr_idx = 0; curr_idx < segments.size(); ++curr_idx) {
            size_t next_idx = next_idx_modulo(curr_idx, segments.size());
            assert(curr_idx != next_idx);

            int color0 = new_lines[segments[curr_idx].first].color;
            int color1 = new_lines[segments[next_idx].first].color;

            double seg0l = segment_length(segments[curr_idx]);
            double seg1l = segment_length(segments[next_idx]);

            if (color0 != color1 && seg0l >= scale_(0.1) && seg1l <= scale_(0.2)) {
                for (size_t seg_start_idx = segments[next_idx].first; seg_start_idx != segments[next_idx].second; seg_start_idx = (seg_start_idx + 1 < new_lines.size()) ? seg_start_idx + 1 : 0)
                    new_lines[seg_start_idx].color = color0;
                new_lines[segments[next_idx].second].color = color0;
            }
        }

    segments = get_segments(new_lines);
    if (segments.size() >= 2)
        for (size_t curr_idx = 0; curr_idx < segments.size(); ++curr_idx) {
            size_t next_idx = next_idx_modulo(curr_idx, segments.size());
            assert(curr_idx != next_idx);

            int    color0 = new_lines[segments[curr_idx].first].color;
            int    color1 = new_lines[segments[next_idx].first].color;
            double seg1l  = segment_length(segments[next_idx]);

            if (color0 >= 1 && color0 != color1 && seg1l <= scale_(0.2)) {
                for (size_t seg_start_idx = segments[next_idx].first; seg_start_idx != segments[next_idx].second; seg_start_idx = (seg_start_idx + 1 < new_lines.size()) ? seg_start_idx + 1 : 0)
                    new_lines[seg_start_idx].color = color0;
                new_lines[segments[next_idx].second].color = color0;
            }
        }

    segments = get_segments(new_lines);
    if (segments.size() >= 3)
        for (size_t curr_idx = 0; curr_idx < segments.size(); ++curr_idx) {
            size_t next_idx      = next_idx_modulo(curr_idx, segments.size());
            size_t next_next_idx = next_idx_modulo(next_idx, segments.size());

            int color0 = new_lines[segments[curr_idx].first].color;
            int color1 = new_lines[segments[next_idx].first].color;
            int color2 = new_lines[segments[next_next_idx].first].color;

            if (color0 > 0 && color0 == color2 && color0 != color1 && segment_length(segments[next_idx]) <= scale_(0.5)) {
                for (size_t seg_start_idx = segments[next_next_idx].first; seg_start_idx != segments[next_next_idx].second; seg_start_idx = (seg_start_idx + 1 < new_lines.size()) ? seg_start_idx + 1 : 0)
                    new_lines[seg_start_idx].color = color0;
                new_lines[segments[next_next_idx].second].color = color0;
            }
        }

    return std::move(new_lines);
}

static std::vector<ColoredLine> colorize_contour(const EdgeGrid::Contour &contour, const std::vector<PaintedLine> &painted_contour) {
    assert(painted_contour.empty() || std::all_of(painted_contour.begin(), painted_contour.end(), [&painted_contour](const auto &p_line) { return painted_contour.front().contour_idx == p_line.contour_idx; }));

    std::vector<ColoredLine> colorized_contour;
    if (painted_contour.empty()) {
        // Appends contour with default color for lines before the first PaintedLine.
        colorized_contour.reserve(contour.num_segments());
        for (const Line &line : contour.get_segments())
            colorized_contour.emplace_back(ColoredLine{line, 0});
        return colorized_contour;
    }

    colorized_contour.reserve(contour.num_segments() + painted_contour.size());
    for (size_t idx = 0; idx < painted_contour.front().line_idx; ++idx)
        colorized_contour.emplace_back(ColoredLine{contour.get_segment(idx), 0});

    size_t prev_painted_line_idx = 0;
    for (size_t curr_painted_line_idx = 0; curr_painted_line_idx < painted_contour.size(); ++curr_painted_line_idx) {
        size_t next_painted_line_idx = curr_painted_line_idx + 1;
        if (next_painted_line_idx >= painted_contour.size() || painted_contour[curr_painted_line_idx].line_idx != painted_contour[next_painted_line_idx].line_idx) {
            const std::vector<PaintedLine> &painted_contour_copy = painted_contour;
            Slic3r::append(colorized_contour, colorize_line(contour.get_segment(painted_contour[prev_painted_line_idx].line_idx), prev_painted_line_idx, curr_painted_line_idx, painted_contour_copy));

            // Appends contour with default color for lines between the current and the next PaintedLine.
            if (next_painted_line_idx < painted_contour.size())
                for (size_t idx = painted_contour[curr_painted_line_idx].line_idx + 1; idx < painted_contour[next_painted_line_idx].line_idx; ++idx)
                    colorized_contour.emplace_back(ColoredLine{contour.get_segment(idx), 0});

            prev_painted_line_idx = next_painted_line_idx;
        }
    }

    // Appends contour with default color for lines after the last PaintedLine.
    for (size_t idx = painted_contour.back().line_idx + 1; idx < contour.num_segments(); ++idx)
        colorized_contour.emplace_back(ColoredLine{contour.get_segment(idx), 0});

    assert(!colorized_contour.empty());
    return filter_colorized_polygon(std::move(colorized_contour));
}

static std::vector<std::vector<ColoredLine>> colorize_contours(const std::vector<EdgeGrid::Contour> &contours, const std::vector<std::vector<PaintedLine>> &painted_contours)
{
    assert(contours.size() == painted_contours.size());
    std::vector<std::vector<ColoredLine>> colorized_contours(contours.size());
    for (const std::vector<PaintedLine> &painted_contour : painted_contours) {
        size_t contour_idx              = &painted_contour - &painted_contours.front();
        colorized_contours[contour_idx] = colorize_contour(contours[contour_idx], painted_contours[contour_idx]);
    }
    return colorized_contours;
}

using boost::polygon::voronoi_diagram;

static inline Point mk_point(const Voronoi::VD::vertex_type *point) { return {coord_t(point->x()), coord_t(point->y())}; }

static inline Point mk_point(const Voronoi::Internal::point_type &point) { return {coord_t(point.x()), coord_t(point.y())}; }

static inline Point mk_point(const voronoi_diagram<double>::vertex_type &point) { return {coord_t(point.x()), coord_t(point.y())}; }

static inline Point mk_point(const Vec2d &point) { return {coord_t(std::round(point.x())), coord_t(std::round(point.y()))}; }

static inline Vec2d mk_vec2(const voronoi_diagram<double>::vertex_type *point) { return {point->x(), point->y()}; }

struct MMU_Graph
{
    enum class ARC_TYPE { BORDER, NON_BORDER };

    struct Arc
    {
        size_t   from_idx;
        size_t   to_idx;
        int      color;
        ARC_TYPE type;

        bool operator==(const Arc &rhs) const { return (from_idx == rhs.from_idx) && (to_idx == rhs.to_idx) && (color == rhs.color) && (type == rhs.type); }
        bool operator!=(const Arc &rhs) const { return !operator==(rhs); }
    };

    struct Node
    {
        Vec2d             point;
        std::list<size_t> arc_idxs;

        void remove_edge(const size_t to_idx, MMU_Graph &graph)
        {
            for (auto arc_it = this->arc_idxs.begin(); arc_it != this->arc_idxs.end(); ++arc_it) {
                MMU_Graph::Arc &arc = graph.arcs[*arc_it];
                if (arc.to_idx == to_idx) {
                    assert(arc.type != ARC_TYPE::BORDER);
                    this->arc_idxs.erase(arc_it);
                    break;
                }
            }
        }
    };

    std::vector<MMU_Graph::Node> nodes;
    std::vector<MMU_Graph::Arc>  arcs;
    size_t                       all_border_points{};

    std::vector<size_t> polygon_idx_offset;
    std::vector<size_t> polygon_sizes;

    void remove_edge(const size_t from_idx, const size_t to_idx)
    {
        nodes[from_idx].remove_edge(to_idx, *this);
        nodes[to_idx].remove_edge(from_idx, *this);
    }

    [[nodiscard]] size_t get_global_index(const size_t poly_idx, const size_t point_idx) const { return polygon_idx_offset[poly_idx] + point_idx; }

    void append_edge(const size_t &from_idx, const size_t &to_idx, int color = -1, ARC_TYPE type = ARC_TYPE::NON_BORDER)
    {
        // Don't append duplicate edges between the same nodes.
        for (const size_t &arc_idx : this->nodes[from_idx].arc_idxs)
            if (arcs[arc_idx].to_idx == to_idx)
                return;
        for (const size_t &arc_idx : this->nodes[to_idx].arc_idxs)
            if (arcs[arc_idx].to_idx == from_idx)
                return;

        this->nodes[from_idx].arc_idxs.push_back(this->arcs.size());
        this->arcs.push_back({from_idx, to_idx, color, type});

        // Always insert only one directed arc for the input polygons.
        // Two directed arcs in both directions are inserted if arcs aren't between points of the input polygons.
        if (type == ARC_TYPE::NON_BORDER) {
            this->nodes[to_idx].arc_idxs.push_back(this->arcs.size());
            this->arcs.push_back({to_idx, from_idx, color, type});
        }
    }

    // It assumes that between points of the input polygons is always only one directed arc,
    // with the same direction as lines of the input polygon.
    [[nodiscard]] MMU_Graph::Arc get_border_arc(size_t idx) const {
        assert(idx < this->all_border_points);
        return this->arcs[idx];
    }

    [[nodiscard]] size_t nodes_count() const { return this->nodes.size(); }

    void remove_nodes_with_one_arc()
    {
        std::queue<size_t> update_queue;
        for (const MMU_Graph::Node &node : this->nodes) {
            size_t node_idx = &node - &this->nodes.front();
            // Skip nodes that represent points of input polygons.
            if (node.arc_idxs.size() == 1 && node_idx >= this->all_border_points)
                update_queue.emplace(&node - &this->nodes.front());
        }

        while (!update_queue.empty()) {
            size_t           node_from_idx = update_queue.front();
            MMU_Graph::Node &node_from     = this->nodes[update_queue.front()];
            update_queue.pop();
            if (node_from.arc_idxs.empty())
                continue;

            assert(node_from.arc_idxs.size() == 1);
            size_t           node_to_idx = arcs[node_from.arc_idxs.front()].to_idx;
            MMU_Graph::Node &node_to     = this->nodes[node_to_idx];
            this->remove_edge(node_from_idx, node_to_idx);
            if (node_to.arc_idxs.size() == 1 && node_to_idx >= this->all_border_points)
                update_queue.emplace(node_to_idx);
        }
    }

    void add_contours(const std::vector<std::vector<ColoredLine>> &color_poly)
    {
        this->all_border_points = nodes.size();
        this->polygon_sizes     = std::vector<size_t>(color_poly.size());
        for (size_t polygon_idx = 0; polygon_idx < color_poly.size(); ++polygon_idx)
            this->polygon_sizes[polygon_idx] = color_poly[polygon_idx].size();
        this->polygon_idx_offset    = std::vector<size_t>(color_poly.size());
        this->polygon_idx_offset[0] = 0;
        for (size_t polygon_idx = 1; polygon_idx < color_poly.size(); ++polygon_idx) {
            this->polygon_idx_offset[polygon_idx] = this->polygon_idx_offset[polygon_idx - 1] + color_poly[polygon_idx - 1].size();
        }

        size_t poly_idx = 0;
        for (const std::vector<ColoredLine> &color_lines : color_poly) {
            size_t line_idx = 0;
            for (const ColoredLine &color_line : color_lines) {
                size_t from_idx = this->get_global_index(poly_idx, line_idx);
                size_t to_idx   = this->get_global_index(poly_idx, (line_idx + 1) % color_lines.size());
                this->append_edge(from_idx, to_idx, color_line.color, ARC_TYPE::BORDER);
                ++line_idx;
            }
            ++poly_idx;
        }
    }

    // Nodes 0..all_border_points are only one with are on countour. Other vertexis are consider as not on coouter. So we check if base on attach index
    inline bool is_vertex_on_contour(const Voronoi::VD::vertex_type *vertex) const
    {
        assert(vertex != nullptr);
        return vertex->color() < this->all_border_points;
    }

    [[nodiscard]] inline bool is_edge_attach_to_contour(const voronoi_diagram<double>::const_edge_iterator &edge_iterator) const
    {
        return this->is_vertex_on_contour(edge_iterator->vertex0()) || this->is_vertex_on_contour(edge_iterator->vertex1());
    }

    [[nodiscard]] inline bool is_edge_connecting_two_contour_vertices(const voronoi_diagram<double>::const_edge_iterator &edge_iterator) const
    {
        return this->is_vertex_on_contour(edge_iterator->vertex0()) && this->is_vertex_on_contour(edge_iterator->vertex1());
    }

    // All Voronoi vertices are post-processes to merge very close vertices to single. Witch eliminates issues with intersection edges.
    // Also, Voronoi vertices outside of the bounding of input polygons are throw away by marking them.
    void append_voronoi_vertices(const Geometry::VoronoiDiagram &vd, const Polygons &color_poly_tmp, BoundingBox bbox) {
        bbox.offset(SCALED_EPSILON);

        struct CPoint
        {
            CPoint() = delete;
            CPoint(const Vec2d &point, size_t contour_idx, size_t point_idx) : m_point_double(point), m_point(mk_point(point)), m_point_idx(point_idx), m_contour_idx(contour_idx) {}
            CPoint(const Vec2d &point, size_t point_idx) : m_point_double(point), m_point(mk_point(point)), m_point_idx(point_idx), m_contour_idx(0) {}
            const Vec2d m_point_double;
            const Point m_point;
            size_t      m_point_idx;
            size_t      m_contour_idx;

            [[nodiscard]] const Vec2d &point_double() const { return m_point_double; }
            [[nodiscard]] const Point &point() const { return m_point; }
            bool operator==(const CPoint &rhs) const { return this->m_point_double == rhs.m_point_double && this->m_contour_idx == rhs.m_contour_idx && this->m_point_idx == rhs.m_point_idx; }
        };
        struct CPointAccessor { const Point* operator()(const CPoint &pt) const { return &pt.point(); }};
        typedef ClosestPointInRadiusLookup<CPoint, CPointAccessor> CPointLookupType;

        CPointLookupType closest_voronoi_point(coord_t(SCALED_EPSILON));
        CPointLookupType closest_contour_point(3 * coord_t(SCALED_EPSILON));
        for (const Polygon &polygon : color_poly_tmp)
            for (const Point &pt : polygon.points)
                closest_contour_point.insert(CPoint(Vec2d(pt.x(), pt.y()), &polygon - &color_poly_tmp.front(), &pt - &polygon.points.front()));

        for (const voronoi_diagram<double>::vertex_type &vertex : vd.vertices()) {
            vertex.color(-1);
            Vec2d vertex_point_double = Vec2d(vertex.x(), vertex.y());
            Point vertex_point        = mk_point(vertex);

            const Vec2d &first_point_double  = this->nodes[this->get_border_arc(vertex.incident_edge()->cell()->source_index()).from_idx].point;
            const Vec2d &second_point_double = this->nodes[this->get_border_arc(vertex.incident_edge()->twin()->cell()->source_index()).from_idx].point;

            if (vertex_equal_to_point(&vertex, first_point_double)) {
                assert(vertex.color() != vertex.incident_edge()->cell()->source_index());
                assert(vertex.color() != vertex.incident_edge()->twin()->cell()->source_index());
                vertex.color(this->get_border_arc(vertex.incident_edge()->cell()->source_index()).from_idx);
            } else if (vertex_equal_to_point(&vertex, second_point_double)) {
                assert(vertex.color() != vertex.incident_edge()->cell()->source_index());
                assert(vertex.color() != vertex.incident_edge()->twin()->cell()->source_index());
                vertex.color(this->get_border_arc(vertex.incident_edge()->twin()->cell()->source_index()).from_idx);
            } else if (bbox.contains(vertex_point)) {
                if (auto [contour_pt, c_dist_sqr] = closest_contour_point.find(vertex_point); contour_pt != nullptr && c_dist_sqr < Slic3r::sqr(3 * SCALED_EPSILON)) {
                    vertex.color(this->get_global_index(contour_pt->m_contour_idx, contour_pt->m_point_idx));
                } else if (auto [voronoi_pt, v_dist_sqr] = closest_voronoi_point.find(vertex_point); voronoi_pt == nullptr || v_dist_sqr >= Slic3r::sqr(SCALED_EPSILON / 10.0)) {
                    closest_voronoi_point.insert(CPoint(vertex_point_double, this->nodes_count()));
                    vertex.color(this->nodes_count());
                    this->nodes.push_back({vertex_point_double});
                } else {
                    // Boost Voronoi diagram generator sometimes creates two very closed points instead of one point.
                    // For the example points (146872.99999999997, -146872.99999999997) and (146873, -146873), this example also included in Voronoi generator test cases.
                    std::vector<std::pair<const CPoint *, double>> all_closes_c_points = closest_voronoi_point.find_all(vertex_point);
                    int                                            merge_to_point      = -1;
                    for (const std::pair<const CPoint *, double> &c_point : all_closes_c_points)
                        if ((vertex_point_double - c_point.first->point_double()).squaredNorm() <= Slic3r::sqr(EPSILON)) {
                            merge_to_point = int(c_point.first->m_point_idx);
                            break;
                        }

                    if (merge_to_point != -1) {
                        vertex.color(merge_to_point);
                    } else {
                        closest_voronoi_point.insert(CPoint(vertex_point_double, this->nodes_count()));
                        vertex.color(this->nodes_count());
                        this->nodes.push_back({vertex_point_double});
                    }
                }
            }
        }
    }

    void garbage_collect()
    {
        std::vector<int> nodes_map(this->nodes.size(), -1);
        int              nodes_count = 0;
        size_t           arcs_count  = 0;
        for (const MMU_Graph::Node &node : this->nodes)
            if (size_t node_idx = &node - &this->nodes.front(); !node.arc_idxs.empty()) {
                nodes_map[node_idx] = nodes_count++;
                arcs_count += node.arc_idxs.size();
            }

        std::vector<MMU_Graph::Node> new_nodes;
        std::vector<MMU_Graph::Arc>  new_arcs;
        new_nodes.reserve(nodes_count);
        new_arcs.reserve(arcs_count);
        for (const MMU_Graph::Node &node : this->nodes)
            if (size_t node_idx = &node - &this->nodes.front(); nodes_map[node_idx] >= 0) {
                new_nodes.push_back({node.point});
                for (const size_t &arc_idx : node.arc_idxs) {
                    const Arc &arc = this->arcs[arc_idx];
                    new_nodes.back().arc_idxs.emplace_back(new_arcs.size());
                    new_arcs.push_back({size_t(nodes_map[arc.from_idx]), size_t(nodes_map[arc.to_idx]), arc.color, arc.type});
                }
            }

        this->nodes = std::move(new_nodes);
        this->arcs  = std::move(new_arcs);
    }
};

static inline void mark_processed(const voronoi_diagram<double>::const_edge_iterator &edge_iterator)
{
    edge_iterator->color(true);
    edge_iterator->twin()->color(true);
}

// Return true, if "p" is closer to line.a, then line.b
static inline bool is_point_closer_to_beginning_of_line(const Line &line, const Point &p)
{
    return (p - line.a).cast<double>().squaredNorm() < (p - line.b).cast<double>().squaredNorm();
}

static inline bool has_same_color(const ColoredLine &cl1, const ColoredLine &cl2) { return cl1.color == cl2.color; }

// Determines if the line points from the point between two contour lines is pointing inside polygon or outside.
static inline bool points_inside(const Line &contour_first, const Line &contour_second, const Point &new_point)
{
    // Used in points_inside for decision if line leading thought the common point of two lines is pointing inside polygon or outside
    auto three_points_inward_normal = [](const Point &left, const Point &middle, const Point &right) -> Vec2d {
        assert(left != middle);
        assert(middle != right);
        return (perp(Point(middle - left)).cast<double>().normalized() + perp(Point(right - middle)).cast<double>().normalized()).normalized();
    };

    assert(contour_first.b == contour_second.a);
    Vec2d  inward_normal = three_points_inward_normal(contour_first.a, contour_first.b, contour_second.b);
    Vec2d  edge_norm     = (new_point - contour_first.b).cast<double>().normalized();
    double side          = inward_normal.dot(edge_norm);
    //    assert(side != 0.);
    return side > 0.;
}

static inline bool line_intersection_with_epsilon(const Line &line_to_extend, const Line &other, Point *intersection)
{
    Line extended_line = line_to_extend;
    extended_line.extend(15 * SCALED_EPSILON);
    return extended_line.intersection(other, intersection);
}

// For every ColoredLine in lines_colored_out, assign the index of the polygon to which belongs and also the index of this line inside of the polygon.
static inline void init_polygon_indices(const MMU_Graph                             &graph,
                                        const std::vector<std::vector<ColoredLine>> &color_poly,
                                        std::vector<ColoredLine>                    &lines_colored_out)
{
    size_t poly_idx = 0;
    for (const std::vector<ColoredLine> &color_lines : color_poly) {
        size_t line_idx = 0;
        for (size_t color_line_idx = 0; color_line_idx < color_lines.size(); ++color_line_idx) {
            size_t from_idx                            = graph.get_global_index(poly_idx, line_idx);
            lines_colored_out[from_idx].poly_idx       = int(poly_idx);
            lines_colored_out[from_idx].local_line_idx = int(line_idx);
            ++line_idx;
        }
        ++poly_idx;
    }
}

// Voronoi edges produced by Voronoi generator cloud have coordinates that don't fit inside coord_t (int32_t).
// Because of that, this function tries to clip edges that have one endpoint of the edge inside the BoundingBox.
static inline Line clip_finite_voronoi_edge(const Voronoi::VD::edge_type &edge, const BoundingBoxf &bbox)
{
    assert(edge.is_finite());
    Vec2d v0          = mk_vec2(edge.vertex0());
    Vec2d v1          = mk_vec2(edge.vertex1());
    bool  contains_v0 = bbox.contains(v0);
    bool  contains_v1 = bbox.contains(v1);
    if ((contains_v0 && contains_v1) || (!contains_v0 && !contains_v1))
        return {mk_point(edge.vertex0()), mk_point(edge.vertex1())};

    Vec2d vector = (v1 - v0).normalized() * bbox.size().norm();
    if (!contains_v0)
        v0 = (v1 - vector);
    else
        v1 = (v0 + vector);

    return {v0.cast<coord_t>(), v1.cast<coord_t>()};
}

static MMU_Graph build_graph(size_t layer_idx, const std::vector<std::vector<ColoredLine>> &color_poly)
{
    Geometry::VoronoiDiagram vd;
    std::vector<ColoredLine> lines_colored  = to_lines(color_poly);
    const Polygons           color_poly_tmp = colored_points_to_polygon(color_poly);
    const Points             points         = to_points(color_poly_tmp);
    const Lines              lines          = to_lines(color_poly_tmp);

    // The algorithm adds edges to the graph that are between two different colors.
    // If a polygon is colored entirely with one color, we need to add at least one edge from that polygon artificially.
    // Adding this edge is necessary for cases where the expolygon has an outer contour colored whole with one color
    // and a hole colored with a different color. If an edge wasn't added to the graph,
    // the entire expolygon would be colored with single random color instead of two different.
    std::vector<bool>        force_edge_adding(color_poly.size());

    // For each polygon, check if it is all colored with the same color. If it is, we need to force adding one edge to it.
    for (const std::vector<ColoredLine> &c_poly : color_poly) {
        bool force_edge = true;
        for (const ColoredLine &c_line : c_poly)
            if (c_line.color != c_poly.front().color) {
                force_edge = false;
                break;
            }
        force_edge_adding[&c_poly - &color_poly.front()] = force_edge;
    }

    boost::polygon::construct_voronoi(lines_colored.begin(), lines_colored.end(), &vd);
    MMU_Graph graph;
    graph.nodes.reserve(points.size() + vd.vertices().size());
    for (const Point &point : points)
        graph.nodes.push_back({Vec2d(double(point.x()), double(point.y()))});

    graph.add_contours(color_poly);
    init_polygon_indices(graph, color_poly, lines_colored);

    assert(graph.nodes.size() == lines_colored.size());
    BoundingBox bbox = get_extents(color_poly_tmp);
    graph.append_voronoi_vertices(vd, color_poly_tmp, bbox);

    auto get_prev_contour_line = [&lines_colored, &color_poly, &graph](const voronoi_diagram<double>::const_edge_iterator &edge_it) -> ColoredLine {
        size_t contour_line_local_idx = lines_colored[edge_it->cell()->source_index()].local_line_idx;
        size_t contour_line_size      = color_poly[lines_colored[edge_it->cell()->source_index()].poly_idx].size();
        size_t contour_prev_idx       = graph.get_global_index(lines_colored[edge_it->cell()->source_index()].poly_idx,
                                                         (contour_line_local_idx > 0) ? contour_line_local_idx - 1 : contour_line_size - 1);
        return lines_colored[contour_prev_idx];
    };

    auto get_next_contour_line = [&lines_colored, &color_poly, &graph](const voronoi_diagram<double>::const_edge_iterator &edge_it) -> ColoredLine {
        size_t contour_line_local_idx = lines_colored[edge_it->cell()->source_index()].local_line_idx;
        size_t contour_line_size      = color_poly[lines_colored[edge_it->cell()->source_index()].poly_idx].size();
        size_t contour_next_idx       = graph.get_global_index(lines_colored[edge_it->cell()->source_index()].poly_idx,
                                                         (contour_line_local_idx + 1) % contour_line_size);
        return lines_colored[contour_next_idx];
    };

    bbox.offset(scale_(10.));
    const BoundingBoxf bbox_clip(bbox.min.cast<double>(), bbox.max.cast<double>());
    const double       bbox_dim_max = double(std::max(bbox.size().x(), bbox.size().y()));

    // Make a copy of the input segments with the double type.
    std::vector<Voronoi::Internal::segment_type> segments;
    for (const Line &line : lines)
        segments.emplace_back(Voronoi::Internal::point_type(double(line.a(0)), double(line.a(1))),
                              Voronoi::Internal::point_type(double(line.b(0)), double(line.b(1))));

    for (auto edge_it = vd.edges().begin(); edge_it != vd.edges().end(); ++edge_it) {
        // Skip second half-edge
        if (edge_it->cell()->source_index() > edge_it->twin()->cell()->source_index() || edge_it->color())
            continue;

        if (edge_it->is_infinite() && (edge_it->vertex0() != nullptr || edge_it->vertex1() != nullptr)) {
            // Infinite edge is leading through a point on the counter, but there are no Voronoi vertices.
            // So we could fix this case by computing the intersection between the contour line and infinity edge.
            std::vector<Voronoi::Internal::point_type> samples;
            Voronoi::Internal::clip_infinite_edge(points, segments, *edge_it, bbox_dim_max, &samples);
            if (samples.empty())
                continue;

            const Line         edge_line(mk_point(samples[0]), mk_point(samples[1]));
            const ColoredLine &contour_line = lines_colored[edge_it->cell()->source_index()];
            Point              contour_intersection;

            if (line_intersection_with_epsilon(contour_line.line, edge_line, &contour_intersection)) {
                const MMU_Graph::Arc &graph_arc = graph.get_border_arc(edge_it->cell()->source_index());
                const size_t          from_idx  = (edge_it->vertex1() != nullptr) ? edge_it->vertex1()->color() : edge_it->vertex0()->color();
                size_t                to_idx    = ((contour_line.line.a - contour_intersection).cast<double>().squaredNorm() <
                                 (contour_line.line.b - contour_intersection).cast<double>().squaredNorm()) ?
                                                      graph_arc.from_idx :
                                                      graph_arc.to_idx;
                if (from_idx != to_idx && from_idx < graph.nodes_count() && to_idx < graph.nodes_count()) {
                    graph.append_edge(from_idx, to_idx);
                    mark_processed(edge_it);
                }
            }
        } else if (edge_it->is_finite()) {
            // Both points are on contour, so skip them. In cases of duplicate Voronoi vertices, skip edges between the same two points.
            if (graph.is_edge_connecting_two_contour_vertices(edge_it) || (edge_it->vertex0()->color() == edge_it->vertex1()->color()))
                continue;

            const Line        edge_line         = clip_finite_voronoi_edge(*edge_it, bbox_clip);
            const Line        contour_line      = lines_colored[edge_it->cell()->source_index()].line;
            const ColoredLine colored_line      = lines_colored[edge_it->cell()->source_index()];
            const ColoredLine contour_line_prev = get_prev_contour_line(edge_it);
            const ColoredLine contour_line_next = get_next_contour_line(edge_it);

            if (edge_it->vertex0()->color() >= graph.nodes_count() || edge_it->vertex1()->color() >= graph.nodes_count()) {
                enum class Vertex { VERTEX0, VERTEX1 };
                auto append_edge_if_intersects_with_contour = [&graph, &lines_colored, &edge_line, &contour_line](const voronoi_diagram<double>::const_edge_iterator &edge_iterator, const Vertex vertex) {
                    Point intersection;
                    Line  contour_line_twin = lines_colored[edge_iterator->twin()->cell()->source_index()].line;
                    if (line_intersection_with_epsilon(contour_line_twin, edge_line, &intersection)) {
                        const MMU_Graph::Arc &graph_arc = graph.get_border_arc(edge_iterator->twin()->cell()->source_index());
                        const size_t          to_idx_l  = is_point_closer_to_beginning_of_line(contour_line_twin, intersection) ? graph_arc.from_idx :
                                                                                                                                  graph_arc.to_idx;
                        graph.append_edge(vertex == Vertex::VERTEX0 ? edge_iterator->vertex0()->color() : edge_iterator->vertex1()->color(), to_idx_l);
                    } else if (line_intersection_with_epsilon(contour_line, edge_line, &intersection)) {
                        const MMU_Graph::Arc &graph_arc = graph.get_border_arc(edge_iterator->cell()->source_index());
                        const size_t to_idx_l = is_point_closer_to_beginning_of_line(contour_line, intersection) ? graph_arc.from_idx : graph_arc.to_idx;
                        graph.append_edge(vertex == Vertex::VERTEX0 ? edge_iterator->vertex0()->color() : edge_iterator->vertex1()->color(), to_idx_l);
                    }
                    mark_processed(edge_iterator);
                };

                if (edge_it->vertex0()->color() < graph.nodes_count() && !graph.is_vertex_on_contour(edge_it->vertex0()))
                    append_edge_if_intersects_with_contour(edge_it, Vertex::VERTEX0);

                if (edge_it->vertex1()->color() < graph.nodes_count() && !graph.is_vertex_on_contour(edge_it->vertex1()))
                    append_edge_if_intersects_with_contour(edge_it, Vertex::VERTEX1);
            } else if (graph.is_edge_attach_to_contour(edge_it)) {
                mark_processed(edge_it);
                // Skip edges witch connection two points on a contour
                if (graph.is_edge_connecting_two_contour_vertices(edge_it))
                    continue;

                const size_t from_idx = edge_it->vertex0()->color();
                const size_t to_idx   = edge_it->vertex1()->color();
                if (graph.is_vertex_on_contour(edge_it->vertex0())) {
                    if (is_point_closer_to_beginning_of_line(contour_line, edge_line.a)) {
                        if ((!has_same_color(contour_line_prev, colored_line) || force_edge_adding[colored_line.poly_idx]) && points_inside(contour_line_prev.line, contour_line, edge_line.b)) {
                            graph.append_edge(from_idx, to_idx);
                            force_edge_adding[colored_line.poly_idx] = false;
                        }
                    } else {
                        if ((!has_same_color(contour_line_next, colored_line) || force_edge_adding[colored_line.poly_idx]) && points_inside(contour_line, contour_line_next.line, edge_line.b)) {
                            graph.append_edge(from_idx, to_idx);
                            force_edge_adding[colored_line.poly_idx] = false;
                        }
                    }
                } else {
                    assert(graph.is_vertex_on_contour(edge_it->vertex1()));
                    if (is_point_closer_to_beginning_of_line(contour_line, edge_line.b)) {
                        if ((!has_same_color(contour_line_prev, colored_line) || force_edge_adding[colored_line.poly_idx]) && points_inside(contour_line_prev.line, contour_line, edge_line.a)) {
                            graph.append_edge(from_idx, to_idx);
                            force_edge_adding[colored_line.poly_idx] = false;
                        }
                    } else {
                        if ((!has_same_color(contour_line_next, colored_line) || force_edge_adding[colored_line.poly_idx]) && points_inside(contour_line, contour_line_next.line, edge_line.a)) {
                            graph.append_edge(from_idx, to_idx);
                            force_edge_adding[colored_line.poly_idx] = false;
                        }
                    }
                }
            } else if (Point intersection; line_intersection_with_epsilon(contour_line, edge_line, &intersection)) {
                mark_processed(edge_it);
                Vec2d real_v0_double = graph.nodes[edge_it->vertex0()->color()].point;
                Vec2d real_v1_double = graph.nodes[edge_it->vertex1()->color()].point;
                Point real_v0        = Point(coord_t(real_v0_double.x()), coord_t(real_v0_double.y()));
                Point real_v1        = Point(coord_t(real_v1_double.x()), coord_t(real_v1_double.y()));

                if (is_point_closer_to_beginning_of_line(contour_line, intersection)) {
                    Line first_part(intersection, real_v0);
                    Line second_part(intersection, real_v1);

                    if (!has_same_color(contour_line_prev, colored_line)) {
                        if (points_inside(contour_line_prev.line, contour_line, first_part.b))
                            graph.append_edge(edge_it->vertex0()->color(), graph.get_border_arc(edge_it->cell()->source_index()).from_idx);

                        if (points_inside(contour_line_prev.line, contour_line, second_part.b))
                            graph.append_edge(edge_it->vertex1()->color(), graph.get_border_arc(edge_it->cell()->source_index()).from_idx);
                    }
                } else {
                    const size_t int_point_idx    = graph.get_border_arc(edge_it->cell()->source_index()).to_idx;
                    const Vec2d  int_point_double = graph.nodes[int_point_idx].point;
                    const Point  int_point        = Point(coord_t(int_point_double.x()), coord_t(int_point_double.y()));

                    const Line first_part(int_point, real_v0);
                    const Line second_part(int_point, real_v1);

                    if (!has_same_color(contour_line_next, colored_line)) {
                        if (points_inside(contour_line, contour_line_next.line, first_part.b))
                            graph.append_edge(edge_it->vertex0()->color(), int_point_idx);

                        if (points_inside(contour_line, contour_line_next.line, second_part.b))
                            graph.append_edge(edge_it->vertex1()->color(), int_point_idx);
                    }
                }
            }
        }
    }

    for (auto edge_it = vd.edges().begin(); edge_it != vd.edges().end(); ++edge_it) {
        // Skip second half-edge and processed edges
        if (edge_it->cell()->source_index() > edge_it->twin()->cell()->source_index() || edge_it->color())
            continue;

        if (edge_it->is_finite() && !bool(edge_it->color()) && edge_it->vertex0()->color() < graph.nodes_count() &&
            edge_it->vertex1()->color() < graph.nodes_count()) {
            // Skip cases, when the edge is between two same vertices, which is in cases two near vertices were merged together.
            if (edge_it->vertex0()->color() == edge_it->vertex1()->color())
                continue;

            size_t from_idx = edge_it->vertex0()->color();
            size_t to_idx   = edge_it->vertex1()->color();
            graph.append_edge(from_idx, to_idx);
        }
        mark_processed(edge_it);
    }

    graph.remove_nodes_with_one_arc();
    return graph;
}

static inline Polygon to_polygon(const std::vector<Linef> &lines)
{
    Polygon poly_out;
    poly_out.points.reserve(lines.size());
    for (const Linef &line : lines)
        poly_out.points.emplace_back(mk_point(line.a));
    return poly_out;
}

// Returns list of polygons and assigned colors.
// It iterates through all nodes on the border between two different colors, and from this point,
// start selection always left most edges for every node to construct CCW polygons.
// Assumes that graph is planar (without self-intersection edges)
static std::vector<ExPolygons> extract_colored_segments(const MMU_Graph &graph, const size_t num_extruders)
{
    std::vector<bool> used_arcs(graph.arcs.size(), false);
    // When there is no next arc, then is returned original_arc or edge with is marked as used
    auto get_next = [&graph, &used_arcs](const Linef &process_line, const MMU_Graph::Arc &original_arc) -> const MMU_Graph::Arc & {
        std::vector<std::pair<const MMU_Graph::Arc *, double>> sorted_arcs;
        for (const size_t &arc_idx : graph.nodes[original_arc.to_idx].arc_idxs) {
            const MMU_Graph::Arc &arc = graph.arcs[arc_idx];
            if (graph.nodes[arc.to_idx].point == process_line.a || used_arcs[arc_idx])
                continue;

            assert(original_arc.to_idx == arc.from_idx);
            Vec2d process_line_vec_n   = (process_line.a - process_line.b).normalized();
            Vec2d neighbour_line_vec_n = (graph.nodes[arc.to_idx].point - graph.nodes[arc.from_idx].point).normalized();

            double angle = ::acos(std::clamp(neighbour_line_vec_n.dot(process_line_vec_n), -1.0, 1.0));
            if (Slic3r::cross2(neighbour_line_vec_n, process_line_vec_n) < 0.0)
                angle = 2.0 * (double) PI - angle;

            sorted_arcs.emplace_back(&arc, angle);
        }

        std::sort(sorted_arcs.begin(), sorted_arcs.end(),
                  [](std::pair<const MMU_Graph::Arc *, double> &l, std::pair<const MMU_Graph::Arc *, double> &r) -> bool { return l.second < r.second; });

        // Try to return left most edge witch is unused
        for (auto &sorted_arc : sorted_arcs)
            if (size_t arc_idx = sorted_arc.first - &graph.arcs.front(); !used_arcs[arc_idx])
                return *sorted_arc.first;

        if (sorted_arcs.empty())
            return original_arc;

        return *(sorted_arcs.front().first);
    };

    auto all_arc_used = [&used_arcs](const MMU_Graph::Node &node) -> bool {
        return std::all_of(node.arc_idxs.cbegin(), node.arc_idxs.cend(), [&used_arcs](const size_t &arc_idx) -> bool { return used_arcs[arc_idx]; });
    };

    std::vector<ExPolygons> expolygons_segments(num_extruders + 1);
    for (size_t node_idx = 0; node_idx < graph.all_border_points; ++node_idx) {
        const MMU_Graph::Node &node = graph.nodes[node_idx];

        for (const size_t &arc_idx : node.arc_idxs) {
            const MMU_Graph::Arc &arc = graph.arcs[arc_idx];
            if (arc.type == MMU_Graph::ARC_TYPE::NON_BORDER || used_arcs[arc_idx])
                continue;

            Linef process_line(node.point, graph.nodes[arc.to_idx].point);
            used_arcs[arc_idx] = true;

            std::vector<Linef> face_lines;
            face_lines.emplace_back(process_line);
            Vec2d start_p = process_line.a;

            Linef                 p_vec = process_line;
            const MMU_Graph::Arc *p_arc = &arc;
            do {
                const MMU_Graph::Arc &next         = get_next(p_vec, *p_arc);
                size_t                next_arc_idx = &next - &graph.arcs.front();
                face_lines.emplace_back(graph.nodes[next.from_idx].point, graph.nodes[next.to_idx].point);
                if (used_arcs[next_arc_idx])
                    break;

                used_arcs[next_arc_idx] = true;
                p_vec                   = Linef(graph.nodes[next.from_idx].point, graph.nodes[next.to_idx].point);
                p_arc                   = &next;
            } while (graph.nodes[p_arc->to_idx].point != start_p || !all_arc_used(graph.nodes[p_arc->to_idx]));

            if (Polygon poly = to_polygon(face_lines); poly.is_counter_clockwise() && poly.is_valid())
                expolygons_segments[arc.color].emplace_back(std::move(poly));
        }
    }
    return expolygons_segments;
}

// Used in remove_multiple_edges_in_vertices()
// Returns length of edge with is connected to contour. To this length is include other edges with follows it if they are almost straight (with the
// tolerance of 15) And also if node between two subsequent edges is connected only to these two edges.
static inline double compute_edge_length(const MMU_Graph &graph, const size_t start_idx, const size_t &start_arc_idx)
{
    assert(start_arc_idx < graph.arcs.size());
    std::vector<bool> used_arcs(graph.arcs.size(), false);

    used_arcs[start_arc_idx]                = true;
    const MMU_Graph::Arc *arc               = &graph.arcs[start_arc_idx];
    size_t                idx               = start_idx;
    double                line_total_length = (graph.nodes[arc->to_idx].point - graph.nodes[idx].point).norm();
    while (graph.nodes[arc->to_idx].arc_idxs.size() == 2) {
        bool found = false;
        for (const size_t &arc_idx : graph.nodes[arc->to_idx].arc_idxs) {
            if (const MMU_Graph::Arc &arc_n = graph.arcs[arc_idx]; arc_n.type == MMU_Graph::ARC_TYPE::NON_BORDER && !used_arcs[arc_idx] && arc_n.to_idx != idx) {
                Linef first_line(graph.nodes[idx].point, graph.nodes[arc->to_idx].point);
                Linef second_line(graph.nodes[arc->to_idx].point, graph.nodes[arc_n.to_idx].point);

                Vec2d  first_line_vec    = (first_line.a - first_line.b);
                Vec2d  second_line_vec   = (second_line.b - second_line.a);
                Vec2d  first_line_vec_n  = first_line_vec.normalized();
                Vec2d  second_line_vec_n = second_line_vec.normalized();
                double angle             = ::acos(std::clamp(first_line_vec_n.dot(second_line_vec_n), -1.0, 1.0));
                if (Slic3r::cross2(first_line_vec_n, second_line_vec_n) < 0.0)
                    angle = 2.0 * (double) PI - angle;

                if (std::abs(angle - PI) >= (PI / 12))
                    continue;

                idx = arc->to_idx;
                arc = &arc_n;

                line_total_length += (graph.nodes[arc->to_idx].point - graph.nodes[idx].point).norm();
                used_arcs[arc_idx] = true;
                found      = true;
                break;
            }
        }
        if (!found)
            break;
    }

    return line_total_length;
}

// Used for fixing double Voronoi edges for concave parts of the polygon.
static void remove_multiple_edges_in_vertices(MMU_Graph &graph, const std::vector<std::vector<ColoredLine>> &color_poly)
{
    std::vector<std::vector<std::pair<size_t, size_t>>> colored_segments = get_all_segments(color_poly);
    for (const std::vector<std::pair<size_t, size_t>> &colored_segment_p : colored_segments) {
        size_t poly_idx = &colored_segment_p - &colored_segments.front();
        for (const std::pair<size_t, size_t> &colored_segment : colored_segment_p) {
            size_t first_idx  = graph.get_global_index(poly_idx, colored_segment.first);
            size_t second_idx = graph.get_global_index(poly_idx, (colored_segment.second + 1) % graph.polygon_sizes[poly_idx]);
            Linef  seg_line(graph.nodes[first_idx].point, graph.nodes[second_idx].point);

            if (graph.nodes[first_idx].arc_idxs.size() >= 3) {
                std::vector<std::pair<MMU_Graph::Arc *, double>> arc_to_check;
                for (const size_t &arc_idx : graph.nodes[first_idx].arc_idxs) {
                    MMU_Graph::Arc &n_arc = graph.arcs[arc_idx];
                    if (n_arc.type == MMU_Graph::ARC_TYPE::NON_BORDER) {
                        double total_len = compute_edge_length(graph, first_idx, arc_idx);
                        arc_to_check.emplace_back(&n_arc, total_len);
                    }
                }
                std::sort(arc_to_check.begin(), arc_to_check.end(),
                          [](std::pair<MMU_Graph::Arc *, double> &l, std::pair<MMU_Graph::Arc *, double> &r) -> bool { return l.second > r.second; });

                while (arc_to_check.size() > 1) {
                    graph.remove_edge(first_idx, arc_to_check.back().first->to_idx);
                    arc_to_check.pop_back();
                }
            }
        }
    }
}

static void cut_segmented_layers(const std::vector<ExPolygons>        &input_expolygons,
                                 std::vector<std::vector<ExPolygons>> &segmented_regions,
                                 const float                           cut_width,
                                 const std::function<void()>          &throw_on_cancel_callback)
{
    BOOST_LOG_TRIVIAL(debug) << "MMU segmentation - cutting segmented layers in parallel - begin";
    tbb::parallel_for(tbb::blocked_range<size_t>(0, segmented_regions.size()),[&segmented_regions, &input_expolygons, &cut_width, &throw_on_cancel_callback](const tbb::blocked_range<size_t>& range) {
        for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++layer_idx) {
            throw_on_cancel_callback();
            const size_t            num_extruders_plus_one = segmented_regions[layer_idx].size();
            std::vector<ExPolygons> segmented_regions_cuts(num_extruders_plus_one); // Indexed by extruder_id
            for (size_t extruder_idx = 0; extruder_idx < num_extruders_plus_one; ++extruder_idx)
                if (const ExPolygons &ex_polygons = segmented_regions[layer_idx][extruder_idx]; !ex_polygons.empty())
                    segmented_regions_cuts[extruder_idx] = diff_ex(ex_polygons, offset_ex(input_expolygons[layer_idx], cut_width));
            segmented_regions[layer_idx] = std::move(segmented_regions_cuts);
        }
    }); // end of parallel_for
    BOOST_LOG_TRIVIAL(debug) << "MMU segmentation - cutting segmented layers in parallel - end";
}

static bool is_volume_sinking(const indexed_triangle_set &its, const Transform3d &trafo)
{
    const Transform3f trafo_f = trafo.cast<float>();
    for (const stl_vertex &vertex : its.vertices)
        if ((trafo_f * vertex).z() < SINKING_Z_THRESHOLD) return true;
    return false;
}

//#define MMU_SEGMENTATION_DEBUG_TOP_BOTTOM

// Returns MMU segmentation of top and bottom layers based on painting in MMU segmentation gizmo
static inline std::vector<std::vector<ExPolygons>> mmu_segmentation_top_and_bottom_layers(const PrintObject             &print_object,
                                                                                          const std::vector<ExPolygons> &input_expolygons,
                                                                                          const std::function<void()>   &throw_on_cancel_callback)
{
    const size_t num_extruders = print_object.print()->config().nozzle_diameter.size() + 1;
    const size_t num_layers    = input_expolygons.size();
    const ConstLayerPtrsAdaptor layers = print_object.layers();

    // Maximum number of top / bottom layers accounts for maximum overlap of one thread group into a neighbor thread group.
    int max_top_layers = 0;
    int max_bottom_layers = 0;
    int granularity = 1;
    for (size_t i = 0; i < print_object.num_printing_regions(); ++ i) {
        const PrintRegionConfig &config = print_object.printing_region(i).config();
        max_top_layers    = std::max(max_top_layers, config.top_solid_layers.value);
        max_bottom_layers = std::max(max_bottom_layers, config.bottom_solid_layers.value);
        granularity       = std::max(granularity, std::max(config.top_solid_layers.value, config.bottom_solid_layers.value) - 1);
    }

    // Project upwards pointing painted triangles over top surfaces,
    // project downards pointing painted triangles over bottom surfaces.
    std::vector<std::vector<Polygons>> top_raw(num_extruders), bottom_raw(num_extruders);
    std::vector<float> zs = zs_from_layers(layers);
    Transform3d        object_trafo = print_object.trafo_centered();

#ifdef MMU_SEGMENTATION_DEBUG_TOP_BOTTOM
    static int iRun = 0;
#endif // NDEBUG

    if (max_top_layers > 0 || max_bottom_layers > 0) {
        for (const ModelVolume *mv : print_object.model_object()->volumes)
            if (mv->is_model_part()) {
                const Transform3d volume_trafo = object_trafo * mv->get_matrix();
                for (size_t extruder_idx = 0; extruder_idx < num_extruders; ++ extruder_idx) {
                    const indexed_triangle_set painted = mv->mmu_segmentation_facets.get_facets_strict(*mv, EnforcerBlockerType(extruder_idx));
#ifdef MMU_SEGMENTATION_DEBUG_TOP_BOTTOM
                    {
                        static int iRun = 0;
                        its_write_obj(painted, debug_out_path("mm-painted-patch-%d-%d.obj", iRun ++, extruder_idx).c_str());
                    }
#endif // MMU_SEGMENTATION_DEBUG_TOP_BOTTOM
                    if (! painted.indices.empty()) {
                        std::vector<Polygons> top, bottom;
                        if (!zs.empty() && is_volume_sinking(painted, volume_trafo)) {
                            std::vector<float> zs_sinking = {0.f};
                            Slic3r::append(zs_sinking, zs);
                            slice_mesh_slabs(painted, zs_sinking, volume_trafo, max_top_layers > 0 ? &top : nullptr, max_bottom_layers > 0 ? &bottom : nullptr, throw_on_cancel_callback);

                            MeshSlicingParams slicing_params;
                            slicing_params.trafo = volume_trafo;
                            Polygons bottom_slice = slice_mesh(painted, zs[0], slicing_params);

                            top.erase(top.begin());
                            bottom.erase(bottom.begin());

                            bottom[0] = union_(bottom[0], bottom_slice);
                        } else
                            slice_mesh_slabs(painted, zs, volume_trafo, max_top_layers > 0 ? &top : nullptr, max_bottom_layers > 0 ? &bottom : nullptr, throw_on_cancel_callback);
                        auto merge = [](std::vector<Polygons> &&src, std::vector<Polygons> &dst) {
                            auto it_src = find_if(src.begin(), src.end(), [](const Polygons &p){ return ! p.empty(); });
                            if (it_src != src.end()) {
                                if (dst.empty()) {
                                    dst = std::move(src);
                                } else {
                                    assert(src.size() == dst.size());
                                    auto it_dst = dst.begin() + (it_src - src.begin());
                                    for (; it_src != src.end(); ++ it_src, ++ it_dst)
                                        if (! it_src->empty()) {
                                            if (it_dst->empty())
                                                *it_dst = std::move(*it_src);
                                            else
                                                append(*it_dst, std::move(*it_src));
                                        }
                                }
                            }
                        };
                        merge(std::move(top),    top_raw[extruder_idx]);
                        merge(std::move(bottom), bottom_raw[extruder_idx]);
                    }
                }
            }
    }

    auto filter_out_small_polygons = [&num_extruders, &num_layers](std::vector<std::vector<Polygons>> &raw_surfaces, double min_area) -> void {
        for (size_t extruder_idx = 0; extruder_idx < num_extruders; ++extruder_idx)
            if (!raw_surfaces[extruder_idx].empty())
                for (size_t layer_idx = 0; layer_idx < num_layers; ++layer_idx)
                    if (!raw_surfaces[extruder_idx][layer_idx].empty())
                        remove_small(raw_surfaces[extruder_idx][layer_idx], min_area);
    };

    // Filter out polygons less than 0.1mm^2, because they are unprintable and causing dimples on outer primers (#7104)
    filter_out_small_polygons(top_raw, Slic3r::sqr(scale_(0.1f)));
    filter_out_small_polygons(bottom_raw, Slic3r::sqr(scale_(0.1f)));

#ifdef MMU_SEGMENTATION_DEBUG_TOP_BOTTOM
    {
        const char* colors[] = { "aqua", "black", "blue", "fuchsia", "gray", "green", "lime", "maroon", "navy", "olive", "purple", "red", "silver", "teal", "yellow" };
        static int iRun = 0;
        for (size_t layer_id = 0; layer_id < zs.size(); ++layer_id) {
            std::vector<std::pair<Slic3r::ExPolygons, SVG::ExPolygonAttributes>> svg;
            for (size_t extruder_idx = 0; extruder_idx < num_extruders; ++ extruder_idx) {
                if (! top_raw[extruder_idx].empty() && ! top_raw[extruder_idx][layer_id].empty())
                    if (ExPolygons expoly = union_ex(top_raw[extruder_idx][layer_id]); ! expoly.empty()) {
                        const char *color = colors[extruder_idx];
                        svg.emplace_back(expoly, SVG::ExPolygonAttributes{ format("top%d", extruder_idx), color, color, color });
                    }
                if (! bottom_raw[extruder_idx].empty() && ! bottom_raw[extruder_idx][layer_id].empty())
                    if (ExPolygons expoly = union_ex(bottom_raw[extruder_idx][layer_id]); ! expoly.empty()) {
                        const char *color = colors[extruder_idx + 8];
                        svg.emplace_back(expoly, SVG::ExPolygonAttributes{ format("bottom%d", extruder_idx), color, color, color });
                    }
            }
            SVG::export_expolygons(debug_out_path("mm-segmentation-top-bottom-%d-%d-%lf.svg", iRun, layer_id, zs[layer_id]), svg);
        }
        ++ iRun;
    }
#endif // MMU_SEGMENTATION_DEBUG_TOP_BOTTOM

    std::vector<std::vector<ExPolygons>> triangles_by_color_bottom(num_extruders);
    std::vector<std::vector<ExPolygons>> triangles_by_color_top(num_extruders);
    triangles_by_color_bottom.assign(num_extruders, std::vector<ExPolygons>(num_layers * 2));
    triangles_by_color_top.assign(num_extruders, std::vector<ExPolygons>(num_layers * 2));

    struct LayerColorStat {
        // Number of regions for a queried color.
        int     num_regions             { 0 };
        // Maximum perimeter extrusion width for a queried color.
        float   extrusion_width         { 0.f };
        // Minimum radius of a region to be printable. Used to filter regions by morphological opening.
        float   small_region_threshold  { 0.f };
        // Maximum number of top layers for a queried color.
        int     top_solid_layers        { 0 };
        // Maximum number of bottom layers for a queried color.
        int     bottom_solid_layers     { 0 };
    };
    auto layer_color_stat = [&layers = std::as_const(layers)](const size_t layer_idx, const size_t color_idx) -> LayerColorStat {
        LayerColorStat out;
        const Layer &layer = *layers[layer_idx];
        for (const LayerRegion *region : layer.regions())
            if (const PrintRegionConfig &config = region->region().config();
                // color_idx == 0 means "don't know" extruder aka the underlying extruder.
                // As this region may split existing regions, we collect statistics over all regions for color_idx == 0.
                color_idx == 0 || config.perimeter_extruder == int(color_idx)) {
                out.extrusion_width     = std::max<float>(out.extrusion_width, float(config.perimeter_extrusion_width));
                out.top_solid_layers    = std::max<int>(out.top_solid_layers, config.top_solid_layers);
                out.bottom_solid_layers = std::max<int>(out.bottom_solid_layers, config.bottom_solid_layers);
                out.small_region_threshold = config.gap_fill_enabled.value && config.gap_fill_speed.value > 0 ?
                                             // Gap fill enabled. Enable a single line of 1/2 extrusion width.
                                             0.5f * float(config.perimeter_extrusion_width) :
                                             // Gap fill disabled. Enable two lines slightly overlapping.
                                             float(config.perimeter_extrusion_width) + 0.7f * Flow::rounded_rectangle_extrusion_spacing(float(config.perimeter_extrusion_width), float(layer.height));
                out.small_region_threshold = scaled<float>(out.small_region_threshold * 0.5f);
                ++ out.num_regions;
            }
        assert(out.num_regions > 0);
        out.extrusion_width = scaled<float>(out.extrusion_width);
        return out;
    };

    tbb::parallel_for(tbb::blocked_range<size_t>(0, num_layers, granularity), [&granularity, &num_layers, &num_extruders, &layer_color_stat, &top_raw, &triangles_by_color_top,
                                                                               &throw_on_cancel_callback, &input_expolygons, &bottom_raw, &triangles_by_color_bottom](const tbb::blocked_range<size_t> &range) {
        size_t group_idx   = range.begin() / granularity;
        size_t layer_idx_offset = (group_idx & 1) * num_layers;
        for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
            for (size_t color_idx = 0; color_idx < num_extruders; ++ color_idx) {
                throw_on_cancel_callback();
                LayerColorStat stat = layer_color_stat(layer_idx, color_idx);
                if (std::vector<Polygons> &top = top_raw[color_idx]; ! top.empty() && ! top[layer_idx].empty())
                    if (ExPolygons top_ex = union_ex(top[layer_idx]); ! top_ex.empty()) {
                        // Clean up thin projections. They are not printable anyways.
                        top_ex = opening_ex(top_ex, stat.small_region_threshold);
                        if (! top_ex.empty()) {
                            append(triangles_by_color_top[color_idx][layer_idx + layer_idx_offset], top_ex);
                            float offset = 0.f;
                            ExPolygons layer_slices_trimmed = input_expolygons[layer_idx];
                            for (int last_idx = int(layer_idx) - 1; last_idx >= std::max(int(layer_idx - stat.top_solid_layers), int(0)); --last_idx) {
                                offset -= stat.extrusion_width;
                                layer_slices_trimmed = intersection_ex(layer_slices_trimmed, input_expolygons[last_idx]);
                                ExPolygons last = opening_ex(intersection_ex(top_ex, offset_ex(layer_slices_trimmed, offset)), stat.small_region_threshold);
                                if (last.empty())
                                    break;
                                append(triangles_by_color_top[color_idx][last_idx + layer_idx_offset], std::move(last));
                            }
                        }
                    }
                if (std::vector<Polygons> &bottom = bottom_raw[color_idx]; ! bottom.empty() && ! bottom[layer_idx].empty())
                    if (ExPolygons bottom_ex = union_ex(bottom[layer_idx]); ! bottom_ex.empty()) {
                        // Clean up thin projections. They are not printable anyways.
                        bottom_ex = opening_ex(bottom_ex, stat.small_region_threshold);
                        if (! bottom_ex.empty()) {
                            append(triangles_by_color_bottom[color_idx][layer_idx + layer_idx_offset], bottom_ex);
                            float offset = 0.f;
                            ExPolygons layer_slices_trimmed = input_expolygons[layer_idx];
                            for (size_t last_idx = layer_idx + 1; last_idx < std::min(layer_idx + stat.bottom_solid_layers, num_layers); ++last_idx) {
                                offset -= stat.extrusion_width;
                                layer_slices_trimmed = intersection_ex(layer_slices_trimmed, input_expolygons[last_idx]);
                                ExPolygons last = opening_ex(intersection_ex(bottom_ex, offset_ex(layer_slices_trimmed, offset)), stat.small_region_threshold);
                                if (last.empty())
                                    break;
                                append(triangles_by_color_bottom[color_idx][last_idx + layer_idx_offset], std::move(last));
                            }
                        }
                    }
            }
        }
    });

    std::vector<std::vector<ExPolygons>> triangles_by_color_merged(num_extruders);
    triangles_by_color_merged.assign(num_extruders, std::vector<ExPolygons>(num_layers));
    tbb::parallel_for(tbb::blocked_range<size_t>(0, num_layers), [&triangles_by_color_merged, &triangles_by_color_bottom, &triangles_by_color_top, &num_layers, &throw_on_cancel_callback](const tbb::blocked_range<size_t> &range) {
        for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++ layer_idx) {
            throw_on_cancel_callback();
            for (size_t color_idx = 0; color_idx < triangles_by_color_merged.size(); ++color_idx) {
                auto &self = triangles_by_color_merged[color_idx][layer_idx];
                append(self, std::move(triangles_by_color_bottom[color_idx][layer_idx]));
                append(self, std::move(triangles_by_color_bottom[color_idx][layer_idx + num_layers]));
                append(self, std::move(triangles_by_color_top[color_idx][layer_idx]));
                append(self, std::move(triangles_by_color_top[color_idx][layer_idx + num_layers]));
                self = union_ex(self);
            }
            // Trim one region by the other if some of the regions overlap.
            for (size_t color_idx = 1; color_idx < triangles_by_color_merged.size(); ++ color_idx)
                triangles_by_color_merged[color_idx][layer_idx] = diff_ex(triangles_by_color_merged[color_idx][layer_idx],
                                                                          triangles_by_color_merged[color_idx - 1][layer_idx]);
        }
    });

    return triangles_by_color_merged;
}

static std::vector<std::vector<ExPolygons>> merge_segmented_layers(
    const std::vector<std::vector<ExPolygons>> &segmented_regions,
    std::vector<std::vector<ExPolygons>>     &&top_and_bottom_layers,
    const size_t                               num_extruders,
    const std::function<void()>               &throw_on_cancel_callback)
{
    const size_t                         num_layers = segmented_regions.size();
    std::vector<std::vector<ExPolygons>> segmented_regions_merged(num_layers);
    segmented_regions_merged.assign(num_layers, std::vector<ExPolygons>(num_extruders));
    assert(num_extruders + 1 == top_and_bottom_layers.size());

    BOOST_LOG_TRIVIAL(debug) << "MMU segmentation - merging segmented layers in parallel - begin";
    tbb::parallel_for(tbb::blocked_range<size_t>(0, num_layers), [&segmented_regions, &top_and_bottom_layers, &segmented_regions_merged, &num_extruders, &throw_on_cancel_callback](const tbb::blocked_range<size_t> &range) {
        for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++layer_idx) {
            assert(segmented_regions[layer_idx].size() == num_extruders + 1);
            // Zero is skipped because it is the default color of the volume
            for (size_t extruder_id = 1; extruder_id < num_extruders + 1; ++extruder_id) {
                throw_on_cancel_callback();
                if (!segmented_regions[layer_idx][extruder_id].empty()) {
                    ExPolygons segmented_regions_trimmed = segmented_regions[layer_idx][extruder_id];
                    for (const std::vector<ExPolygons> &top_and_bottom_by_extruder : top_and_bottom_layers)
                        if (!top_and_bottom_by_extruder[layer_idx].empty() && !segmented_regions_trimmed.empty())
                            segmented_regions_trimmed = diff_ex(segmented_regions_trimmed, top_and_bottom_by_extruder[layer_idx]);

                    segmented_regions_merged[layer_idx][extruder_id - 1] = std::move(segmented_regions_trimmed);
                }

                if (!top_and_bottom_layers[extruder_id][layer_idx].empty()) {
                    bool was_top_and_bottom_empty = segmented_regions_merged[layer_idx][extruder_id - 1].empty();
                    append(segmented_regions_merged[layer_idx][extruder_id - 1], top_and_bottom_layers[extruder_id][layer_idx]);

                    // Remove dimples (#7235) appearing after merging side segmentation of the model with tops and bottoms painted layers.
                    if (!was_top_and_bottom_empty)
                        segmented_regions_merged[layer_idx][extruder_id - 1] = offset2_ex(union_ex(segmented_regions_merged[layer_idx][extruder_id - 1]), float(SCALED_EPSILON), -float(SCALED_EPSILON));
                }
            }
        }
    }); // end of parallel_for
    BOOST_LOG_TRIVIAL(debug) << "MMU segmentation - merging segmented layers in parallel - end";

    return segmented_regions_merged;
}

#ifdef MMU_SEGMENTATION_DEBUG_REGIONS
static void export_regions_to_svg(const std::string &path, const std::vector<ExPolygons> &regions, const ExPolygons &lslices)
{
    const std::vector<std::string> colors       = {"blue", "cyan", "red", "orange", "magenta", "pink", "purple", "yellow"};
    coordf_t                       stroke_width = scale_(0.05);
    BoundingBox                    bbox         = get_extents(lslices);
    bbox.offset(scale_(1.));
    ::Slic3r::SVG svg(path.c_str(), bbox);

    svg.draw_outline(lslices, "green", "lime", stroke_width);
    for (const ExPolygons &by_extruder : regions) {
        size_t extrude_idx = &by_extruder - &regions.front();
        if (extrude_idx >= 0 && extrude_idx < int(colors.size()))
            svg.draw(by_extruder, colors[extrude_idx], stroke_width);
        else
            svg.draw(by_extruder, "black", stroke_width);
    }
}
#endif // MMU_SEGMENTATION_DEBUG_REGIONS

#ifdef MMU_SEGMENTATION_DEBUG_GRAPH
static void export_graph_to_svg(const std::string &path, const MMU_Graph &graph, const ExPolygons &lslices)
{
    const std::vector<std::string> colors       = {"blue", "cyan", "red", "orange", "magenta", "pink", "purple", "green", "yellow"};
    coordf_t                       stroke_width = scale_(0.05);
    BoundingBox                    bbox         = get_extents(lslices);
    bbox.offset(scale_(1.));
    ::Slic3r::SVG svg(path.c_str(), bbox);
    for (const MMU_Graph::Node &node : graph.nodes)
        for (const size_t &arc_idx : node.arc_idxs) {
            const MMU_Graph::Arc &arc = graph.arcs[arc_idx];
            Line arc_line(mk_point(node.point), mk_point(graph.nodes[arc.to_idx].point));
            if (arc.type == MMU_Graph::ARC_TYPE::BORDER && arc.color >= 0 && arc.color < int(colors.size()))
                svg.draw(arc_line, colors[arc.color], stroke_width);
            else
                svg.draw(arc_line, "black", stroke_width);
        }
}
#endif // MMU_SEGMENTATION_DEBUG_GRAPH

#ifdef MMU_SEGMENTATION_DEBUG_INPUT
void export_processed_input_expolygons_to_svg(const std::string &path, const LayerRegionPtrs &regions, const ExPolygons &processed_input_expolygons)
{
    coordf_t    stroke_width = scale_(0.05);
    BoundingBox bbox         = get_extents(regions);
    bbox.merge(get_extents(processed_input_expolygons));
    bbox.offset(scale_(1.));
    ::Slic3r::SVG svg(path.c_str(), bbox);

    for (LayerRegion *region : regions)
        svg.draw_outline(region->slices.surfaces, "blue", "cyan", stroke_width);

    svg.draw_outline(processed_input_expolygons, "red", "pink", stroke_width);
}
#endif // MMU_SEGMENTATION_DEBUG_INPUT

#ifdef MMU_SEGMENTATION_DEBUG_PAINTED_LINES
static void export_painted_lines_to_svg(const std::string &path, const std::vector<std::vector<PaintedLine>> &all_painted_lines, const ExPolygons &lslices)
{
    const std::vector<std::string> colors       = {"blue", "cyan", "red", "orange", "magenta", "pink", "purple", "yellow"};
    coordf_t                       stroke_width = scale_(0.05);
    BoundingBox                    bbox         = get_extents(lslices);
    bbox.offset(scale_(1.));
    ::Slic3r::SVG svg(path.c_str(), bbox);

    for (const Line &line : to_lines(lslices))
        svg.draw(line, "green", stroke_width);

    for (const std::vector<PaintedLine> &painted_lines : all_painted_lines)
        for (const PaintedLine &painted_line : painted_lines)
            svg.draw(painted_line.projected_line, painted_line.color < int(colors.size()) ? colors[painted_line.color] : "black", stroke_width);
}
#endif // MMU_SEGMENTATION_DEBUG_PAINTED_LINES

#ifdef MMU_SEGMENTATION_DEBUG_COLORIZED_POLYGONS
static void export_colorized_polygons_to_svg(const std::string &path, const std::vector<std::vector<ColoredLine>> &colorized_polygons, const ExPolygons &lslices)
{
    const std::vector<std::string> colors       = {"blue", "cyan", "red", "orange", "magenta", "pink", "purple", "green", "yellow"};
    coordf_t                       stroke_width = scale_(0.05);
    BoundingBox                    bbox         = get_extents(lslices);
    bbox.offset(scale_(1.));
    ::Slic3r::SVG svg(path.c_str(), bbox);

    for (const std::vector<ColoredLine> &colorized_polygon : colorized_polygons)
        for (const ColoredLine &colorized_line : colorized_polygon)
            svg.draw(colorized_line.line, colorized_line.color < int(colors.size())? colors[colorized_line.color] : "black", stroke_width);
}
#endif // MMU_SEGMENTATION_DEBUG_COLORIZED_POLYGONS

// Check if all ColoredLine representing a single layer uses the same color.
static bool has_layer_only_one_color(const std::vector<std::vector<ColoredLine>> &colored_polygons)
{
    assert(!colored_polygons.empty());
    assert(!colored_polygons.front().empty());
    int first_line_color = colored_polygons.front().front().color;
    for (const std::vector<ColoredLine> &colored_polygon : colored_polygons)
        for (const ColoredLine &colored_line : colored_polygon)
            if (first_line_color != colored_line.color)
                return false;

    return true;
}

// Remove nearly duplicate points. If a distance between two points is less than point_eps
// and if the angle between its surrounding lines is less than max_angle, the point will be removed.
void remove_duplicates_points(MutablePolygon &polygon, double point_eps, double max_angle)
{
    if (polygon.size() >= 3) {
        auto eps2  = point_eps * point_eps;
        auto begin = polygon.begin();
        auto it    = begin;
        for (++it; it != begin;) {
            auto prev = it.prev();
            auto next = (it.next() == polygon.end() ? begin : it.next());
            if ((*it - *prev).cast<double>().squaredNorm() < eps2) {
                Vec2i64 vector1 = (*it - *prev).cast<int64_t>();
                Vec2i64 vector2 = (*next - *prev).cast<int64_t>();
                if (double angle = atan2(cross2(vector1, vector2), vector1.dot(vector2)); angle < max_angle) {
                    it = it.remove();
                    continue;
                }
            }
            ++it;
        }
    }
}

// Remove nearly duplicate points. If a distance between two points is less than point_eps
// and if the angle between its surrounding lines is less than max_angle, the point will be removed.
inline ExPolygons remove_duplicates_points(ExPolygons expolygons, double point_eps, double max_angle)
{
    MutablePolygon mp;
    for (ExPolygon &expolygon : expolygons) {
        mp.assign(expolygon.contour, expolygon.contour.size() * 2);
        remove_duplicates_points(mp, point_eps, max_angle);
        mp.polygon(expolygon.contour);
        for (Polygon &hole : expolygon.holes) {
            mp.assign(hole, hole.size() * 2);
            remove_duplicates_points(mp, point_eps, max_angle);
            mp.polygon(hole);
        }
        expolygon.holes.erase(std::remove_if(expolygon.holes.begin(), expolygon.holes.end(), [](const auto &p) { return p.empty(); }), expolygon.holes.end());
    }
    expolygons.erase(std::remove_if(expolygons.begin(), expolygons.end(), [](const auto &p) { return p.empty(); }), expolygons.end());
    return expolygons;
}

std::vector<std::vector<ExPolygons>> multi_material_segmentation_by_painting(const PrintObject &print_object, const std::function<void()> &throw_on_cancel_callback)
{
    const size_t                          num_extruders = print_object.print()->config().nozzle_diameter.size();
    const size_t                          num_layers    = print_object.layers().size();
    std::vector<std::vector<ExPolygons>>  segmented_regions(num_layers);
    segmented_regions.assign(num_layers, std::vector<ExPolygons>(num_extruders + 1));
    std::vector<std::vector<PaintedLine>> painted_lines(num_layers);
    std::array<std::mutex, 64>            painted_lines_mutex;
    std::vector<EdgeGrid::Grid>           edge_grids(num_layers);
    const ConstLayerPtrsAdaptor           layers = print_object.layers();
    std::vector<ExPolygons>               input_expolygons(num_layers);

    throw_on_cancel_callback();

    // Merge all regions and remove small holes
    BOOST_LOG_TRIVIAL(debug) << "MMU segmentation - slices preparation in parallel - begin";
    tbb::parallel_for(tbb::blocked_range<size_t>(0, num_layers), [&layers, &input_expolygons, &throw_on_cancel_callback](const tbb::blocked_range<size_t> &range) {
        for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++layer_idx) {
            throw_on_cancel_callback();
            ExPolygons ex_polygons;
            for (LayerRegion *region : layers[layer_idx]->regions())
                for (const Surface &surface : region->slices.surfaces)
                    Slic3r::append(ex_polygons, offset_ex(surface.expolygon, float(10 * SCALED_EPSILON)));
            // All expolygons are expanded by SCALED_EPSILON, merged, and then shrunk again by SCALED_EPSILON
            // to ensure that very close polygons will be merged.
            ex_polygons = union_ex(ex_polygons);
            // Remove all expolygons and holes with an area less than 0.1mm^2
            remove_small_and_small_holes(ex_polygons, Slic3r::sqr(scale_(0.1f)));
            // Occasionally, some input polygons contained self-intersections that caused problems with Voronoi diagrams
            // and consequently with the extraction of colored segments by function extract_colored_segments.
            // Calling simplify_polygons removes these self-intersections.
            // Also, occasionally input polygons contained several points very close together (distance between points is 1 or so).
            // Such close points sometimes caused that the Voronoi diagram has self-intersecting edges around these vertices.
            // This consequently leads to issues with the extraction of colored segments by function extract_colored_segments.
            // Calling expolygons_simplify fixed these issues.
            input_expolygons[layer_idx] = remove_duplicates_points(expolygons_simplify(offset_ex(ex_polygons, -10.f * float(SCALED_EPSILON)), 5 * SCALED_EPSILON), scaled<double>(0.01), PI/6);

#ifdef MMU_SEGMENTATION_DEBUG_INPUT
            {
                static int iRun = 0;
                export_processed_input_expolygons_to_svg(debug_out_path("mm-input-%d-%d.svg", layer_idx, iRun++), layers[layer_idx]->regions(), input_expolygons[layer_idx]);
            }
#endif // MMU_SEGMENTATION_DEBUG_INPUT
        }
    }); // end of parallel_for
    BOOST_LOG_TRIVIAL(debug) << "MMU segmentation - slices preparation in parallel - end";

    std::vector<BoundingBox> layer_bboxes(num_layers);
    for (size_t layer_idx = 0; layer_idx < num_layers; ++layer_idx) {
        throw_on_cancel_callback();
        layer_bboxes[layer_idx] = get_extents(layers[layer_idx]->regions());
        layer_bboxes[layer_idx].merge(get_extents(input_expolygons[layer_idx]));
    }

    for (size_t layer_idx = 0; layer_idx < num_layers; ++layer_idx) {
        throw_on_cancel_callback();
        BoundingBox bbox = layer_bboxes[layer_idx];
        // Projected triangles could, in rare cases (as in GH issue #7299), belongs to polygons printed in the previous or the next layer.
        // Let's merge the bounding box of the current layer with bounding boxes of the previous and the next layer to ensure that
        // every projected triangle will be inside the resulting bounding box.
        if (layer_idx > 1) bbox.merge(layer_bboxes[layer_idx - 1]);
        if (layer_idx < num_layers - 1) bbox.merge(layer_bboxes[layer_idx + 1]);
        // Projected triangles may slightly exceed the input polygons.
        bbox.offset(20 * SCALED_EPSILON);
        edge_grids[layer_idx].set_bbox(bbox);
        edge_grids[layer_idx].create(input_expolygons[layer_idx], coord_t(scale_(10.)));
    }

    BOOST_LOG_TRIVIAL(debug) << "MMU segmentation - projection of painted triangles - begin";
    for (const ModelVolume *mv : print_object.model_object()->volumes) {
        tbb::parallel_for(tbb::blocked_range<size_t>(1, num_extruders + 1), [&mv, &print_object, &layers, &edge_grids, &painted_lines, &painted_lines_mutex, &input_expolygons, &throw_on_cancel_callback](const tbb::blocked_range<size_t> &range) {
            for (size_t extruder_idx = range.begin(); extruder_idx < range.end(); ++extruder_idx) {
                throw_on_cancel_callback();
                const indexed_triangle_set custom_facets = mv->mmu_segmentation_facets.get_facets(*mv, EnforcerBlockerType(extruder_idx));
                if (!mv->is_model_part() || custom_facets.indices.empty())
                    continue;

                const Transform3f tr = print_object.trafo().cast<float>() * mv->get_matrix().cast<float>();
                tbb::parallel_for(tbb::blocked_range<size_t>(0, custom_facets.indices.size()), [&tr, &custom_facets, &print_object, &layers, &edge_grids, &input_expolygons, &painted_lines, &painted_lines_mutex, &extruder_idx](const tbb::blocked_range<size_t> &range) {
                    for (size_t facet_idx = range.begin(); facet_idx < range.end(); ++facet_idx) {
                        float min_z = std::numeric_limits<float>::max();
                        float max_z = std::numeric_limits<float>::lowest();

                        std::array<Vec3f, 3> facet;
                        for (int p_idx = 0; p_idx < 3; ++p_idx) {
                            facet[p_idx] = tr * custom_facets.vertices[custom_facets.indices[facet_idx](p_idx)];
                            max_z        = std::max(max_z, facet[p_idx].z());
                            min_z        = std::min(min_z, facet[p_idx].z());
                        }

                        // Sort the vertices by z-axis for simplification of projected_facet on slices
                        std::sort(facet.begin(), facet.end(), [](const Vec3f &p1, const Vec3f &p2) { return p1.z() < p2.z(); });

                        // Find lowest slice not below the triangle.
                        auto first_layer = std::upper_bound(layers.begin(), layers.end(), float(min_z - EPSILON),
                                                            [](float z, const Layer *l1) { return z < l1->slice_z; });
                        auto last_layer  = std::upper_bound(layers.begin(), layers.end(), float(max_z + EPSILON),
                                                           [](float z, const Layer *l1) { return z < l1->slice_z; });
                        --last_layer;

                        for (auto layer_it = first_layer; layer_it != (last_layer + 1); ++layer_it) {
                            const Layer *layer     = *layer_it;
                            size_t       layer_idx = layer_it - layers.begin();
                            if (input_expolygons[layer_idx].empty() || facet[0].z() > layer->slice_z || layer->slice_z > facet[2].z())
                                continue;

                            // https://kandepet.com/3d-printing-slicing-3d-objects/
                            float t            = (float(layer->slice_z) - facet[0].z()) / (facet[2].z() - facet[0].z());
                            Vec3f line_start_f = facet[0] + t * (facet[2] - facet[0]);
                            Vec3f line_end_f;

                            if (facet[1].z() > layer->slice_z) {
                                // [P0, P2] and [P0, P1]
                                float t1   = (float(layer->slice_z) - facet[0].z()) / (facet[1].z() - facet[0].z());
                                line_end_f = facet[0] + t1 * (facet[1] - facet[0]);
                            } else {
                                // [P0, P2] and [P1, P2]
                                float t2   = (float(layer->slice_z) - facet[1].z()) / (facet[2].z() - facet[1].z());
                                line_end_f = facet[1] + t2 * (facet[2] - facet[1]);
                            }

                            Line line_to_test(Point(scale_(line_start_f.x()), scale_(line_start_f.y())),
                                              Point(scale_(line_end_f.x()), scale_(line_end_f.y())));
                            line_to_test.translate(-print_object.center_offset());

                            // BoundingBoxes for EdgeGrids are computed from printable regions. It is possible that the painted line (line_to_test) could
                            // be outside EdgeGrid's BoundingBox, for example, when the negative volume is used on the painted area (GH #7618).
                            // To ensure that the painted line is always inside EdgeGrid's BoundingBox, it is clipped by EdgeGrid's BoundingBox in cases
                            // when any of the endpoints of the line are outside the EdgeGrid's BoundingBox.
                            if (const BoundingBox &edge_grid_bbox = edge_grids[layer_idx].bbox(); !edge_grid_bbox.contains(line_to_test.a) || !edge_grid_bbox.contains(line_to_test.b)) {
                                // If the painted line (line_to_test) is entirely outside EdgeGrid's BoundingBox, skip this painted line.
                                if (!edge_grid_bbox.overlap(BoundingBox(Points{line_to_test.a, line_to_test.b})) ||
                                    !line_to_test.clip_with_bbox(edge_grid_bbox))
                                    continue;
                            }

                            size_t mutex_idx = layer_idx & 0x3F;
                            assert(mutex_idx < painted_lines_mutex.size());

                            PaintedLineVisitor visitor(edge_grids[layer_idx], painted_lines[layer_idx], painted_lines_mutex[mutex_idx], 16);
                            visitor.line_to_test = line_to_test;
                            visitor.color        = int(extruder_idx);
                            edge_grids[layer_idx].visit_cells_intersecting_line(line_to_test.a, line_to_test.b, visitor);
                        }
                    }
                }); // end of parallel_for
            }
        }); // end of parallel_for
    }
    BOOST_LOG_TRIVIAL(debug) << "MMU segmentation - projection of painted triangles - end";
    BOOST_LOG_TRIVIAL(debug) << "MMU segmentation - painted layers count: "
                             << std::count_if(painted_lines.begin(), painted_lines.end(), [](const std::vector<PaintedLine> &pl) { return !pl.empty(); });

    BOOST_LOG_TRIVIAL(debug) << "MMU segmentation - layers segmentation in parallel - begin";
    tbb::parallel_for(tbb::blocked_range<size_t>(0, num_layers), [&edge_grids, &input_expolygons, &painted_lines, &segmented_regions, &num_extruders, &throw_on_cancel_callback](const tbb::blocked_range<size_t> &range) {
        for (size_t layer_idx = range.begin(); layer_idx < range.end(); ++layer_idx) {
            throw_on_cancel_callback();
            if (!painted_lines[layer_idx].empty()) {
#ifdef MMU_SEGMENTATION_DEBUG_PAINTED_LINES
                {
                    static int iRun = 0;
                    export_painted_lines_to_svg(debug_out_path("mm-painted-lines-%d-%d.svg", layer_idx, iRun++), {painted_lines[layer_idx]}, input_expolygons[layer_idx]);
                }
#endif // MMU_SEGMENTATION_DEBUG_PAINTED_LINES

                std::vector<std::vector<PaintedLine>> post_processed_painted_lines = post_process_painted_lines(edge_grids[layer_idx].contours(), std::move(painted_lines[layer_idx]));

#ifdef MMU_SEGMENTATION_DEBUG_PAINTED_LINES
                {
                    static int iRun = 0;
                    export_painted_lines_to_svg(debug_out_path("mm-painted-lines-post-processed-%d-%d.svg", layer_idx, iRun++), post_processed_painted_lines, input_expolygons[layer_idx]);
                }
#endif // MMU_SEGMENTATION_DEBUG_PAINTED_LINES

                std::vector<std::vector<ColoredLine>> color_poly = colorize_contours(edge_grids[layer_idx].contours(), post_processed_painted_lines);

#ifdef MMU_SEGMENTATION_DEBUG_COLORIZED_POLYGONS
                {
                    static int iRun = 0;
                    export_colorized_polygons_to_svg(debug_out_path("mm-colorized_polygons-%d-%d.svg", layer_idx, iRun++), color_poly, input_expolygons[layer_idx]);
                }
#endif // MMU_SEGMENTATION_DEBUG_COLORIZED_POLYGONS

                assert(!color_poly.empty());
                assert(!color_poly.front().empty());
                if (has_layer_only_one_color(color_poly)) {
                    // If the whole layer is painted using the same color, it is not needed to construct a Voronoi diagram for the segmentation of this layer.
                    segmented_regions[layer_idx][size_t(color_poly.front().front().color)] = input_expolygons[layer_idx];
                } else {
                    MMU_Graph graph = build_graph(layer_idx, color_poly);
                    remove_multiple_edges_in_vertices(graph, color_poly);
                    graph.remove_nodes_with_one_arc();

#ifdef MMU_SEGMENTATION_DEBUG_GRAPH
                    {
                        static int iRun = 0;
                        export_graph_to_svg(debug_out_path("mm-graph-final-%d-%d.svg", layer_idx, iRun++), graph, input_expolygons[layer_idx]);
                    }
#endif // MMU_SEGMENTATION_DEBUG_GRAPH

                    segmented_regions[layer_idx] = extract_colored_segments(graph, num_extruders);
                }

#ifdef MMU_SEGMENTATION_DEBUG_REGIONS
                {
                    static int iRun = 0;
                    export_regions_to_svg(debug_out_path("mm-regions-sides-%d-%d.svg", layer_idx, iRun++), segmented_regions[layer_idx], input_expolygons[layer_idx]);
                }
#endif // MMU_SEGMENTATION_DEBUG_REGIONS
            }
        }
    }); // end of parallel_for
    BOOST_LOG_TRIVIAL(debug) << "MMU segmentation - layers segmentation in parallel - end";
    throw_on_cancel_callback();

    if (auto w = print_object.config().mmu_segmented_region_max_width; w > 0.f) {
        cut_segmented_layers(input_expolygons, segmented_regions, float(-scale_(w)), throw_on_cancel_callback);
        throw_on_cancel_callback();
    }

    // The first index is extruder number (includes default extruder), and the second one is layer number
    std::vector<std::vector<ExPolygons>> top_and_bottom_layers = mmu_segmentation_top_and_bottom_layers(print_object, input_expolygons, throw_on_cancel_callback);
    throw_on_cancel_callback();

    std::vector<std::vector<ExPolygons>> segmented_regions_merged = merge_segmented_layers(segmented_regions, std::move(top_and_bottom_layers), num_extruders, throw_on_cancel_callback);
    throw_on_cancel_callback();

#ifdef MMU_SEGMENTATION_DEBUG_REGIONS
    {
        static int iRun = 0;
        for (size_t layer_idx = 0; layer_idx < print_object.layers().size(); ++layer_idx)
            export_regions_to_svg(debug_out_path("mm-regions-merged-%d-%d.svg", layer_idx, iRun++), segmented_regions_merged[layer_idx], input_expolygons[layer_idx]);
    }
#endif // MMU_SEGMENTATION_DEBUG_REGIONS

    return segmented_regions_merged;
}

} // namespace Slic3r