Welcome to mirror list, hosted at ThFree Co, Russian Federation.

MutablePolygon.cpp « libslic3r « src - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 403d625bfc0f84336405224adfd968683454c3ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
#include "MutablePolygon.hpp"
#include "Line.hpp"
#include "libslic3r.h"

namespace Slic3r {

// Remove exact duplicate points. May reduce the polygon down to empty polygon.
void remove_duplicates(MutablePolygon &polygon)
{
    if (! polygon.empty()) {
        auto begin = polygon.begin();
        auto it    = begin;
        for (++ it; it != begin;) {
            auto prev = it.prev();
            if (*prev == *it)
                it = it.remove();
            else
                ++ it;
        }
    }
}

// Remove nearly duplicate points. May reduce the polygon down to empty polygon.
void remove_duplicates(MutablePolygon &polygon, double eps)
{
    if (! polygon.empty()) {
        auto eps2 = eps * eps;
        auto begin = polygon.begin();
        auto it = begin;
        for (++ it; it != begin;) {
            auto prev = it.prev();
            if ((*it - *prev).cast<double>().squaredNorm() < eps2)
                it = it.remove();
            else
                ++ it;
        }
    }
}

// Adapted from Cura ConstPolygonRef::smooth_corner_complex() by Tim Kuipers.
// A concave corner at it1 with position p1 has been removed by the caller between it0 and it2, where |p2 - p0| < shortcut_length.
// Now try to close a concave crack by walking left from it0 and right from it2 as long as the new clipping edge is smaller than shortcut_length
// and the new clipping edge is still inside the polygon (it is a diagonal, it does not intersect polygon boundary).
// Once the traversal stops (always at a clipping edge shorter than shortcut_length), the final trapezoid is clipped with a new clipping edge of shortcut_length.
// Return true if a hole was completely closed (degenerated to an empty polygon) or a single CCW triangle was left, which is not to be simplified any further.
// it0, it2 are updated to the final clipping edge.
static bool clip_narrow_corner(
    const Vec2i64               p1, 
    MutablePolygon::iterator   &it0, 
    MutablePolygon::iterator   &it2,
    MutablePolygon::range      &unprocessed_range,
    int64_t                     dist2_current, 
    const int64_t               shortcut_length)
{
    MutablePolygon &polygon = it0.polygon();
    assert(polygon.size() >= 2);

    const int64_t shortcut_length2 = sqr(shortcut_length);

    enum Status {
        Free,
        Blocked,
        Far,
    };
    Status  forward  = Free;
    Status  backward = Free;

    Vec2i64 p0 = it0->cast<int64_t>();
    Vec2i64 p2 = it2->cast<int64_t>();
    Vec2i64 p02;
    Vec2i64 p22;
    int64_t dist2_next = 0;

    // As long as there is at least a single triangle left in the polygon.
    while (polygon.size() >= 3) {
        assert(dist2_current <= shortcut_length2);
        if (forward == Far && backward == Far) {
            p02 = it0.prev()->cast<int64_t>();
            p22 = it2.next()->cast<int64_t>();
            auto d2 = (p22 - p02).squaredNorm();
            if (d2 <= shortcut_length2) {
                // The region was narrow until now and it is still narrow. Trim at both sides.
                it0 = unprocessed_range.remove_back(it0).prev();
                it2 = unprocessed_range.remove_front(it2);
                if (polygon.size() <= 2)
                    // A hole degenerated to an empty polygon.
                    return true;
                forward       = Free;
                backward      = Free;
                dist2_current = d2;
                p0            = p02;
                p2            = p22;
            } else {
                // The region is widening. Stop traversal and trim the final trapezoid.
                dist2_next    = d2;
                break;
            }
        } else if (forward != Free && backward != Free)
            // One of the corners is blocked, the other is blocked or too far. Stop traversal.
            break;
        // Try to proceed by flipping a diagonal.
        // Progress by keeping the distance of the clipping edge end points equal to initial p1.
        //FIXME This is an arbitrary condition, maybe a more local condition will be better (take a shorter diagonal?).
        if (forward == Free && (backward != Free || (p2 - p1).squaredNorm() < (p0 - p1).cast<int64_t>().squaredNorm())) {
            p22 = it2.next()->cast<int64_t>();
            if (cross2(p2 - p0, p22 - p0) > 0)
                forward = Blocked;
            else {
                // New clipping edge lenght.
                auto d2 = (p22 - p0).squaredNorm();
                if (d2 > shortcut_length2) {
                    forward    = Far;
                    dist2_next = d2;
                } else {
                    forward    = Free;
                    // Make one step in the forward direction.
                    it2        = unprocessed_range.remove_front(it2);
                    p2         = p22;
                    dist2_current = d2;
                }
            }
        } else {
            assert(backward == Free);
            p02 = it0.prev()->cast<int64_t>();
            if (cross2(p02 - p2, p0 - p2) > 0)
                backward = Blocked;
            else {
                // New clipping edge lenght.
                auto d2 = (p2 - p02).squaredNorm();
                if (d2 > shortcut_length2) {
                    backward   = Far;
                    dist2_next = d2;
                } else {
                    backward   = Free;
                    // Make one step in the backward direction.
                    it0        = unprocessed_range.remove_back(it0).prev();
                    p0         = p02;
                    dist2_current = d2;
                }
            }
        }
    }

    assert(dist2_current <= shortcut_length2);
    assert(polygon.size() >= 2);
    assert(polygon.size() == 2 || forward  == Blocked || forward  == Far);
    assert(polygon.size() == 2 || backward == Blocked || backward == Far);

    if (polygon.size() <= 3) {
        // A hole degenerated to an empty polygon, or a tiny triangle remained.
#ifndef NDEBUG
        bool blocked = forward == Blocked || backward == Blocked;
        assert(polygon.size() < 3 || 
            // Remaining triangle is CCW oriented. Both sides must be "blocked", but the other side may have not been
            // updated after the the p02 / p22 became united into a single point.
            blocked ||
            // Remaining triangle is concave, however both of its arms are long.
            (forward == Far && backward == Far));
        if (polygon.size() == 3) {
            // Verify that the remaining triangle is CCW or CW.
            p02 = it0.prev()->cast<int64_t>();
            p22 = it2.next()->cast<int64_t>();
            assert(p02 == p22);
            auto orient1 = cross2(p02 - p2, p0 - p2);
            auto orient2 = cross2(p2 - p0, p22 - p0);
            assert(orient1 > 0 == blocked);
            assert(orient2 > 0 == blocked);
        }
#endif // NDEBUG
        if (polygon.size() < 3 || (forward == Far && backward == Far)) {
            polygon.clear();
        } else {
            // The remaining triangle is CCW oriented, keep it.
            assert(forward == Blocked || backward == Blocked);
        }
        return true;
    }

    assert(dist2_current <= shortcut_length2);
    if ((forward == Blocked && backward == Blocked) || dist2_current > sqr(shortcut_length - int64_t(SCALED_EPSILON))) {
        // The crack is filled, keep the last clipping edge.
    } else if (dist2_next < sqr(shortcut_length - int64_t(SCALED_EPSILON))) {
        // To avoid creating tiny edges.
        if (forward == Far)
            it0 = unprocessed_range.remove_back(it0).prev();
        if (backward == Far)
            it2 = unprocessed_range.remove_front(it2);
        if (polygon.size() <= 2)
            // A hole degenerated to an empty polygon.
            return true;
    } else if (forward == Blocked || backward == Blocked) {
        // One side is far, the other blocked.
        assert(forward == Far || backward == Far);
        if (forward == Far) {
            // Sort, so we will clip the 1st edge.
            std::swap(p0,  p2);
            std::swap(p02, p22);
        }
        // Find point on (p0, p02) at distance shortcut_length from p2.
        // Circle intersects a line at two points, however because |p2 - p0| < shortcut_length,
        // only the second intersection is valid. Because |p2 - p02| > shortcut_length, such
        // intersection should always be found on (p0, p02).
#ifndef NDEBUG
        auto dfar2 = (p02 - p2).squaredNorm();
        assert(dfar2 >= shortcut_length2);
#endif // NDEBUG
        const Vec2d     v = (p02 - p0).cast<double>();
        const Vec2d     d = (p0 - p2).cast<double>();
        const double    a = v.squaredNorm();
        const double    b = 2. * double(d.dot(v));
        double          u = b * b - 4. * a * (d.squaredNorm() - shortcut_length2);
        assert(u > 0.);
        u = sqrt(u);
        double t = (- b + u) / (2. * a);
        assert(t > 0. && t < 1.);
        (backward == Far ? *it2 : *it0) += (v.cast<double>() * t).cast<coord_t>();
    } else {
        // The trapezoid (it0.prev(), it0, it2, it2.next()) is widening. Trim it.
        assert(forward == Far && backward == Far);
        assert(dist2_next > shortcut_length2);
        const double dcurrent = sqrt(double(dist2_current));
        double t = (shortcut_length - dcurrent) / (sqrt(double(dist2_next)) - dcurrent);
        assert(t > 0. && t < 1.);
        *it0 += ((p02 - p0).cast<double>() * t).cast<coord_t>();
        *it2 += ((p22 - p2).cast<double>() * t).cast<coord_t>();
    }
    return false;
}

// adapted from Cura ConstPolygonRef::smooth_outward() by Tim Kuipers.
void smooth_outward(MutablePolygon &polygon, coord_t clip_dist_scaled)
{
    remove_duplicates(polygon, scaled<double>(0.01));

    const auto clip_dist_scaled2    = sqr<int64_t>(clip_dist_scaled);
    const auto clip_dist_scaled2eps = sqr(clip_dist_scaled + int64_t(SCALED_EPSILON));
    const auto foot_dist_min2       = sqr(SCALED_EPSILON);

    // Each source point will be visited exactly once.
    MutablePolygon::range unprocessed_range(polygon);
    while (! unprocessed_range.empty() && polygon.size() > 2) {
        auto          it1  = unprocessed_range.process_next();
        auto          it0  = it1.prev();
        auto          it2  = it1.next();
        const Point   p0   = *it0;
        const Point   p1   = *it1;
        const Point   p2   = *it2;
        const Vec2i64 v1   = (p0 - p1).cast<int64_t>();
        const Vec2i64 v2   = (p2 - p1).cast<int64_t>();
        if (cross2(v1, v2) > 0) {
            // Concave corner.
            int64_t dot  = v1.dot(v2);
            auto    l2v1 = double(v1.squaredNorm());
            auto    l2v2 = double(v2.squaredNorm());
            if (dot > 0 || Slic3r::sqr(double(dot)) * 2. < l2v1 * l2v2) {
                // Angle between v1 and v2 bigger than 135 degrees.
                // Simplify the sharp angle.
                Vec2i64 v02   = (p2 - p0).cast<int64_t>();
                int64_t l2v02 = v02.squaredNorm();
                it1.remove();
                if (l2v02 < clip_dist_scaled2) {
                    // (p0, p2) is short.
                    // Clip a sharp concave corner by possibly expanding the trimming region left of it0 and right of it2.
                    // Updates it0, it2 and num_to_process.
                    if (clip_narrow_corner(p1.cast<int64_t>(), it0, it2, unprocessed_range, l2v02, clip_dist_scaled))
                        // Trimmed down to an empty polygon or to a single CCW triangle.
                        return;
                } else {
                    // Clip an obtuse corner.
                    if (l2v02 > clip_dist_scaled2eps) {
                        Vec2d  v1d  = v1.cast<double>();
                        Vec2d  v2d  = v2.cast<double>();
                        // Sort v1d, v2d, shorter first.
                        bool   swap = l2v1 > l2v2;
                        if (swap) {
                            std::swap(v1d, v2d);
                            std::swap(l2v1, l2v2);
                        }
                        double lv1  = sqrt(l2v1);
                        double lv2  = sqrt(l2v2);
                        // Bisector between v1 and v2.
                        Vec2d  bisector   = v1d / lv1 + v2d / lv2;
                        double l2bisector = bisector.squaredNorm();
                        // Squared distance of the end point of v1 to the bisector.
                        double d2         = l2v1 - sqr(v1d.dot(bisector)) / l2bisector;
                        if (d2 < foot_dist_min2) {
                            // Height of the p1, p0, p2 triangle is tiny. Just remove p1.
                        } else if (d2 < 0.25 * clip_dist_scaled2 + SCALED_EPSILON) {
                            // The shorter vector is too close to the bisector. Trim the shorter vector fully,
                            // trim the longer vector partially.
                            // Intersection of a circle at p2 of radius = clip_dist_scaled
                            // with a ray (p1, p0), take the intersection after the foot point.
                            // The intersection shall always exist because |p2 - p1| > clip_dist_scaled.
                            const double    b = - 2. * v1d.cast<double>().dot(v2d);
                            double          u = b * b - 4. * l2v2 * (double(l2v1) - clip_dist_scaled2);
                            assert(u > 0.);
                            // Take the second intersection along v2.
                            double          t = (- b + sqrt(u)) / (2. * l2v2);
                            assert(t > 0. && t < 1.);
                            Point           pt_new = p1 + (t * v2d).cast<coord_t>();
#ifndef NDEBUG
                            double d2new = (pt_new - (swap ? p2 : p0)).cast<double>().squaredNorm();
                            assert(std::abs(d2new - clip_dist_scaled2) < 1e-5 * clip_dist_scaled2);
#endif // NDEBUG
                            it2.insert(pt_new);
                        } else {
                            // Cut the corner with a line perpendicular to the bisector.
                            double t  = sqrt(0.25 * clip_dist_scaled2 / d2);
                            double t2 = t * lv1 / lv2;
                            assert(t  > 0. && t  < 1.);
                            assert(t2 > 0. && t2 < 1.);
                            Point  p0 = p1 + (v1d * t ).cast<coord_t>();
                            Point  p2 = p1 + (v2d * t2).cast<coord_t>();
                            if (swap)
                                std::swap(p0, p2);
                            it2.insert(p2).insert(p0);
                        }
                    } else {
                        // Just remove p1.
                        assert(l2v02 >= clip_dist_scaled2 && l2v02 <= clip_dist_scaled2eps);
                    }
                }
                it1 = it2;
            } else
                ++ it1;
        } else
            ++ it1;
    }

    if (polygon.size() == 3) {
        // Check whether the last triangle is clockwise oriented (it is a hole) and its height is below clip_dist_scaled.
        // If so, fill in the hole.
        const Point   p0   = *polygon.begin().prev();
        const Point   p1   = *polygon.begin();
        const Point   p2   = *polygon.begin().next();
        Vec2i64 v1   = (p0 - p1).cast<int64_t>();
        Vec2i64 v2   = (p2 - p1).cast<int64_t>();
        if (cross2(v1, v2) > 0) {
            // CW triangle. Measure its height.
            const Vec2i64 v3 = (p2 - p0).cast<int64_t>();
            int64_t l12 = v1.squaredNorm();
            int64_t l22 = v2.squaredNorm();
            int64_t l32 = v3.squaredNorm();
            if (l22 > l12 && l22 > l32) {
                std::swap(v1,  v2);
                std::swap(l12, l22);
            } else if (l32 > l12 && l32 > l22) {
                v1  = v3;
                l12 = l32;
            }
            auto h2 = l22 - sqr(double(v1.dot(v2))) / double(l12);
            if (h2 < clip_dist_scaled2)
                // CW triangle with a low height. Close the hole.
                polygon.clear();
        }
    } else if (polygon.size() < 3)
        polygon.clear();
}

} // namespace Slic3r