Welcome to mirror list, hosted at ThFree Co, Russian Federation.

Print.cpp « libslic3r « src - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: ebd2e8f6688892c059b6abd253fd5ac1da6ec4c4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
#include "Exception.hpp"
#include "Print.hpp"
#include "BoundingBox.hpp"
#include "Brim.hpp"
#include "ClipperUtils.hpp"
#include "Extruder.hpp"
#include "Flow.hpp"
#include "Geometry/ConvexHull.hpp"
#include "I18N.hpp"
#include "ShortestPath.hpp"
#include "SupportMaterial.hpp"
#include "Thread.hpp"
#include "GCode.hpp"
#include "GCode/WipeTower.hpp"
#include "Utils.hpp"

#include <float.h>

#include <algorithm>
#include <limits>
#include <unordered_set>
#include <boost/filesystem/path.hpp>
#include <boost/format.hpp>
#include <boost/log/trivial.hpp>
#include <boost/regex.hpp>

// Mark string for localization and translate.
#define L(s) Slic3r::I18N::translate(s)

namespace Slic3r {

template class PrintState<PrintStep, psCount>;
template class PrintState<PrintObjectStep, posCount>;

PrintRegion::PrintRegion(const PrintRegionConfig &config) : PrintRegion(config, config.hash()) {}
PrintRegion::PrintRegion(PrintRegionConfig &&config) : PrintRegion(std::move(config), config.hash()) {}

void Print::clear() 
{
	std::scoped_lock<std::mutex> lock(this->state_mutex());
    // The following call should stop background processing if it is running.
    this->invalidate_all_steps();
	for (PrintObject *object : m_objects)
		delete object;
	m_objects.clear();
    m_print_regions.clear();
    m_model.clear_objects();
}

// Called by Print::apply().
// This method only accepts PrintConfig option keys.
bool Print::invalidate_state_by_config_options(const ConfigOptionResolver & /* new_config */, const std::vector<t_config_option_key> &opt_keys)
{
    if (opt_keys.empty())
        return false;

    // Cache the plenty of parameters, which influence the G-code generator only,
    // or they are only notes not influencing the generated G-code.
    static std::unordered_set<std::string> steps_gcode = {
        "avoid_crossing_perimeters",
        "avoid_crossing_perimeters_max_detour",
        "bed_shape",
        "bed_temperature",
        "before_layer_gcode",
        "between_objects_gcode",
        "bridge_acceleration",
        "bridge_fan_speed",
        "colorprint_heights",
        "cooling",
        "default_acceleration",
        "deretract_speed",
        "disable_fan_first_layers",
        "duplicate_distance",
        "end_gcode",
        "end_filament_gcode",
        "extrusion_axis",
        "extruder_clearance_height",
        "extruder_clearance_radius",
        "extruder_colour",
        "extruder_offset",
        "extrusion_multiplier",
        "fan_always_on",
        "fan_below_layer_time",
        "full_fan_speed_layer",
        "filament_colour",
        "filament_diameter",
        "filament_density",
        "filament_notes",
        "filament_cost",
        "filament_spool_weight",
        "first_layer_acceleration",
        "first_layer_acceleration_over_raft",
        "first_layer_bed_temperature",
        "first_layer_speed_over_raft",
        "gcode_comments",
        "gcode_label_objects",
        "infill_acceleration",
        "layer_gcode",
        "min_fan_speed",
        "max_fan_speed",
        "max_print_height",
        "min_print_speed",
        "max_print_speed",
        "max_volumetric_speed",
#ifdef HAS_PRESSURE_EQUALIZER
        "max_volumetric_extrusion_rate_slope_positive",
        "max_volumetric_extrusion_rate_slope_negative",
#endif /* HAS_PRESSURE_EQUALIZER */
        "notes",
        "only_retract_when_crossing_perimeters",
        "output_filename_format",
        "perimeter_acceleration",
        "post_process",
        "gcode_substitutions",
        "printer_notes",
        "retract_before_travel",
        "retract_before_wipe",
        "retract_layer_change",
        "retract_length",
        "retract_length_toolchange",
        "retract_lift",
        "retract_lift_above",
        "retract_lift_below",
        "retract_restart_extra",
        "retract_restart_extra_toolchange",
        "retract_speed",
        "single_extruder_multi_material_priming",
        "slowdown_below_layer_time",
        "standby_temperature_delta",
        "start_gcode",
        "start_filament_gcode",
        "toolchange_gcode",
        "threads",
        "use_firmware_retraction",
        "use_relative_e_distances",
        "use_volumetric_e",
        "variable_layer_height",
        "wipe"
    };

    static std::unordered_set<std::string> steps_ignore;

    std::vector<PrintStep> steps;
    std::vector<PrintObjectStep> osteps;
    bool invalidated = false;

    for (const t_config_option_key &opt_key : opt_keys) {
        if (steps_gcode.find(opt_key) != steps_gcode.end()) {
            // These options only affect G-code export or they are just notes without influence on the generated G-code,
            // so there is nothing to invalidate.
            steps.emplace_back(psGCodeExport);
        } else if (steps_ignore.find(opt_key) != steps_ignore.end()) {
            // These steps have no influence on the G-code whatsoever. Just ignore them.
        } else if (
               opt_key == "skirts"
            || opt_key == "skirt_height"
            || opt_key == "draft_shield"
            || opt_key == "skirt_distance"
            || opt_key == "min_skirt_length"
            || opt_key == "ooze_prevention"
            || opt_key == "wipe_tower_x"
            || opt_key == "wipe_tower_y"
            || opt_key == "wipe_tower_rotation_angle") {
            steps.emplace_back(psSkirtBrim);
        } else if (
               opt_key == "first_layer_height"
            || opt_key == "nozzle_diameter"
            || opt_key == "resolution"
            // Spiral Vase forces different kind of slicing than the normal model:
            // In Spiral Vase mode, holes are closed and only the largest area contour is kept at each layer.
            // Therefore toggling the Spiral Vase on / off requires complete reslicing.
            || opt_key == "spiral_vase") {
            osteps.emplace_back(posSlice);
        } else if (
               opt_key == "complete_objects"
            || opt_key == "filament_type"
            || opt_key == "first_layer_temperature"
            || opt_key == "filament_loading_speed"
            || opt_key == "filament_loading_speed_start"
            || opt_key == "filament_unloading_speed"
            || opt_key == "filament_unloading_speed_start"
            || opt_key == "filament_toolchange_delay"
            || opt_key == "filament_cooling_moves"
            || opt_key == "filament_minimal_purge_on_wipe_tower"
            || opt_key == "filament_cooling_initial_speed"
            || opt_key == "filament_cooling_final_speed"
            || opt_key == "filament_ramming_parameters"
            || opt_key == "filament_max_volumetric_speed"
            || opt_key == "gcode_flavor"
            || opt_key == "high_current_on_filament_swap"
            || opt_key == "infill_first"
            || opt_key == "single_extruder_multi_material"
            || opt_key == "temperature"
            || opt_key == "wipe_tower"
            || opt_key == "wipe_tower_width"
            || opt_key == "wipe_tower_brim_width"
            || opt_key == "wipe_tower_bridging"
            || opt_key == "wipe_tower_no_sparse_layers"
            || opt_key == "wiping_volumes_matrix"
            || opt_key == "parking_pos_retraction"
            || opt_key == "cooling_tube_retraction"
            || opt_key == "cooling_tube_length"
            || opt_key == "extra_loading_move"
            || opt_key == "travel_speed"
            || opt_key == "travel_speed_z"
            || opt_key == "first_layer_speed"
            || opt_key == "z_offset") {
            steps.emplace_back(psWipeTower);
            steps.emplace_back(psSkirtBrim);
        } else if (opt_key == "filament_soluble") {
            steps.emplace_back(psWipeTower);
            // Soluble support interface / non-soluble base interface produces non-soluble interface layers below soluble interface layers.
            // Thus switching between soluble / non-soluble interface layer material may require recalculation of supports.
            //FIXME Killing supports on any change of "filament_soluble" is rough. We should check for each object whether that is necessary.
            osteps.emplace_back(posSupportMaterial);
        } else if (
               opt_key == "first_layer_extrusion_width" 
            || opt_key == "min_layer_height"
            || opt_key == "max_layer_height"
            || opt_key == "gcode_resolution") {
            osteps.emplace_back(posPerimeters);
            osteps.emplace_back(posInfill);
            osteps.emplace_back(posSupportMaterial);
            steps.emplace_back(psSkirtBrim);
        } else {
            // for legacy, if we can't handle this option let's invalidate all steps
            //FIXME invalidate all steps of all objects as well?
            invalidated |= this->invalidate_all_steps();
            // Continue with the other opt_keys to possibly invalidate any object specific steps.
        }
    }

    sort_remove_duplicates(steps);
    for (PrintStep step : steps)
        invalidated |= this->invalidate_step(step);
    sort_remove_duplicates(osteps);
    for (PrintObjectStep ostep : osteps)
        for (PrintObject *object : m_objects)
            invalidated |= object->invalidate_step(ostep);
    return invalidated;
}

bool Print::invalidate_step(PrintStep step)
{
	bool invalidated = Inherited::invalidate_step(step);
    // Propagate to dependent steps.
    if (step != psGCodeExport)
        invalidated |= Inherited::invalidate_step(psGCodeExport);
    return invalidated;
}

// returns true if an object step is done on all objects
// and there's at least one object
bool Print::is_step_done(PrintObjectStep step) const
{
    if (m_objects.empty())
        return false;
    std::scoped_lock<std::mutex> lock(this->state_mutex());
    for (const PrintObject *object : m_objects)
        if (! object->is_step_done_unguarded(step))
            return false;
    return true;
}

// returns 0-based indices of used extruders
std::vector<unsigned int> Print::object_extruders() const
{
    std::vector<unsigned int> extruders;
    extruders.reserve(m_print_regions.size() * m_objects.size() * 3);
    for (const PrintObject *object : m_objects)
		for (const PrintRegion &region : object->all_regions())
        	region.collect_object_printing_extruders(*this, extruders);
    sort_remove_duplicates(extruders);
    return extruders;
}

// returns 0-based indices of used extruders
std::vector<unsigned int> Print::support_material_extruders() const
{
    std::vector<unsigned int> extruders;
    bool support_uses_current_extruder = false;
    auto num_extruders = (unsigned int)m_config.nozzle_diameter.size();

    for (PrintObject *object : m_objects) {
        if (object->has_support_material()) {
        	assert(object->config().support_material_extruder >= 0);
            if (object->config().support_material_extruder == 0)
                support_uses_current_extruder = true;
            else {
            	unsigned int i = (unsigned int)object->config().support_material_extruder - 1;
                extruders.emplace_back((i >= num_extruders) ? 0 : i);
            }
        	assert(object->config().support_material_interface_extruder >= 0);
            if (object->config().support_material_interface_extruder == 0)
                support_uses_current_extruder = true;
            else {
            	unsigned int i = (unsigned int)object->config().support_material_interface_extruder - 1;
                extruders.emplace_back((i >= num_extruders) ? 0 : i);
            }
        }
    }

    if (support_uses_current_extruder)
        // Add all object extruders to the support extruders as it is not know which one will be used to print supports.
        append(extruders, this->object_extruders());
    
    sort_remove_duplicates(extruders);
    return extruders;
}

// returns 0-based indices of used extruders
std::vector<unsigned int> Print::extruders() const
{
    std::vector<unsigned int> extruders = this->object_extruders();
    append(extruders, this->support_material_extruders());
    sort_remove_duplicates(extruders);
    return extruders;
}

unsigned int Print::num_object_instances() const
{
	unsigned int instances = 0;
    for (const PrintObject *print_object : m_objects)
        instances += (unsigned int)print_object->instances().size();
    return instances;
}

double Print::max_allowed_layer_height() const
{
    double nozzle_diameter_max = 0.;
    for (unsigned int extruder_id : this->extruders())
        nozzle_diameter_max = std::max(nozzle_diameter_max, m_config.nozzle_diameter.get_at(extruder_id));
    return nozzle_diameter_max;
}

std::vector<ObjectID> Print::print_object_ids() const 
{ 
    std::vector<ObjectID> out; 
    // Reserve one more for the caller to append the ID of the Print itself.
    out.reserve(m_objects.size() + 1);
    for (const PrintObject *print_object : m_objects)
        out.emplace_back(print_object->id());
    return out;
}

bool Print::has_infinite_skirt() const
{
    return (m_config.draft_shield == dsEnabled && m_config.skirts > 0) || (m_config.ooze_prevention && this->extruders().size() > 1);
}

bool Print::has_skirt() const
{
    return (m_config.skirt_height > 0 && m_config.skirts > 0) || has_infinite_skirt();
    // case dsLimited should only be taken into account when skirt_height and skirts are positive,
    // so it is covered by the first condition.
}

bool Print::has_brim() const
{
    return std::any_of(m_objects.begin(), m_objects.end(), [](PrintObject *object) { return object->has_brim(); });
}

bool Print::sequential_print_horizontal_clearance_valid(const Print& print, Polygons* polygons)
{
	Polygons convex_hulls_other;
    if (polygons != nullptr)
        polygons->clear();
    std::vector<size_t> intersecting_idxs;

	std::map<ObjectID, Polygon> map_model_object_to_convex_hull;
	for (const PrintObject *print_object : print.objects()) {
	    assert(! print_object->model_object()->instances.empty());
	    assert(! print_object->instances().empty());
	    ObjectID model_object_id = print_object->model_object()->id();
	    auto it_convex_hull = map_model_object_to_convex_hull.find(model_object_id);
        // Get convex hull of all printable volumes assigned to this print object.
        ModelInstance *model_instance0 = print_object->model_object()->instances.front();
	    if (it_convex_hull == map_model_object_to_convex_hull.end()) {
	        // Calculate the convex hull of a printable object. 
	        // Grow convex hull with the clearance margin.
	        // FIXME: Arrangement has different parameters for offsetting (jtMiter, limit 2)
	        // which causes that the warning will be showed after arrangement with the
	        // appropriate object distance. Even if I set this to jtMiter the warning still shows up.
            it_convex_hull = map_model_object_to_convex_hull.emplace_hint(it_convex_hull, model_object_id,
                offset(print_object->model_object()->convex_hull_2d(
                    Geometry::assemble_transform({ 0.0, 0.0, model_instance0->get_offset().z() }, model_instance0->get_rotation(), model_instance0->get_scaling_factor(), model_instance0->get_mirror())),
                    // Shrink the extruder_clearance_radius a tiny bit, so that if the object arrangement algorithm placed the objects
                    // exactly by satisfying the extruder_clearance_radius, this test will not trigger collision.
                    float(scale_(0.5 * print.config().extruder_clearance_radius.value - EPSILON)),
                    jtRound, scale_(0.1)).front());
        }
	    // Make a copy, so it may be rotated for instances.
	    Polygon convex_hull0 = it_convex_hull->second;
		const double z_diff = Geometry::rotation_diff_z(model_instance0->get_rotation(), print_object->instances().front().model_instance->get_rotation());
		if (std::abs(z_diff) > EPSILON)
			convex_hull0.rotate(z_diff);
	    // Now we check that no instance of convex_hull intersects any of the previously checked object instances.
	    for (const PrintInstance &instance : print_object->instances()) {
	        Polygon convex_hull = convex_hull0;
	        // instance.shift is a position of a centered object, while model object may not be centered.
	        // Convert the shift from the PrintObject's coordinates into ModelObject's coordinates by removing the centering offset.
	        convex_hull.translate(instance.shift - print_object->center_offset());
            // if output needed, collect indices (inside convex_hulls_other) of intersecting hulls
            for (size_t i = 0; i < convex_hulls_other.size(); ++i) {
                if (! intersection(convex_hulls_other[i], convex_hull).empty()) {
                    if (polygons == nullptr)
                        return false;
                    else {
                        intersecting_idxs.emplace_back(i);
                        intersecting_idxs.emplace_back(convex_hulls_other.size());
                    }
                }
            }
            convex_hulls_other.emplace_back(std::move(convex_hull));
	    }
	}

    if (!intersecting_idxs.empty()) {
        // use collected indices (inside convex_hulls_other) to update output
        std::sort(intersecting_idxs.begin(), intersecting_idxs.end());
        intersecting_idxs.erase(std::unique(intersecting_idxs.begin(), intersecting_idxs.end()), intersecting_idxs.end());
        for (size_t i : intersecting_idxs) {
            polygons->emplace_back(std::move(convex_hulls_other[i]));
        }
        return false;
    }
    return true;
}

static inline bool sequential_print_vertical_clearance_valid(const Print &print)
{
	std::vector<const PrintInstance*> print_instances_ordered = sort_object_instances_by_model_order(print);
	// Ignore the last instance printed.
	print_instances_ordered.pop_back();
	// Find the other highest instance.
	auto it = std::max_element(print_instances_ordered.begin(), print_instances_ordered.end(), [](auto l, auto r) {
		return l->print_object->height() < r->print_object->height();
	});
    return it == print_instances_ordered.end() || (*it)->print_object->height() <= scale_(print.config().extruder_clearance_height.value);
}

// Matches "G92 E0" with various forms of writing the zero and with an optional comment.
boost::regex regex_g92e0 { "^[ \\t]*[gG]92[ \\t]*[eE](0(\\.0*)?|\\.0+)[ \\t]*(;.*)?$" };

// Precondition: Print::validate() requires the Print::apply() to be called its invocation.
std::string Print::validate(std::string* warning) const
{
    std::vector<unsigned int> extruders = this->extruders();

    if (m_objects.empty())
        return L("All objects are outside of the print volume.");

    if (extruders.empty())
        return L("The supplied settings will cause an empty print.");

    if (m_config.complete_objects) {
    	if (! sequential_print_horizontal_clearance_valid(*this))
            return L("Some objects are too close; your extruder will collide with them.");
        if (! sequential_print_vertical_clearance_valid(*this))
	        return L("Some objects are too tall and cannot be printed without extruder collisions.");
    }

    if (m_config.spiral_vase) {
        size_t total_copies_count = 0;
        for (const PrintObject *object : m_objects)
            total_copies_count += object->instances().size();
        // #4043
        if (total_copies_count > 1 && ! m_config.complete_objects.value)
            return L("Only a single object may be printed at a time in Spiral Vase mode. "
                     "Either remove all but the last object, or enable sequential mode by \"complete_objects\".");
        assert(m_objects.size() == 1);
        if (m_objects.front()->all_regions().size() > 1)
            return L("The Spiral Vase option can only be used when printing single material objects.");
    }

    if (this->has_wipe_tower() && ! m_objects.empty()) {
        // Make sure all extruders use same diameter filament and have the same nozzle diameter
        // EPSILON comparison is used for nozzles and 10 % tolerance is used for filaments
        double first_nozzle_diam = m_config.nozzle_diameter.get_at(extruders.front());
        double first_filament_diam = m_config.filament_diameter.get_at(extruders.front());
        for (const auto& extruder_idx : extruders) {
            double nozzle_diam = m_config.nozzle_diameter.get_at(extruder_idx);
            double filament_diam = m_config.filament_diameter.get_at(extruder_idx);
            if (nozzle_diam - EPSILON > first_nozzle_diam || nozzle_diam + EPSILON < first_nozzle_diam
             || std::abs((filament_diam-first_filament_diam)/first_filament_diam) > 0.1)
                 return L("The wipe tower is only supported if all extruders have the same nozzle diameter "
                          "and use filaments of the same diameter.");
        }

        if (m_config.gcode_flavor != gcfRepRapSprinter && m_config.gcode_flavor != gcfRepRapFirmware &&
            m_config.gcode_flavor != gcfRepetier && m_config.gcode_flavor != gcfMarlinLegacy && m_config.gcode_flavor != gcfMarlinFirmware)
            return L("The Wipe Tower is currently only supported for the Marlin, RepRap/Sprinter, RepRapFirmware and Repetier G-code flavors.");
        if (! m_config.use_relative_e_distances)
            return L("The Wipe Tower is currently only supported with the relative extruder addressing (use_relative_e_distances=1).");
        if (m_config.ooze_prevention)
            return L("Ooze prevention is currently not supported with the wipe tower enabled.");
        if (m_config.use_volumetric_e)
            return L("The Wipe Tower currently does not support volumetric E (use_volumetric_e=0).");
        if (m_config.complete_objects && extruders.size() > 1)
            return L("The Wipe Tower is currently not supported for multimaterial sequential prints.");
        
        if (m_objects.size() > 1) {
            bool                                has_custom_layering = false;
            std::vector<std::vector<coordf_t>>  layer_height_profiles;
            for (const PrintObject *object : m_objects) {
                has_custom_layering = ! object->model_object()->layer_config_ranges.empty() || ! object->model_object()->layer_height_profile.empty();
                if (has_custom_layering) {
                    layer_height_profiles.assign(m_objects.size(), std::vector<coordf_t>());
                    break;
                }
            }
            const SlicingParameters &slicing_params0 = m_objects.front()->slicing_parameters();
            size_t            tallest_object_idx = 0;
            if (has_custom_layering)
                PrintObject::update_layer_height_profile(*m_objects.front()->model_object(), slicing_params0, layer_height_profiles.front());
            for (size_t i = 1; i < m_objects.size(); ++ i) {
                const PrintObject       *object         = m_objects[i];
                const SlicingParameters &slicing_params = object->slicing_parameters();
                if (std::abs(slicing_params.first_print_layer_height - slicing_params0.first_print_layer_height) > EPSILON ||
                    std::abs(slicing_params.layer_height             - slicing_params0.layer_height            ) > EPSILON)
                    return L("The Wipe Tower is only supported for multiple objects if they have equal layer heights");
                if (slicing_params.raft_layers() != slicing_params0.raft_layers())
                    return L("The Wipe Tower is only supported for multiple objects if they are printed over an equal number of raft layers");
                if (slicing_params0.gap_object_support != slicing_params.gap_object_support ||
                    slicing_params0.gap_support_object != slicing_params.gap_support_object)
                    return L("The Wipe Tower is only supported for multiple objects if they are printed with the same support_material_contact_distance");
                if (! equal_layering(slicing_params, slicing_params0))
                    return L("The Wipe Tower is only supported for multiple objects if they are sliced equally.");
                if (has_custom_layering) {
                    PrintObject::update_layer_height_profile(*object->model_object(), slicing_params, layer_height_profiles[i]);
                    if (*(layer_height_profiles[i].end()-2) > *(layer_height_profiles[tallest_object_idx].end()-2))
                        tallest_object_idx = i;
                }
            }

            if (has_custom_layering) {
                for (size_t idx_object = 0; idx_object < m_objects.size(); ++ idx_object) {
                    if (idx_object == tallest_object_idx)
                        continue;
                    if (layer_height_profiles[idx_object] != layer_height_profiles[tallest_object_idx])
                        return L("The Wipe tower is only supported if all objects have the same variable layer height");
                }
            }
        }
    }
    
	{
		// Find the smallest used nozzle diameter and the number of unique nozzle diameters.
		double min_nozzle_diameter = std::numeric_limits<double>::max();
		double max_nozzle_diameter = 0;
		for (unsigned int extruder_id : extruders) {
			double dmr = m_config.nozzle_diameter.get_at(extruder_id);
			min_nozzle_diameter = std::min(min_nozzle_diameter, dmr);
			max_nozzle_diameter = std::max(max_nozzle_diameter, dmr);
		}

#if 0
        // We currently allow one to assign extruders with a higher index than the number
        // of physical extruders the machine is equipped with, as the Printer::apply() clamps them.
        unsigned int total_extruders_count = m_config.nozzle_diameter.size();
        for (const auto& extruder_idx : extruders)
            if ( extruder_idx >= total_extruders_count )
                return L("One or more object were assigned an extruder that the printer does not have.");
#endif

        auto validate_extrusion_width = [/*min_nozzle_diameter,*/ max_nozzle_diameter](const ConfigBase &config, const char *opt_key, double layer_height, std::string &err_msg) -> bool {
            // This may change in the future, if we switch to "extrusion width wrt. nozzle diameter"
            // instead of currently used logic "extrusion width wrt. layer height", see GH issues #1923 #2829.
//        	double extrusion_width_min = config.get_abs_value(opt_key, min_nozzle_diameter);
//        	double extrusion_width_max = config.get_abs_value(opt_key, max_nozzle_diameter);
            double extrusion_width_min = config.get_abs_value(opt_key, layer_height);
            double extrusion_width_max = config.get_abs_value(opt_key, layer_height);
        	if (extrusion_width_min == 0) {
        		// Default "auto-generated" extrusion width is always valid.
        	} else if (extrusion_width_min <= layer_height) {
        		err_msg = (boost::format(L("%1%=%2% mm is too low to be printable at a layer height %3% mm")) % opt_key % extrusion_width_min % layer_height).str();
				return false;
			} else if (extrusion_width_max >= max_nozzle_diameter * 3.) {
				err_msg = (boost::format(L("Excessive %1%=%2% mm to be printable with a nozzle diameter %3% mm")) % opt_key % extrusion_width_max % max_nozzle_diameter).str();
				return false;
			}
			return true;
		};
        for (PrintObject *object : m_objects) {
            if (object->has_support_material()) {
				if ((object->config().support_material_extruder == 0 || object->config().support_material_interface_extruder == 0) && max_nozzle_diameter - min_nozzle_diameter > EPSILON) {
                    // The object has some form of support and either support_material_extruder or support_material_interface_extruder
                    // will be printed with the current tool without a forced tool change. Play safe, assert that all object nozzles
                    // are of the same diameter.
                    return L("Printing with multiple extruders of differing nozzle diameters. "
                           "If support is to be printed with the current extruder (support_material_extruder == 0 or support_material_interface_extruder == 0), "
                           "all nozzles have to be of the same diameter.");
                }
                if (this->has_wipe_tower()) {
    				if (object->config().support_material_contact_distance == 0) {
    					// Soluble interface
    					if (object->config().support_material_contact_distance == 0 && ! object->config().support_material_synchronize_layers)
    						return L("For the Wipe Tower to work with the soluble supports, the support layers need to be synchronized with the object layers.");
    				} else {
    					// Non-soluble interface
    					if (object->config().support_material_extruder != 0 || object->config().support_material_interface_extruder != 0)
    						return L("The Wipe Tower currently supports the non-soluble supports only if they are printed with the current extruder without triggering a tool change. "
    							     "(both support_material_extruder and support_material_interface_extruder need to be set to 0).");
    				}
                }
            }

            // Do we have custom support data that would not be used?
            // Notify the user in that case.
            if (! object->has_support() && warning) {
                for (const ModelVolume* mv : object->model_object()->volumes) {
                    bool has_enforcers = mv->is_support_enforcer() || 
                        (mv->is_model_part() && mv->supported_facets.has_facets(*mv, EnforcerBlockerType::ENFORCER));
                    if (has_enforcers) {
                        *warning = "_SUPPORTS_OFF";
                        break;
                    }
                }
            }

            // validate first_layer_height
            assert(! m_config.first_layer_height.percent);
            double first_layer_height = m_config.first_layer_height.value;
            double first_layer_min_nozzle_diameter;
            if (object->has_raft()) {
                // if we have raft layers, only support material extruder is used on first layer
                size_t first_layer_extruder = object->config().raft_layers == 1
                    ? object->config().support_material_interface_extruder-1
                    : object->config().support_material_extruder-1;
                first_layer_min_nozzle_diameter = (first_layer_extruder == size_t(-1)) ? 
                    min_nozzle_diameter : 
                    m_config.nozzle_diameter.get_at(first_layer_extruder);
            } else {
                // if we don't have raft layers, any nozzle diameter is potentially used in first layer
                first_layer_min_nozzle_diameter = min_nozzle_diameter;
            }
            if (first_layer_height > first_layer_min_nozzle_diameter)
                return L("First layer height can't be greater than nozzle diameter");
            
            // validate layer_height
            double layer_height = object->config().layer_height.value;
            if (layer_height > min_nozzle_diameter)
                return L("Layer height can't be greater than nozzle diameter");

            // Validate extrusion widths.
            std::string err_msg;
            if (! validate_extrusion_width(object->config(), "extrusion_width", layer_height, err_msg))
            	return err_msg;
            if ((object->has_support() || object->has_raft()) && ! validate_extrusion_width(object->config(), "support_material_extrusion_width", layer_height, err_msg))
            	return err_msg;
            for (const char *opt_key : { "perimeter_extrusion_width", "external_perimeter_extrusion_width", "infill_extrusion_width", "solid_infill_extrusion_width", "top_infill_extrusion_width" })
				for (const PrintRegion &region : object->all_regions())
            		if (! validate_extrusion_width(region.config(), opt_key, layer_height, err_msg))
		            	return err_msg;
        }
    }
    {
        bool before_layer_gcode_resets_extruder = boost::regex_search(m_config.before_layer_gcode.value, regex_g92e0);
        bool layer_gcode_resets_extruder        = boost::regex_search(m_config.layer_gcode.value, regex_g92e0);
        if (m_config.use_relative_e_distances) {
            // See GH issues #6336 #5073
            if (! before_layer_gcode_resets_extruder && ! layer_gcode_resets_extruder)
                return "Relative extruder addressing requires resetting the extruder position at each layer to prevent loss of floating point accuracy. Add \"G92 E0\" to layer_gcode.";
        } else if (before_layer_gcode_resets_extruder)
            return "\"G92 E0\" was found in before_layer_gcode, which is incompatible with absolute extruder addressing.";
        else if (layer_gcode_resets_extruder)
                return "\"G92 E0\" was found in layer_gcode, which is incompatible with absolute extruder addressing.";
    }

    return std::string();
}

#if 0
// the bounding box of objects placed in copies position
// (without taking skirt/brim/support material into account)
BoundingBox Print::bounding_box() const
{
    BoundingBox bb;
    for (const PrintObject *object : m_objects)
        for (const PrintInstance &instance : object->instances()) {
        	BoundingBox bb2(object->bounding_box());
        	bb.merge(bb2.min + instance.shift);
        	bb.merge(bb2.max + instance.shift);
        }
    return bb;
}

// the total bounding box of extrusions, including skirt/brim/support material
// this methods needs to be called even when no steps were processed, so it should
// only use configuration values
BoundingBox Print::total_bounding_box() const
{
    // get objects bounding box
    BoundingBox bb = this->bounding_box();
    
    // we need to offset the objects bounding box by at least half the perimeters extrusion width
    Flow perimeter_flow = m_objects.front()->get_layer(0)->get_region(0)->flow(frPerimeter);
    double extra = perimeter_flow.width/2;
    
    // consider support material
    if (this->has_support_material()) {
        extra = std::max(extra, SUPPORT_MATERIAL_MARGIN);
    }
    
    // consider brim and skirt
    if (m_config.brim_width.value > 0) {
        Flow brim_flow = this->brim_flow();
        extra = std::max(extra, m_config.brim_width.value + brim_flow.width/2);
    }
    if (this->has_skirt()) {
        int skirts = m_config.skirts.value;
        if (skirts == 0 && this->has_infinite_skirt()) skirts = 1;
        Flow skirt_flow = this->skirt_flow();
        extra = std::max(
            extra,
            m_config.brim_width.value
                + m_config.skirt_distance.value
                + skirts * skirt_flow.spacing()
                + skirt_flow.width/2
        );
    }
    
    if (extra > 0)
        bb.offset(scale_(extra));
    
    return bb;
}
#endif

double Print::skirt_first_layer_height() const
{
    assert(! m_config.first_layer_height.percent);
    return m_config.first_layer_height.value;
}

Flow Print::brim_flow() const
{
    ConfigOptionFloatOrPercent width = m_config.first_layer_extrusion_width;
    if (width.value == 0) 
        width = m_print_regions.front()->config().perimeter_extrusion_width;
    if (width.value == 0) 
        width = m_objects.front()->config().extrusion_width;
    
    /* We currently use a random region's perimeter extruder.
       While this works for most cases, we should probably consider all of the perimeter
       extruders and take the one with, say, the smallest index.
       The same logic should be applied to the code that selects the extruder during G-code
       generation as well. */
    return Flow::new_from_config_width(
        frPerimeter,
		width,
        (float)m_config.nozzle_diameter.get_at(m_print_regions.front()->config().perimeter_extruder-1),
		(float)this->skirt_first_layer_height());
}

Flow Print::skirt_flow() const
{
    ConfigOptionFloatOrPercent width = m_config.first_layer_extrusion_width;
    if (width.value == 0) 
        width = m_print_regions.front()->config().perimeter_extrusion_width;
    if (width.value == 0)
        width = m_objects.front()->config().extrusion_width;
    
    /* We currently use a random object's support material extruder.
       While this works for most cases, we should probably consider all of the support material
       extruders and take the one with, say, the smallest index;
       The same logic should be applied to the code that selects the extruder during G-code
       generation as well. */
    return Flow::new_from_config_width(
        frPerimeter,
		width,
		(float)m_config.nozzle_diameter.get_at(m_objects.front()->config().support_material_extruder-1),
		(float)this->skirt_first_layer_height());
}

bool Print::has_support_material() const
{
    for (const PrintObject *object : m_objects)
        if (object->has_support_material()) 
            return true;
    return false;
}

/*  This method assigns extruders to the volumes having a material
    but not having extruders set in the volume config. */
void Print::auto_assign_extruders(ModelObject* model_object) const
{
    // only assign extruders if object has more than one volume
    if (model_object->volumes.size() < 2)
        return;
    
//    size_t extruders = m_config.nozzle_diameter.values.size();
    for (size_t volume_id = 0; volume_id < model_object->volumes.size(); ++ volume_id) {
        ModelVolume *volume = model_object->volumes[volume_id];
        //FIXME Vojtech: This assigns an extruder ID even to a modifier volume, if it has a material assigned.
        if ((volume->is_model_part() || volume->is_modifier()) && ! volume->material_id().empty() && ! volume->config.has("extruder"))
            volume->config.set("extruder", int(volume_id + 1));
    }
}

// Slicing process, running at a background thread.
void Print::process()
{
    name_tbb_thread_pool_threads_set_locale();

    BOOST_LOG_TRIVIAL(info) << "Starting the slicing process." << log_memory_info();
    for (PrintObject *obj : m_objects)
        obj->make_perimeters();
    this->set_status(70, L("Infilling layers"));
    for (PrintObject *obj : m_objects)
        obj->infill();
    for (PrintObject *obj : m_objects)
        obj->ironing();
    for (PrintObject *obj : m_objects)
        obj->generate_support_material();
    if (this->set_started(psWipeTower)) {
        m_wipe_tower_data.clear();
        m_tool_ordering.clear();
        if (this->has_wipe_tower()) {
            //this->set_status(95, L("Generating wipe tower"));
            this->_make_wipe_tower();
        } else if (! this->config().complete_objects.value) {
        	// Initialize the tool ordering, so it could be used by the G-code preview slider for planning tool changes and filament switches.
        	m_tool_ordering = ToolOrdering(*this, -1, false);
            if (m_tool_ordering.empty() || m_tool_ordering.last_extruder() == unsigned(-1))
                throw Slic3r::SlicingError("The print is empty. The model is not printable with current print settings.");
        }
        this->set_done(psWipeTower);
    }
    if (this->set_started(psSkirtBrim)) {
        this->set_status(88, L("Generating skirt and brim"));

        m_skirt.clear();
        m_skirt_convex_hull.clear();
        m_first_layer_convex_hull.points.clear();
        const bool draft_shield = config().draft_shield != dsDisabled;

        if (this->has_skirt() && draft_shield) {
            // In case that draft shield is active, generate skirt first so brim
            // can be trimmed to make room for it.
            _make_skirt();
        }

        m_brim.clear();
        m_first_layer_convex_hull.points.clear();
        if (this->has_brim()) {
            Polygons islands_area;
            m_brim = make_brim(*this, this->make_try_cancel(), islands_area);
            for (Polygon &poly : union_(this->first_layer_islands(), islands_area))
                append(m_first_layer_convex_hull.points, std::move(poly.points));
        }


        if (has_skirt() && ! draft_shield) {
            // In case that draft shield is NOT active, generate skirt now.
            // It will be placed around the brim, so brim has to be ready.
            assert(m_skirt.empty());
            _make_skirt();
        }

        this->finalize_first_layer_convex_hull();
        this->set_done(psSkirtBrim);
    }
    BOOST_LOG_TRIVIAL(info) << "Slicing process finished." << log_memory_info();
}

// G-code export process, running at a background thread.
// The export_gcode may die for various reasons (fails to process output_filename_format,
// write error into the G-code, cannot execute post-processing scripts).
// It is up to the caller to show an error message.
std::string Print::export_gcode(const std::string& path_template, GCodeProcessorResult* result, ThumbnailsGeneratorCallback thumbnail_cb)
{
    // output everything to a G-code file
    // The following call may die if the output_filename_format template substitution fails.
    std::string path = this->output_filepath(path_template);
    std::string message;
    if (!path.empty() && result == nullptr) {
        // Only show the path if preview_data is not set -> running from command line.
        message = L("Exporting G-code");
        message += " to ";
        message += path;
    } else
        message = L("Generating G-code");
    this->set_status(90, message);

    // The following line may die for multiple reasons.
    GCode gcode;
    gcode.do_export(this, path.c_str(), result, thumbnail_cb);
    return path.c_str();
}

void Print::_make_skirt()
{
    // First off we need to decide how tall the skirt must be.
    // The skirt_height option from config is expressed in layers, but our
    // object might have different layer heights, so we need to find the print_z
    // of the highest layer involved.
    // Note that unless has_infinite_skirt() == true
    // the actual skirt might not reach this $skirt_height_z value since the print
    // order of objects on each layer is not guaranteed and will not generally
    // include the thickest object first. It is just guaranteed that a skirt is
    // prepended to the first 'n' layers (with 'n' = skirt_height).
    // $skirt_height_z in this case is the highest possible skirt height for safety.
    coordf_t skirt_height_z = 0.;
    for (const PrintObject *object : m_objects) {
        size_t skirt_layers = this->has_infinite_skirt() ?
            object->layer_count() : 
            std::min(size_t(m_config.skirt_height.value), object->layer_count());
        skirt_height_z = std::max(skirt_height_z, object->m_layers[skirt_layers-1]->print_z);
    }
    
    // Collect points from all layers contained in skirt height.
    Points points;
    for (const PrintObject *object : m_objects) {
        Points object_points;
        // Get object layers up to skirt_height_z.
        for (const Layer *layer : object->m_layers) {
            if (layer->print_z > skirt_height_z)
                break;
            for (const ExPolygon &expoly : layer->lslices)
                // Collect the outer contour points only, ignore holes for the calculation of the convex hull.
                append(object_points, expoly.contour.points);
        }
        // Get support layers up to skirt_height_z.
        for (const SupportLayer *layer : object->support_layers()) {
            if (layer->print_z > skirt_height_z)
                break;
            layer->support_fills.collect_points(object_points);
        }
        // Repeat points for each object copy.
        for (const PrintInstance &instance : object->instances()) {
            Points copy_points = object_points;
            for (Point &pt : copy_points)
                pt += instance.shift;
            append(points, copy_points);
        }
    }

    // Include the wipe tower.
    append(points, this->first_layer_wipe_tower_corners());

    // Unless draft shield is enabled, include all brims as well.
    if (config().draft_shield == dsDisabled)
        append(points, m_first_layer_convex_hull.points);

    if (points.size() < 3)
        // At least three points required for a convex hull.
        return;
    
    this->throw_if_canceled();
    Polygon convex_hull = Slic3r::Geometry::convex_hull(points);
    
    // Skirt may be printed on several layers, having distinct layer heights,
    // but loops must be aligned so can't vary width/spacing
    // TODO: use each extruder's own flow
    double first_layer_height = this->skirt_first_layer_height();
    Flow   flow = this->skirt_flow();
    float  spacing = flow.spacing();
    double mm3_per_mm = flow.mm3_per_mm();
    
    std::vector<size_t> extruders;
    std::vector<double> extruders_e_per_mm;
    {
        auto set_extruders = this->extruders();
        extruders.reserve(set_extruders.size());
        extruders_e_per_mm.reserve(set_extruders.size());
        for (auto &extruder_id : set_extruders) {
            extruders.push_back(extruder_id);
            extruders_e_per_mm.push_back(Extruder((unsigned int)extruder_id, &m_config).e_per_mm(mm3_per_mm));
        }
    }

    // Number of skirt loops per skirt layer.
    size_t n_skirts = m_config.skirts.value;
    if (this->has_infinite_skirt() && n_skirts == 0)
        n_skirts = 1;

    // Initial offset of the brim inner edge from the object (possible with a support & raft).
    // The skirt will touch the brim if the brim is extruded.
    auto   distance = float(scale_(m_config.skirt_distance.value) - spacing/2.);
    // Draw outlines from outside to inside.
    // Loop while we have less skirts than required or any extruder hasn't reached the min length if any.
    std::vector<coordf_t> extruded_length(extruders.size(), 0.);
    for (size_t i = n_skirts, extruder_idx = 0; i > 0; -- i) {
        this->throw_if_canceled();
        // Offset the skirt outside.
        distance += float(scale_(spacing));
        // Generate the skirt centerline.
        Polygon loop;
        {
            Polygons loops = offset(convex_hull, distance, ClipperLib::jtRound, float(scale_(0.1)));
            Geometry::simplify_polygons(loops, scale_(0.05), &loops);
			if (loops.empty())
				break;
			loop = loops.front();
        }
        // Extrude the skirt loop.
        ExtrusionLoop eloop(elrSkirt);
        eloop.paths.emplace_back(ExtrusionPath(
            ExtrusionPath(
                erSkirt,
                (float)mm3_per_mm,         // this will be overridden at G-code export time
                flow.width(),
				(float)first_layer_height  // this will be overridden at G-code export time
            )));
        eloop.paths.back().polyline = loop.split_at_first_point();
        m_skirt.append(eloop);
        if (m_config.min_skirt_length.value > 0) {
            // The skirt length is limited. Sum the total amount of filament length extruded, in mm.
            extruded_length[extruder_idx] += unscale<double>(loop.length()) * extruders_e_per_mm[extruder_idx];
            if (extruded_length[extruder_idx] < m_config.min_skirt_length.value) {
                // Not extruded enough yet with the current extruder. Add another loop.
                if (i == 1)
                    ++ i;
            } else {
                assert(extruded_length[extruder_idx] >= m_config.min_skirt_length.value);
                // Enough extruded with the current extruder. Extrude with the next one,
                // until the prescribed number of skirt loops is extruded.
                if (extruder_idx + 1 < extruders.size())
                    ++ extruder_idx;
            }
        } else {
            // The skirt lenght is not limited, extrude the skirt with the 1st extruder only.
        }
    }
    // Brims were generated inside out, reverse to print the outmost contour first.
    m_skirt.reverse();

    // Remember the outer edge of the last skirt line extruded as m_skirt_convex_hull.
    for (Polygon &poly : offset(convex_hull, distance + 0.5f * float(scale_(spacing)), ClipperLib::jtRound, float(scale_(0.1))))
        append(m_skirt_convex_hull, std::move(poly.points));
}

Polygons Print::first_layer_islands() const
{
    Polygons islands;
    for (PrintObject *object : m_objects) {
        Polygons object_islands;
        for (ExPolygon &expoly : object->m_layers.front()->lslices)
            object_islands.push_back(expoly.contour);
        if (! object->support_layers().empty())
            object->support_layers().front()->support_fills.polygons_covered_by_spacing(object_islands, float(SCALED_EPSILON));
        islands.reserve(islands.size() + object_islands.size() * object->instances().size());
        for (const PrintInstance &instance : object->instances())
            for (Polygon &poly : object_islands) {
                islands.push_back(poly);
                islands.back().translate(instance.shift);
            }
    }
    return islands;
}

std::vector<Point> Print::first_layer_wipe_tower_corners() const
{
    std::vector<Point> corners;
    if (has_wipe_tower() && ! m_wipe_tower_data.tool_changes.empty()) {
        double width = m_config.wipe_tower_width + 2*m_wipe_tower_data.brim_width;
        double depth = m_wipe_tower_data.depth + 2*m_wipe_tower_data.brim_width;
        Vec2d pt0(-m_wipe_tower_data.brim_width, -m_wipe_tower_data.brim_width);
        for (Vec2d pt : {
                pt0,
                Vec2d(pt0.x()+width, pt0.y()      ),
                Vec2d(pt0.x()+width, pt0.y()+depth),
                Vec2d(pt0.x(),       pt0.y()+depth)
            }) {
            pt = Eigen::Rotation2Dd(Geometry::deg2rad(m_config.wipe_tower_rotation_angle.value)) * pt;
            pt += Vec2d(m_config.wipe_tower_x.value, m_config.wipe_tower_y.value);
            corners.emplace_back(Point(scale_(pt.x()), scale_(pt.y())));
        }
    }
    return corners;
}

void Print::finalize_first_layer_convex_hull()
{
    append(m_first_layer_convex_hull.points, m_skirt_convex_hull);
    if (m_first_layer_convex_hull.empty()) {
        // Neither skirt nor brim was extruded. Collect points of printed objects from 1st layer.
        for (Polygon &poly : this->first_layer_islands())
            append(m_first_layer_convex_hull.points, std::move(poly.points));
    }
    append(m_first_layer_convex_hull.points, this->first_layer_wipe_tower_corners());
    m_first_layer_convex_hull = Geometry::convex_hull(m_first_layer_convex_hull.points);
}

// Wipe tower support.
bool Print::has_wipe_tower() const
{
    return 
        ! m_config.spiral_vase.value &&
        m_config.wipe_tower.value && 
        m_config.nozzle_diameter.values.size() > 1;
}

const WipeTowerData& Print::wipe_tower_data(size_t extruders_cnt) const
{
    // If the wipe tower wasn't created yet, make sure the depth and brim_width members are set to default.
    if (! is_step_done(psWipeTower) && extruders_cnt !=0) {

        float width = float(m_config.wipe_tower_width);

        const_cast<Print*>(this)->m_wipe_tower_data.depth = (900.f/width) * float(extruders_cnt - 1);
        const_cast<Print*>(this)->m_wipe_tower_data.brim_width = m_config.wipe_tower_brim_width;
    }

    return m_wipe_tower_data;
}

void Print::_make_wipe_tower()
{
    m_wipe_tower_data.clear();
    if (! this->has_wipe_tower())
        return;

    // Get wiping matrix to get number of extruders and convert vector<double> to vector<float>:
    std::vector<float> wiping_matrix(cast<float>(m_config.wiping_volumes_matrix.values));
    // Extract purging volumes for each extruder pair:
    std::vector<std::vector<float>> wipe_volumes;
    const unsigned int number_of_extruders = (unsigned int)(sqrt(wiping_matrix.size())+EPSILON);
    for (unsigned int i = 0; i<number_of_extruders; ++i)
        wipe_volumes.push_back(std::vector<float>(wiping_matrix.begin()+i*number_of_extruders, wiping_matrix.begin()+(i+1)*number_of_extruders));

    // Let the ToolOrdering class know there will be initial priming extrusions at the start of the print.
    m_wipe_tower_data.tool_ordering = ToolOrdering(*this, (unsigned int)-1, true);

    if (! m_wipe_tower_data.tool_ordering.has_wipe_tower())
        // Don't generate any wipe tower.
        return;

    // Check whether there are any layers in m_tool_ordering, which are marked with has_wipe_tower,
    // they print neither object, nor support. These layers are above the raft and below the object, and they
    // shall be added to the support layers to be printed.
    // see https://github.com/prusa3d/PrusaSlicer/issues/607
    {
        size_t idx_begin = size_t(-1);
        size_t idx_end   = m_wipe_tower_data.tool_ordering.layer_tools().size();
        // Find the first wipe tower layer, which does not have a counterpart in an object or a support layer.
        for (size_t i = 0; i < idx_end; ++ i) {
            const LayerTools &lt = m_wipe_tower_data.tool_ordering.layer_tools()[i];
            if (lt.has_wipe_tower && ! lt.has_object && ! lt.has_support) {
                idx_begin = i;
                break;
            }
        }
        if (idx_begin != size_t(-1)) {
            // Find the position in m_objects.first()->support_layers to insert these new support layers.
            double wipe_tower_new_layer_print_z_first = m_wipe_tower_data.tool_ordering.layer_tools()[idx_begin].print_z;
            auto it_layer = m_objects.front()->support_layers().begin();
            auto it_end   = m_objects.front()->support_layers().end();
            for (; it_layer != it_end && (*it_layer)->print_z - EPSILON < wipe_tower_new_layer_print_z_first; ++ it_layer);
            // Find the stopper of the sequence of wipe tower layers, which do not have a counterpart in an object or a support layer.
            for (size_t i = idx_begin; i < idx_end; ++ i) {
                LayerTools &lt = const_cast<LayerTools&>(m_wipe_tower_data.tool_ordering.layer_tools()[i]);
                if (! (lt.has_wipe_tower && ! lt.has_object && ! lt.has_support))
                    break;
                lt.has_support = true;
                // Insert the new support layer.
                double height    = lt.print_z - (i == 0 ? 0. : m_wipe_tower_data.tool_ordering.layer_tools()[i-1].print_z);
                //FIXME the support layer ID is set to -1, as Vojtech hopes it is not being used anyway.
                it_layer = m_objects.front()->insert_support_layer(it_layer, -1, 0, height, lt.print_z, lt.print_z - 0.5 * height);
                ++ it_layer;
            }
        }
    }
    this->throw_if_canceled();

    // Initialize the wipe tower.
    WipeTower wipe_tower(m_config, wipe_volumes, m_wipe_tower_data.tool_ordering.first_extruder());

    //wipe_tower.set_retract();
    //wipe_tower.set_zhop();

    // Set the extruder & material properties at the wipe tower object.
    for (size_t i = 0; i < number_of_extruders; ++ i)
        wipe_tower.set_extruder(i, m_config);

    m_wipe_tower_data.priming = Slic3r::make_unique<std::vector<WipeTower::ToolChangeResult>>(
        wipe_tower.prime((float)this->skirt_first_layer_height(), m_wipe_tower_data.tool_ordering.all_extruders(), false));

    // Lets go through the wipe tower layers and determine pairs of extruder changes for each
    // to pass to wipe_tower (so that it can use it for planning the layout of the tower)
    {
        unsigned int current_extruder_id = m_wipe_tower_data.tool_ordering.all_extruders().back();
        for (auto &layer_tools : m_wipe_tower_data.tool_ordering.layer_tools()) { // for all layers
            if (!layer_tools.has_wipe_tower) continue;
            bool first_layer = &layer_tools == &m_wipe_tower_data.tool_ordering.front();
            wipe_tower.plan_toolchange((float)layer_tools.print_z, (float)layer_tools.wipe_tower_layer_height, current_extruder_id, current_extruder_id, false);
            for (const auto extruder_id : layer_tools.extruders) {
                if ((first_layer && extruder_id == m_wipe_tower_data.tool_ordering.all_extruders().back()) || extruder_id != current_extruder_id) {
                    float volume_to_wipe = wipe_volumes[current_extruder_id][extruder_id];             // total volume to wipe after this toolchange
                    // Not all of that can be used for infill purging:
                    volume_to_wipe -= (float)m_config.filament_minimal_purge_on_wipe_tower.get_at(extruder_id);

                    // try to assign some infills/objects for the wiping:
                    volume_to_wipe = layer_tools.wiping_extrusions().mark_wiping_extrusions(*this, current_extruder_id, extruder_id, volume_to_wipe);

                    // add back the minimal amount toforce on the wipe tower:
                    volume_to_wipe += (float)m_config.filament_minimal_purge_on_wipe_tower.get_at(extruder_id);

                    // request a toolchange at the wipe tower with at least volume_to_wipe purging amount
                    wipe_tower.plan_toolchange((float)layer_tools.print_z, (float)layer_tools.wipe_tower_layer_height,
                                               current_extruder_id, extruder_id, volume_to_wipe);
                    current_extruder_id = extruder_id;
                }
            }
            layer_tools.wiping_extrusions().ensure_perimeters_infills_order(*this);
            if (&layer_tools == &m_wipe_tower_data.tool_ordering.back() || (&layer_tools + 1)->wipe_tower_partitions == 0)
                break;
        }
    }

    // Generate the wipe tower layers.
    m_wipe_tower_data.tool_changes.reserve(m_wipe_tower_data.tool_ordering.layer_tools().size());
    wipe_tower.generate(m_wipe_tower_data.tool_changes);
    m_wipe_tower_data.depth = wipe_tower.get_depth();
    m_wipe_tower_data.brim_width = wipe_tower.get_brim_width();

    // Unload the current filament over the purge tower.
    coordf_t layer_height = m_objects.front()->config().layer_height.value;
    if (m_wipe_tower_data.tool_ordering.back().wipe_tower_partitions > 0) {
        // The wipe tower goes up to the last layer of the print.
        if (wipe_tower.layer_finished()) {
            // The wipe tower is printed to the top of the print and it has no space left for the final extruder purge.
            // Lift Z to the next layer.
            wipe_tower.set_layer(float(m_wipe_tower_data.tool_ordering.back().print_z + layer_height), float(layer_height), 0, false, true);
        } else {
            // There is yet enough space at this layer of the wipe tower for the final purge.
        }
    } else {
        // The wipe tower does not reach the last print layer, perform the pruge at the last print layer.
        assert(m_wipe_tower_data.tool_ordering.back().wipe_tower_partitions == 0);
        wipe_tower.set_layer(float(m_wipe_tower_data.tool_ordering.back().print_z), float(layer_height), 0, false, true);
    }
    m_wipe_tower_data.final_purge = Slic3r::make_unique<WipeTower::ToolChangeResult>(
        wipe_tower.tool_change((unsigned int)(-1)));

    m_wipe_tower_data.used_filament = wipe_tower.get_used_filament();
    m_wipe_tower_data.number_of_toolchanges = wipe_tower.get_number_of_toolchanges();
}

// Generate a recommended G-code output file name based on the format template, default extension, and template parameters
// (timestamps, object placeholders derived from the model, current placeholder prameters and print statistics.
// Use the final print statistics if available, or just keep the print statistics placeholders if not available yet (before G-code is finalized).
std::string Print::output_filename(const std::string &filename_base) const 
{ 
    // Set the placeholders for the data know first after the G-code export is finished.
    // These values will be just propagated into the output file name.
    DynamicConfig config = this->finished() ? this->print_statistics().config() : this->print_statistics().placeholders();
    config.set_key_value("num_extruders", new ConfigOptionInt((int)m_config.nozzle_diameter.size()));
    return this->PrintBase::output_filename(m_config.output_filename_format.value, ".gcode", filename_base, &config);
}

DynamicConfig PrintStatistics::config() const
{
    DynamicConfig config;
    std::string normal_print_time = short_time(this->estimated_normal_print_time);
    std::string silent_print_time = short_time(this->estimated_silent_print_time);
    config.set_key_value("print_time", new ConfigOptionString(normal_print_time));
    config.set_key_value("normal_print_time", new ConfigOptionString(normal_print_time));
    config.set_key_value("silent_print_time", new ConfigOptionString(silent_print_time));
    config.set_key_value("used_filament",             new ConfigOptionFloat(this->total_used_filament / 1000.));
    config.set_key_value("extruded_volume",           new ConfigOptionFloat(this->total_extruded_volume));
    config.set_key_value("total_cost",                new ConfigOptionFloat(this->total_cost));
    config.set_key_value("total_toolchanges",         new ConfigOptionInt(this->total_toolchanges));
    config.set_key_value("total_weight",              new ConfigOptionFloat(this->total_weight));
    config.set_key_value("total_wipe_tower_cost",     new ConfigOptionFloat(this->total_wipe_tower_cost));
    config.set_key_value("total_wipe_tower_filament", new ConfigOptionFloat(this->total_wipe_tower_filament));
    config.set_key_value("initial_tool",              new ConfigOptionInt(int(this->initial_extruder_id)));
    config.set_key_value("initial_extruder",          new ConfigOptionInt(int(this->initial_extruder_id)));
    config.set_key_value("initial_filament_type",     new ConfigOptionString(this->initial_filament_type));
    config.set_key_value("printing_filament_types",   new ConfigOptionString(this->printing_filament_types));
    config.set_key_value("num_printing_extruders",    new ConfigOptionInt(int(this->printing_extruders.size())));
//    config.set_key_value("printing_extruders",        new ConfigOptionInts(std::vector<int>(this->printing_extruders.begin(), this->printing_extruders.end())));
    
    return config;
}

DynamicConfig PrintStatistics::placeholders()
{
    DynamicConfig config;
    for (const std::string &key : { 
        "print_time", "normal_print_time", "silent_print_time", 
        "used_filament", "extruded_volume", "total_cost", "total_weight", 
        "total_toolchanges", "total_wipe_tower_cost", "total_wipe_tower_filament",
        "initial_tool", "initial_extruder", "initial_filament_type", "printing_filament_types", "num_printing_extruders" })
        config.set_key_value(key, new ConfigOptionString(std::string("{") + key + "}"));
    return config;
}

std::string PrintStatistics::finalize_output_path(const std::string &path_in) const
{
    std::string final_path;
    try {
        boost::filesystem::path path(path_in);
        DynamicConfig cfg = this->config();
        PlaceholderParser pp;
        std::string new_stem = pp.process(path.stem().string(), 0, &cfg);
        final_path = (path.parent_path() / (new_stem + path.extension().string())).string();
    } catch (const std::exception &ex) {
        BOOST_LOG_TRIVIAL(error) << "Failed to apply the print statistics to the export file name: " << ex.what();
        final_path = path_in;
    }
    return final_path;
}

} // namespace Slic3r