Welcome to mirror list, hosted at ThFree Co, Russian Federation.

Camera.cpp « GUI « slic3r « src - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 242d00a071c7f1ea63bbe87018b4367242dc69cd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
#include "libslic3r/libslic3r.h"

#include "Camera.hpp"
#include "3DScene.hpp"
#include "GUI_App.hpp"
#include "AppConfig.hpp"

#include <GL/glew.h>

static const float GIMBALL_LOCK_THETA_MAX = 180.0f;

// phi / theta angles to orient the camera.
static const float VIEW_DEFAULT[2] = { 45.0f, 45.0f };
static const float VIEW_LEFT[2] = { 90.0f, 90.0f };
static const float VIEW_RIGHT[2] = { -90.0f, 90.0f };
static const float VIEW_TOP[2] = { 0.0f, 0.0f };
static const float VIEW_BOTTOM[2] = { 0.0f, 180.0f };
static const float VIEW_FRONT[2] = { 0.0f, 90.0f };
static const float VIEW_REAR[2] = { 180.0f, 90.0f };

namespace Slic3r {
namespace GUI {

const double Camera::DefaultDistance = 1000.0;
double Camera::FrustrumMinZSize = 50.0;
double Camera::FrustrumZMargin = 10.0;
double Camera::FovMinDeg = 0.5;
double Camera::FovMaxDeg = 75.0;

Camera::Camera()
    : phi(45.0f)
    , requires_zoom_to_bed(false)
    , inverted_phi(false)
    , m_type(Perspective)
    , m_target(Vec3d::Zero())
    , m_theta(45.0f)
    , m_zoom(1.0)
    , m_distance(DefaultDistance)
    , m_gui_scale(1.0)
    , m_view_matrix(Transform3d::Identity())
    , m_projection_matrix(Transform3d::Identity())
{
}

std::string Camera::get_type_as_string() const
{
    switch (m_type)
    {
    case Unknown:
        return "unknown";
    case Perspective:
        return "perspective";
    default:
    case Ortho:
        return "orthographic";
    };
}

void Camera::set_type(EType type)
{
    if (m_type != type)
    {
        m_type = type;
        wxGetApp().app_config->set("use_perspective_camera", (m_type == Perspective) ? "1" : "0");
        wxGetApp().app_config->save();
    }
}

void Camera::set_type(const std::string& type)
{
    if (type == "1")
        set_type(Perspective);
    else
        set_type(Ortho);
}

void Camera::select_next_type()
{
    unsigned char next = (unsigned char)m_type + 1;
    if (next == (unsigned char)Num_types)
        next = 1;

    set_type((EType)next);
}

void Camera::set_target(const Vec3d& target)
{
    m_target = target;
    m_target(0) = clamp(m_scene_box.min(0), m_scene_box.max(0), m_target(0));
    m_target(1) = clamp(m_scene_box.min(1), m_scene_box.max(1), m_target(1));
    m_target(2) = clamp(m_scene_box.min(2), m_scene_box.max(2), m_target(2));
}

void Camera::set_theta(float theta, bool apply_limit)
{
    if (apply_limit)
        m_theta = clamp(0.0f, GIMBALL_LOCK_THETA_MAX, theta);
    else
    {
        m_theta = fmod(theta, 360.0f);
        if (m_theta < 0.0f)
            m_theta += 360.0f;
    }
}

void Camera::set_zoom(double zoom, const BoundingBoxf3& max_box, int canvas_w, int canvas_h)
{
    zoom = std::max(std::min(zoom, 4.0), -4.0) / 10.0;
    zoom = m_zoom / (1.0 - zoom);

    // Don't allow to zoom too far outside the scene.
    double zoom_min = calc_zoom_to_bounding_box_factor(max_box, canvas_w, canvas_h);
    if (zoom_min > 0.0)
        zoom = std::max(zoom, zoom_min * 0.7);

    // Don't allow to zoom too close to the scene.
    zoom = std::min(zoom, 100.0);

    m_zoom = zoom;
}

bool Camera::select_view(const std::string& direction)
{
    const float* dir_vec = nullptr;

    if (direction == "iso")
        dir_vec = VIEW_DEFAULT;
    else if (direction == "left")
        dir_vec = VIEW_LEFT;
    else if (direction == "right")
        dir_vec = VIEW_RIGHT;
    else if (direction == "top")
        dir_vec = VIEW_TOP;
    else if (direction == "bottom")
        dir_vec = VIEW_BOTTOM;
    else if (direction == "front")
        dir_vec = VIEW_FRONT;
    else if (direction == "rear")
        dir_vec = VIEW_REAR;

    if (dir_vec != nullptr)
    {
        phi = dir_vec[0];
        set_theta(dir_vec[1], false);
        return true;
    }
    else
        return false;
}

double Camera::get_fov() const
{
    switch (m_type)
    {
    case Perspective:
        return 2.0 * Geometry::rad2deg(std::atan(1.0 / m_projection_matrix.matrix()(1, 1)));
    default:
    case Ortho:
        return 0.0;
    };
}

void Camera::apply_viewport(int x, int y, unsigned int w, unsigned int h) const
{
    glsafe(::glViewport(0, 0, w, h));
    glsafe(::glGetIntegerv(GL_VIEWPORT, m_viewport.data()));
}

void Camera::apply_view_matrix() const
{
    double theta_rad = Geometry::deg2rad(-(double)m_theta);
    double phi_rad = Geometry::deg2rad((double)phi);
    double sin_theta = ::sin(theta_rad);
    Vec3d camera_pos = m_target + m_distance * Vec3d(sin_theta * ::sin(phi_rad), sin_theta * ::cos(phi_rad), ::cos(theta_rad));

    glsafe(::glMatrixMode(GL_MODELVIEW));
    glsafe(::glLoadIdentity());

    glsafe(::glRotatef(-m_theta, 1.0f, 0.0f, 0.0f)); // pitch
    glsafe(::glRotatef(phi, 0.0f, 0.0f, 1.0f));      // yaw

    glsafe(::glTranslated(-camera_pos(0), -camera_pos(1), -camera_pos(2))); 

    glsafe(::glGetDoublev(GL_MODELVIEW_MATRIX, m_view_matrix.data()));
}

void Camera::apply_projection(const BoundingBoxf3& box) const
{
    m_distance = DefaultDistance;
    double w = 0.0;
    double h = 0.0;

    while (true)
    {
        m_frustrum_zs = calc_tight_frustrum_zs_around(box);

        w = (double)m_viewport[2];
        h = (double)m_viewport[3];

        double two_zoom = 2.0 * m_zoom;
        if (two_zoom != 0.0)
        {
            double inv_two_zoom = 1.0 / two_zoom;
            w *= inv_two_zoom;
            h *= inv_two_zoom;
        }

        switch (m_type)
        {
        default:
        case Ortho:
        {
            m_gui_scale = 1.0;
            break;
        }
        case Perspective:
        {
            // scale near plane to keep w and h constant on the plane at z = m_distance
            double scale = m_frustrum_zs.first / m_distance;
            w *= scale;
            h *= scale;
            m_gui_scale = scale;
            break;
        }
        }

        if (m_type == Perspective)
        {
            double fov_rad = 2.0 * std::atan(h / m_frustrum_zs.first);
            double fov_deg = Geometry::rad2deg(fov_rad);

            // adjust camera distance to keep fov in a limited range
            if (fov_deg > FovMaxDeg + 0.001)
            {
                double new_near_z = h / ::tan(0.5 * Geometry::deg2rad(FovMaxDeg));
                m_distance += (new_near_z - m_frustrum_zs.first);
                apply_view_matrix();
            }
            else if (fov_deg < FovMinDeg - 0.001)
            {
                double new_near_z = h / ::tan(0.5 * Geometry::deg2rad(FovMinDeg));
                m_distance += (new_near_z - m_frustrum_zs.first);
                apply_view_matrix();
            }
            else
                break;
        }
        else
            break;
    }

    glsafe(::glMatrixMode(GL_PROJECTION));
    glsafe(::glLoadIdentity());

    switch (m_type)
    {
    default:
    case Ortho:
    {
        glsafe(::glOrtho(-w, w, -h, h, m_frustrum_zs.first, m_frustrum_zs.second));
        break;
    }
    case Perspective:
    {
        glsafe(::glFrustum(-w, w, -h, h, m_frustrum_zs.first, m_frustrum_zs.second));
        break;
    }
    }

    glsafe(::glGetDoublev(GL_PROJECTION_MATRIX, m_projection_matrix.data()));
    glsafe(::glMatrixMode(GL_MODELVIEW));
}

void Camera::zoom_to_box(const BoundingBoxf3& box, int canvas_w, int canvas_h)
{
    // Calculate the zoom factor needed to adjust the view around the given box.
    double zoom = calc_zoom_to_bounding_box_factor(box, canvas_w, canvas_h);
    if (zoom > 0.0)
    {
        m_zoom = zoom;
        // center view around box center
        m_target = box.center();
    }
}

#if ENABLE_CAMERA_STATISTICS
void Camera::debug_render() const
{
    ImGuiWrapper& imgui = *wxGetApp().imgui();
    imgui.set_next_window_bg_alpha(0.5f);
    imgui.begin(std::string("Camera statistics"), ImGuiWindowFlags_AlwaysAutoResize | ImGuiWindowFlags_NoResize | ImGuiWindowFlags_NoCollapse);

    std::string type = get_type_as_string();
    Vec3f position = get_position().cast<float>();
    Vec3f target = m_target.cast<float>();
    float distance = (float)get_distance();
    Vec3f forward = get_dir_forward().cast<float>();
    Vec3f right = get_dir_right().cast<float>();
    Vec3f up = get_dir_up().cast<float>();
    float nearZ = (float)m_frustrum_zs.first;
    float farZ = (float)m_frustrum_zs.second;
    float deltaZ = farZ - nearZ;
    float zoom = (float)m_zoom;
    float fov = (float)get_fov();
    float gui_scale = (float)get_gui_scale();

    ImGui::InputText("Type", const_cast<char*>(type.data()), type.length(), ImGuiInputTextFlags_ReadOnly);
    ImGui::Separator();
    ImGui::InputFloat3("Position", position.data(), "%.6f", ImGuiInputTextFlags_ReadOnly);
    ImGui::InputFloat3("Target", target.data(), "%.6f", ImGuiInputTextFlags_ReadOnly);
    ImGui::InputFloat("Distance", &distance, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly);
    ImGui::Separator();
    ImGui::InputFloat3("Forward", forward.data(), "%.6f", ImGuiInputTextFlags_ReadOnly);
    ImGui::InputFloat3("Right", right.data(), "%.6f", ImGuiInputTextFlags_ReadOnly);
    ImGui::InputFloat3("Up", up.data(), "%.6f", ImGuiInputTextFlags_ReadOnly);
    ImGui::Separator();
    ImGui::InputFloat("Near Z", &nearZ, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly);
    ImGui::InputFloat("Far Z", &farZ, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly);
    ImGui::InputFloat("Delta Z", &deltaZ, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly);
    ImGui::Separator();
    ImGui::InputFloat("Zoom", &zoom, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly);
    ImGui::InputFloat("Fov", &fov, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly);
    ImGui::Separator();
    ImGui::InputFloat("GUI scale", &gui_scale, 0.0f, 0.0f, "%.6f", ImGuiInputTextFlags_ReadOnly);
    imgui.end();
}
#endif // ENABLE_CAMERA_STATISTICS

std::pair<double, double> Camera::calc_tight_frustrum_zs_around(const BoundingBoxf3& box) const
{
    std::pair<double, double> ret = std::make_pair(DBL_MAX, -DBL_MAX);

    Vec3d bb_min = box.min;
    Vec3d bb_max = box.max;

    // box vertices in world space
    std::vector<Vec3d> vertices;
    vertices.reserve(8);
    vertices.push_back(bb_min);
    vertices.emplace_back(bb_max(0), bb_min(1), bb_min(2));
    vertices.emplace_back(bb_max(0), bb_max(1), bb_min(2));
    vertices.emplace_back(bb_min(0), bb_max(1), bb_min(2));
    vertices.emplace_back(bb_min(0), bb_min(1), bb_max(2));
    vertices.emplace_back(bb_max(0), bb_min(1), bb_max(2));
    vertices.push_back(bb_max);
    vertices.emplace_back(bb_min(0), bb_max(1), bb_max(2));

    // set the Z range in eye coordinates (negative Zs are in front of the camera)
    for (const Vec3d& v : vertices)
    {
        double z = -(m_view_matrix * v)(2);
        ret.first = std::min(ret.first, z);
        ret.second = std::max(ret.second, z);
    }

    // apply margin
    ret.first -= FrustrumZMargin;
    ret.second += FrustrumZMargin;

    // ensure min size
    if (ret.second - ret.first < FrustrumMinZSize)
    {
        double mid_z = 0.5 * (ret.first + ret.second);
        double half_size = 0.5 * FrustrumMinZSize;
        ret.first = mid_z - half_size;
        ret.second = mid_z + half_size;
    }

    return ret;
}

double Camera::calc_zoom_to_bounding_box_factor(const BoundingBoxf3& box, int canvas_w, int canvas_h) const
{
    double max_bb_size = box.max_size();
    if (max_bb_size == 0.0)
        return -1.0;

    // project the box vertices on a plane perpendicular to the camera forward axis
    // then calculates the vertices coordinate on this plane along the camera xy axes

    // ensure that the view matrix is updated
    apply_view_matrix();

    Vec3d right = get_dir_right();
    Vec3d up = get_dir_up();
    Vec3d forward = get_dir_forward();

    Vec3d bb_min = box.min;
    Vec3d bb_max = box.max;
    Vec3d bb_center = box.center();

    // box vertices in world space
    std::vector<Vec3d> vertices;
    vertices.reserve(8);
    vertices.push_back(bb_min);
    vertices.emplace_back(bb_max(0), bb_min(1), bb_min(2));
    vertices.emplace_back(bb_max(0), bb_max(1), bb_min(2));
    vertices.emplace_back(bb_min(0), bb_max(1), bb_min(2));
    vertices.emplace_back(bb_min(0), bb_min(1), bb_max(2));
    vertices.emplace_back(bb_max(0), bb_min(1), bb_max(2));
    vertices.push_back(bb_max);
    vertices.emplace_back(bb_min(0), bb_max(1), bb_max(2));

    double max_x = 0.0;
    double max_y = 0.0;

    // margin factor to give some empty space around the box
    double margin_factor = 1.25;

    for (const Vec3d& v : vertices)
    {
        // project vertex on the plane perpendicular to camera forward axis
        Vec3d pos(v(0) - bb_center(0), v(1) - bb_center(1), v(2) - bb_center(2));
        Vec3d proj_on_plane = pos - pos.dot(forward) * forward;

        // calculates vertex coordinate along camera xy axes
        double x_on_plane = proj_on_plane.dot(right);
        double y_on_plane = proj_on_plane.dot(up);

        max_x = std::max(max_x, std::abs(x_on_plane));
        max_y = std::max(max_y, std::abs(y_on_plane));
    }

    if ((max_x == 0.0) || (max_y == 0.0))
        return -1.0f;

    max_x *= margin_factor;
    max_y *= margin_factor;

    return std::min((double)canvas_w / (2.0 * max_x), (double)canvas_h / (2.0 * max_y));
}

} // GUI
} // Slic3r