Welcome to mirror list, hosted at ThFree Co, Russian Federation.

test_geometry.cpp « libslic3r « tests - github.com/prusa3d/PrusaSlicer.git - Unnamed repository; edit this file 'description' to name the repository.
summaryrefslogtreecommitdiff
blob: 6f2bd1c39f9780b72b7fda1661033a10b0d789d1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
#include <catch2/catch.hpp>

#include "libslic3r/Point.hpp"
#include "libslic3r/BoundingBox.hpp"
#include "libslic3r/Polygon.hpp"
#include "libslic3r/Polyline.hpp"
#include "libslic3r/Line.hpp"
#include "libslic3r/Geometry.hpp"
#include "libslic3r/ClipperUtils.hpp"
#include "libslic3r/ShortestPath.hpp"

using namespace Slic3r;

TEST_CASE("Polygon::contains works properly", "[Geometry]"){
   // this test was failing on Windows (GH #1950)
    Slic3r::Polygon polygon(std::vector<Point>({
        Point(207802834,-57084522),
        Point(196528149,-37556190),
        Point(173626821,-25420928),
        Point(171285751,-21366123),
        Point(118673592,-21366123),
        Point(116332562,-25420928),
        Point(93431208,-37556191),
        Point(82156517,-57084523),
        Point(129714478,-84542120),
        Point(160244873,-84542120)
    }));
    Point point(95706562, -57294774);
    REQUIRE(polygon.contains(point));
}

SCENARIO("Intersections of line segments", "[Geometry]"){
    GIVEN("Integer coordinates"){
        Line line1(Point(5,15),Point(30,15));
        Line line2(Point(10,20), Point(10,10));
        THEN("The intersection is valid"){
            Point point;
            line1.intersection(line2,&point);
            REQUIRE(Point(10,15) == point);
        }
    }

    GIVEN("Scaled coordinates"){
        Line line1(Point(73.6310778185108 / 0.00001, 371.74239268924 / 0.00001), Point(73.6310778185108 / 0.00001, 501.74239268924 / 0.00001));
        Line line2(Point(75/0.00001, 437.9853/0.00001), Point(62.7484/0.00001, 440.4223/0.00001));
        THEN("There is still an intersection"){
            Point point;
            REQUIRE(line1.intersection(line2,&point));
        }
    }
}

/*
Tests for unused methods still written in perl
{
    my $polygon = Slic3r::Polygon->new(
        [45919000, 515273900], [14726100, 461246400], [14726100, 348753500], [33988700, 315389800], 
        [43749700, 343843000], [45422300, 352251500], [52362100, 362637800], [62748400, 369577600], 
        [75000000, 372014700], [87251500, 369577600], [97637800, 362637800], [104577600, 352251500], 
        [107014700, 340000000], [104577600, 327748400], [97637800, 317362100], [87251500, 310422300], 
        [82789200, 309534700], [69846100, 294726100], [254081000, 294726100], [285273900, 348753500], 
        [285273900, 461246400], [254081000, 515273900],
    );
    
    # this points belongs to $polyline
    # note: it's actually a vertex, while we should better check an intermediate point
    my $point = Slic3r::Point->new(104577600, 327748400);
    
    local $Slic3r::Geometry::epsilon = 1E-5;
    is_deeply Slic3r::Geometry::polygon_segment_having_point($polygon, $point)->pp, 
        [ [107014700, 340000000], [104577600, 327748400] ],
        'polygon_segment_having_point';
}
{
        auto point = Point(736310778.185108, 5017423926.8924);
        auto line = Line(Point((long int) 627484000, (long int) 3695776000), Point((long int) 750000000, (long int)3720147000));
        //is Slic3r::Geometry::point_in_segment($point, $line), 0, 'point_in_segment';
}

// Possible to delete
{
        //my $p1 = [10, 10];
        //my $p2 = [10, 20];
        //my $p3 = [10, 30];
        //my $p4 = [20, 20];
        //my $p5 = [0,  20];
        
        THEN("Points in a line give the correct angles"){
            //is Slic3r::Geometry::angle3points($p2, $p3, $p1),  PI(),   'angle3points';
            //is Slic3r::Geometry::angle3points($p2, $p1, $p3),  PI(),   'angle3points';
        }
        THEN("Left turns give the correct angle"){
            //is Slic3r::Geometry::angle3points($p2, $p4, $p3),  PI()/2, 'angle3points';
            //is Slic3r::Geometry::angle3points($p2, $p1, $p4),  PI()/2, 'angle3points';
        }
        THEN("Right turns give the correct angle"){
            //is Slic3r::Geometry::angle3points($p2, $p3, $p4),  PI()/2*3, 'angle3points';
            //is Slic3r::Geometry::angle3points($p2, $p1, $p5),  PI()/2*3, 'angle3points';
        }
        //my $p1 = [30, 30];
        //my $p2 = [20, 20];
        //my $p3 = [10, 10];
        //my $p4 = [30, 10];
        
        //is Slic3r::Geometry::angle3points($p2, $p1, $p3), PI(),       'angle3points';
        //is Slic3r::Geometry::angle3points($p2, $p1, $p4), PI()/2*3,   'angle3points';
        //is Slic3r::Geometry::angle3points($p2, $p1, $p1), 2*PI(),     'angle3points';
}

SCENARIO("polygon_is_convex works"){
    GIVEN("A square of dimension 10"){
        //my $cw_square = [ [0,0], [0,10], [10,10], [10,0] ];
        THEN("It is not convex clockwise"){
            //is polygon_is_convex($cw_square), 0, 'cw square is not convex';
        }
        THEN("It is convex counter-clockwise"){
            //is polygon_is_convex([ reverse @$cw_square ]), 1, 'ccw square is convex';
        } 

    }
    GIVEN("A concave polygon"){
        //my $convex1 = [ [0,0], [10,0], [10,10], [0,10], [0,6], [4,6], [4,4], [0,4] ];
        THEN("It is concave"){
            //is polygon_is_convex($convex1), 0, 'concave polygon';
        }
    }
}*/


TEST_CASE("Creating a polyline generates the obvious lines", "[Geometry]"){
    Slic3r::Polyline polyline;
    polyline.points = std::vector<Point>({Point(0, 0), Point(10, 0), Point(20, 0)});
    REQUIRE(polyline.lines().at(0).a == Point(0,0));
    REQUIRE(polyline.lines().at(0).b == Point(10,0));
    REQUIRE(polyline.lines().at(1).a == Point(10,0));
    REQUIRE(polyline.lines().at(1).b == Point(20,0));
}

TEST_CASE("Splitting a Polygon generates a polyline correctly", "[Geometry]"){
    Slic3r::Polygon polygon(std::vector<Point>({Point(0, 0), Point(10, 0), Point(5, 5)}));
    Slic3r::Polyline split = polygon.split_at_index(1);
    REQUIRE(split.points[0]==Point(10,0));
    REQUIRE(split.points[1]==Point(5,5));
    REQUIRE(split.points[2]==Point(0,0));
    REQUIRE(split.points[3]==Point(10,0));
}


TEST_CASE("Bounding boxes are scaled appropriately", "[Geometry]"){
    BoundingBox bb(std::vector<Point>({Point(0, 1), Point(10, 2), Point(20, 2)}));
    bb.scale(2);
    REQUIRE(bb.min == Point(0,2));
    REQUIRE(bb.max == Point(40,4));
}


TEST_CASE("Offseting a line generates a polygon correctly", "[Geometry]"){
	Slic3r::Polyline tmp = { Point(10,10), Point(20,10) };
    Slic3r::Polygon area = offset(tmp,5).at(0);
    REQUIRE(area.area() == Slic3r::Polygon(std::vector<Point>({Point(10,5),Point(20,5),Point(20,15),Point(10,15)})).area());
}

SCENARIO("Circle Fit, TaubinFit with Newton's method", "[Geometry]") {
    GIVEN("A vector of Vec2ds arranged in a half-circle with approximately the same distance R from some point") {
        Vec2d expected_center(-6, 0);
        Vec2ds sample {Vec2d(6.0, 0), Vec2d(5.1961524, 3), Vec2d(3 ,5.1961524), Vec2d(0, 6.0), Vec2d(3, 5.1961524), Vec2d(-5.1961524, 3), Vec2d(-6.0, 0)};
        std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Vec2d& a) { return a + expected_center;});

        WHEN("Circle fit is called on the entire array") {
            Vec2d result_center(0,0);
            result_center = Geometry::circle_taubin_newton(sample);
            THEN("A center point of -6,0 is returned.") {
                REQUIRE(is_approx(result_center, expected_center));
            }
        }
        WHEN("Circle fit is called on the first four points") {
            Vec2d result_center(0,0);
            result_center = Geometry::circle_taubin_newton(sample.cbegin(), sample.cbegin()+4);
            THEN("A center point of -6,0 is returned.") {
                REQUIRE(is_approx(result_center, expected_center));
            }
        }
        WHEN("Circle fit is called on the middle four points") {
            Vec2d result_center(0,0);
            result_center = Geometry::circle_taubin_newton(sample.cbegin()+2, sample.cbegin()+6);
            THEN("A center point of -6,0 is returned.") {
                REQUIRE(is_approx(result_center, expected_center));
            }
        }
    }
    GIVEN("A vector of Vec2ds arranged in a half-circle with approximately the same distance R from some point") {
        Vec2d expected_center(-3, 9);
        Vec2ds sample {Vec2d(6.0, 0), Vec2d(5.1961524, 3), Vec2d(3 ,5.1961524), 
                        Vec2d(0, 6.0), 
                        Vec2d(3, 5.1961524), Vec2d(-5.1961524, 3), Vec2d(-6.0, 0)};

        std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Vec2d& a) { return a + expected_center;});


        WHEN("Circle fit is called on the entire array") {
            Vec2d result_center(0,0);
            result_center = Geometry::circle_taubin_newton(sample);
            THEN("A center point of 3,9 is returned.") {
                REQUIRE(is_approx(result_center, expected_center));
            }
        }
        WHEN("Circle fit is called on the first four points") {
            Vec2d result_center(0,0);
            result_center = Geometry::circle_taubin_newton(sample.cbegin(), sample.cbegin()+4);
            THEN("A center point of 3,9 is returned.") {
                REQUIRE(is_approx(result_center, expected_center));
            }
        }
        WHEN("Circle fit is called on the middle four points") {
            Vec2d result_center(0,0);
            result_center = Geometry::circle_taubin_newton(sample.cbegin()+2, sample.cbegin()+6);
            THEN("A center point of 3,9 is returned.") {
                REQUIRE(is_approx(result_center, expected_center));
            }
        }
    }
    GIVEN("A vector of Points arranged in a half-circle with approximately the same distance R from some point") {
        Point expected_center { Point::new_scale(-3, 9)};
        Points sample {Point::new_scale(6.0, 0), Point::new_scale(5.1961524, 3), Point::new_scale(3 ,5.1961524), 
                        Point::new_scale(0, 6.0), 
                        Point::new_scale(3, 5.1961524), Point::new_scale(-5.1961524, 3), Point::new_scale(-6.0, 0)};

        std::transform(sample.begin(), sample.end(), sample.begin(), [expected_center] (const Point& a) { return a + expected_center;});


        WHEN("Circle fit is called on the entire array") {
            Point result_center(0,0);
            result_center = Geometry::circle_taubin_newton(sample);
            THEN("A center point of scaled 3,9 is returned.") {
                REQUIRE(is_approx(result_center, expected_center));
            }
        }
        WHEN("Circle fit is called on the first four points") {
            Point result_center(0,0);
            result_center = Geometry::circle_taubin_newton(sample.cbegin(), sample.cbegin()+4);
            THEN("A center point of scaled 3,9 is returned.") {
                REQUIRE(is_approx(result_center, expected_center));
            }
        }
        WHEN("Circle fit is called on the middle four points") {
            Point result_center(0,0);
            result_center = Geometry::circle_taubin_newton(sample.cbegin()+2, sample.cbegin()+6);
            THEN("A center point of scaled 3,9 is returned.") {
                REQUIRE(is_approx(result_center, expected_center));
            }
        }
    }
}

SCENARIO("Path chaining", "[Geometry]") {
	GIVEN("A path") {
		std::vector<Point> points = { Point(26,26),Point(52,26),Point(0,26),Point(26,52),Point(26,0),Point(0,52),Point(52,52),Point(52,0) };
		THEN("Chained with no diagonals (thus 26 units long)") {
			std::vector<Points::size_type> indices = chain_points(points);
			for (Points::size_type i = 0; i + 1 < indices.size(); ++ i) {
				double dist = (points.at(indices.at(i)).cast<double>() - points.at(indices.at(i+1)).cast<double>()).norm();
				REQUIRE(std::abs(dist-26) <= EPSILON);
			}
		}
	}
	GIVEN("Gyroid infill end points") {
		Polylines polylines = {
			{ {28122608, 3221037}, {27919139, 56036027} },
			{ {33642863, 3400772}, {30875220, 56450360} },
			{ {34579315, 3599827}, {35049758, 55971572} },
			{ {26483070, 3374004}, {23971830, 55763598} },
			{ {38931405, 4678879}, {38740053, 55077714} },
			{ {20311895, 5015778}, {20079051, 54551952} },
			{ {16463068, 6773342}, {18823514, 53992958} },
			{ {44433771, 7424951}, {42629462, 53346059} },
			{ {15697614, 7329492}, {15350896, 52089991} },
			{ {48085792, 10147132}, {46435427, 50792118} },
			{ {48828819, 10972330}, {49126582, 48368374} },
			{ {9654526, 12656711}, {10264020, 47691584} },
			{ {5726905, 18648632}, {8070762, 45082416} },
			{ {54818187, 39579970}, {52974912, 43271272} }, 
			{ {4464342, 37371742}, {5027890, 39106220} },
			{ {54139746, 18417661}, {55177987, 38472580} }, 
			{ {56527590, 32058461}, {56316456, 34067185} },
			{ {3303988, 29215290}, {3569863, 32985633} },
			{ {56255666, 25025857}, {56478310, 27144087} }, 
			{ {4300034, 22805361}, {3667946, 25752601} },
			{ {8266122, 14250611}, {6244813, 17751595} },
			{ {12177955, 9886741}, {10703348, 11491900} } 
		};
		Polylines chained = chain_polylines(polylines);
		THEN("Chained taking the shortest path") {
			double connection_length = 0.;
			for (size_t i = 1; i < chained.size(); ++i) {
				const Polyline &pl1 = chained[i - 1];
				const Polyline &pl2 = chained[i];
				connection_length += (pl2.first_point() - pl1.last_point()).cast<double>().norm();
			}
			REQUIRE(connection_length < 85206000.);
		}
	}
	GIVEN("Loop pieces") {
		Point a { 2185796, 19058485 };
		Point b { 3957902, 18149382 };
		Point c { 2912841, 18790564 };
		Point d { 2831848, 18832390 };
		Point e { 3179601, 18627769 };
		Point f { 3137952, 18653370 };
		Polylines polylines = { { a, b },
								{ c, d },
								{ e, f },
								{ d, a },
								{ f, c },
								{ b, e } };
		Polylines chained = chain_polylines(polylines, &a);
		THEN("Connected without a gap") {
			for (size_t i = 0; i < chained.size(); ++i) {
				const Polyline &pl1 = (i == 0) ? chained.back() : chained[i - 1];
				const Polyline &pl2 = chained[i];
				REQUIRE(pl1.points.back() == pl2.points.front());
			}
		}
	}
}

SCENARIO("Line distances", "[Geometry]"){
    GIVEN("A line"){
        Line line(Point(0, 0), Point(20, 0));
        THEN("Points on the line segment have 0 distance"){
            REQUIRE(line.distance_to(Point(0, 0))  == 0);
            REQUIRE(line.distance_to(Point(20, 0)) == 0);
            REQUIRE(line.distance_to(Point(10, 0)) == 0);
        
        }
        THEN("Points off the line have the appropriate distance"){
            REQUIRE(line.distance_to(Point(10, 10)) == 10);
            REQUIRE(line.distance_to(Point(50, 0)) == 30);
        }
    }
}

SCENARIO("Polygon convex/concave detection", "[Geometry]"){
    GIVEN(("A Square with dimension 100")){
        auto square = Slic3r::Polygon /*new_scale*/(std::vector<Point>({
            Point(100,100),
            Point(200,100),
            Point(200,200),
            Point(100,200)}));
        THEN("It has 4 convex points counterclockwise"){
            REQUIRE(square.concave_points(PI*4/3).size() == 0);
            REQUIRE(square.convex_points(PI*2/3).size() == 4);
        }
        THEN("It has 4 concave points clockwise"){
            square.make_clockwise();
            REQUIRE(square.concave_points(PI*4/3).size() == 4);
            REQUIRE(square.convex_points(PI*2/3).size() == 0);
        }
    }
    GIVEN("A Square with an extra colinearvertex"){
        auto square = Slic3r::Polygon /*new_scale*/(std::vector<Point>({
            Point(150,100),
            Point(200,100),
            Point(200,200),
            Point(100,200),
            Point(100,100)}));
        THEN("It has 4 convex points counterclockwise"){
            REQUIRE(square.concave_points(PI*4/3).size() == 0);
            REQUIRE(square.convex_points(PI*2/3).size() == 4);
        }
    }
    GIVEN("A Square with an extra collinear vertex in different order"){
        auto square = Slic3r::Polygon /*new_scale*/(std::vector<Point>({
            Point(200,200),
            Point(100,200),
            Point(100,100),
            Point(150,100),
            Point(200,100)}));
        THEN("It has 4 convex points counterclockwise"){
            REQUIRE(square.concave_points(PI*4/3).size() == 0);
            REQUIRE(square.convex_points(PI*2/3).size() == 4);
        }
    }

    GIVEN("A triangle"){
        auto triangle = Slic3r::Polygon(std::vector<Point>({
            Point(16000170,26257364),
            Point(714223,461012),
            Point(31286371,461008)
        }));
        THEN("it has three convex vertices"){
            REQUIRE(triangle.concave_points(PI*4/3).size() == 0);
            REQUIRE(triangle.convex_points(PI*2/3).size() == 3);
        }
    }

    GIVEN("A triangle with an extra collinear point"){
        auto triangle = Slic3r::Polygon(std::vector<Point>({
            Point(16000170,26257364),
            Point(714223,461012),
            Point(20000000,461012),
            Point(31286371,461012)
        }));
        THEN("it has three convex vertices"){
            REQUIRE(triangle.concave_points(PI*4/3).size() == 0);
            REQUIRE(triangle.convex_points(PI*2/3).size() == 3);
        }
    }
    GIVEN("A polygon with concave vertices with angles of specifically 4/3pi"){
        // Two concave vertices of this polygon have angle = PI*4/3, so this test fails
        // if epsilon is not used.
        auto polygon = Slic3r::Polygon(std::vector<Point>({
            Point(60246458,14802768),Point(64477191,12360001),
            Point(63727343,11060995),Point(64086449,10853608),
            Point(66393722,14850069),Point(66034704,15057334),
            Point(65284646,13758387),Point(61053864,16200839),
            Point(69200258,30310849),Point(62172547,42483120),
            Point(61137680,41850279),Point(67799985,30310848),
            Point(51399866,1905506),Point(38092663,1905506),
            Point(38092663,692699),Point(52100125,692699)
        }));
        THEN("the correct number of points are detected"){
            REQUIRE(polygon.concave_points(PI*4/3).size() == 6);
            REQUIRE(polygon.convex_points(PI*2/3).size() == 10);
        }
    }
}

TEST_CASE("Triangle Simplification does not result in less than 3 points", "[Geometry]"){
    auto triangle = Slic3r::Polygon(std::vector<Point>({
        Point(16000170,26257364), Point(714223,461012), Point(31286371,461008)
    }));
    REQUIRE(triangle.simplify(250000).at(0).points.size() == 3);
}

SCENARIO("Ported from xs/t/14_geometry.t", "[Geometry]"){
    GIVEN(("square")){
    	Slic3r::Points points { { 100, 100 }, {100, 200 }, { 200, 200 }, { 200, 100 }, { 150, 150 } };
		Slic3r::Polygon hull = Slic3r::Geometry::convex_hull(points);
		SECTION("convex hull returns the correct number of points") { REQUIRE(hull.points.size() == 4); }
    }
	SECTION("arrange returns expected number of positions") {
		Pointfs positions;
		Slic3r::Geometry::arrange(4, Vec2d(20, 20), 5, nullptr, positions);
    	REQUIRE(positions.size() == 4);
    }
	SECTION("directions_parallel") {
    	REQUIRE(Slic3r::Geometry::directions_parallel(0, 0, 0)); 
    	REQUIRE(Slic3r::Geometry::directions_parallel(0, M_PI, 0)); 
    	REQUIRE(Slic3r::Geometry::directions_parallel(0, 0, M_PI / 180));
    	REQUIRE(Slic3r::Geometry::directions_parallel(0, M_PI, M_PI / 180));
    	REQUIRE(! Slic3r::Geometry::directions_parallel(M_PI /2, M_PI, 0));
    	REQUIRE(! Slic3r::Geometry::directions_parallel(M_PI /2, PI, M_PI /180));
    }
}